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ABSTRACT 
 
Crop yield estimation, vital for agricultural planning, incorporates weather, soil health, and 

technology. Utilizing remote sensing to analyze soil health enhances agricultural 

management and resource optimization. Despite challenges like data accuracy and cloud 

interference, the proposed multi-head cross attention with capsule energy valley network 

(mhca-cevn) tackles these issues. This research integrates sentinel-1 and sentinel-2 data with 
field measurements, employing advanced preprocessing and feature extraction methods, such 

as the guided multi-layer side window box filter and shearlet transform. The hybrid gold rush 

mantis search optimizer selects key features for a deep visual attention-based fusion method. 

The resulting mhca-cevn classification model achieves outstanding performance, with 

accuracy, sensitivity, error rate, f1-score, mean absolute percentage error, and symmetric 

mean absolute percentage error at 97.59%, 95.21%, 6.65%, 90.21%, 5.01%, and 0.042%, 

respectively. These metrics highlight the model's efficacy in addressing diverse crop yield 

challenges, establishing it as a robust solution for remote sensing. 
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1. INTRODUCTION 
 

Crop Yield Estimation (CYE) is crucial in modern agriculture, serving as a predictive tool to 
anticipate crop yields on specific parcels [1]. Essential for precision farming and resource 

management, accurate CYE integrates traditional methods, advanced technologies, and data 

analytics [2]. This process informs decision-making in resource allocation, risk mitigation, and 
overall agricultural planning. Evolution in CYE includes remote sensing, weather data analysis, 

and on-field sensors, providing comprehensive insights for optimizing farming practices and 

addressing challenges from changing environmental conditions [3]. 

http://airccse.org/cscp.html
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In CYE with Remote Sensing Images (RSI), satellite or aerial imagery efficiently evaluates 
agricultural productivity non-intrusively [4,5]. Remote sensing technologies capture spectral 

bands, extracting data on vegetation indices and crop health markers [6]. These images provide a 

panoramic view of large agricultural areas, enabling observation of spatial crop variations [7,8]. 

Advanced image processing, including spectral analysis and Machine Learning (ML), extracts 
meaningful insights. Correlating remote sensing metrics with ground truth data generates precise 

crop yield estimates, facilitating timely decision-making for farmers to optimize resource 

allocation and address challenges In the CYE domain, RSIare applied to assess soil health and 
predict crop yield. This innovative method utilizes satellite imagery and other distant sensing 

techniques to comprehensively evaluate soil and crop conditions [9,10]. Various remote sensing 

data, including microwave and optical data, monitor land-use changes, crop growth, soil 
moisture, salinity, and pest infestation levels. Analysing this diverse data aids in estimating crop 

yields, offering valuable insights for informed agricultural decision-making [11]. Incorporating 

ML-based approaches, proposed frameworks and models enhance understanding of soil health 

and crop dynamics, promoting sustainable and data-driven practices in agriculture [12]. 
 

Soil health-based CYE with RSI transforms sustainable agriculture. Using remote sensing, such 

as satellite imagery, offers farmers vital insights for precise management [13]. Optimizing CYE 
with a focus on soil health promotes resource efficiency, minimizing environmental impact. This 

empowers informed decisions, enhances productivity, and fosters environmentally responsible 

farming, contributing to resilient and adaptive agriculture for long-term global food production 
sustainability [14,15]. 

 

The major contributions of this suggested work are listed below: 

 
 Presenting the enhanced guided multi-layer side window box filter for the preprocessing 

of initial satellite imagery, this innovative technique is employed to refine and optimize 

the quality of the input images. 
 For feature extraction, the application of an enhanced non subsampled shearlet transform 

is employed to achieve superior precision and representation. 

 The numerical data undergoes preprocessing through data normalization and 

transformation techniques. Selection of essential features is performed using the hybrid 
Gold Rush Mantis Search (GRMS) optimizer. 

 The integration of two features is achieved through the utilization of a deep visual 

attention-based fusion method. Subsequently, the combined features are input into the 
MHCA-CEVN for CYE. 

 

The next parts of this research work are set up in the manner described: section 2 looks into 
recent strategies relevant to this work, section 3 explains the recommended design, section 4 

details the outcomes and analysis, while section 5 summarizes and concludes this work. 

 

2. LITERATURE SURVEY 
 
The current body of literature delves into a variety of techniques and aspects, as evidenced by 

references [16-25]. This extensive exploration encompasses diverse methodologies and 

considerations derived from the cited sources, contributing to a comprehensive understanding of 
the subject matter.  

 

In 2022, Tripathi et al. [16] introduced Deep Learning Multi-Layer Perceptron (DLMLP) neural 

networks, diverging from optical data-centred approaches to forecast wheat crop yield by 
estimating soil health parameters. The study emphasized the pivotal role of healthy soil, affirming 

its significant impact on achieving optimal crop yields. In 2022, Seydi et al. [17] introduced an 
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innovative Deep Learning (DL) method for mapping seven crop and three non-crop classes. 
Employing time-series Normalized Difference Vegetation Index (NDVI) for its dynamic crop 

representation, the model outperformed sophisticated supervised learning methods in both 

statistical and visual assessments, underscoring its superior effectiveness among advanced 

classification techniques. In 2022, Ali et al. [18] introduced an innovative approach called 
Supervised Nearest Neighbourhood Object-based Classification (SNNOC) for assessing the 

geographical spread of rice cultivation and production. The yield prediction involved utilizing an 

empirical model based on NDVI and Leaf Area Index (LAI) for accurate estimations. In 2022, 
Ma et al. [19] introduced the Shuffled complex evolution with Principal component analysis-

University of California, Irvine (SP-UCI) optimization algorithm, applying it to assimilate remote 

sensing data into a simple yield estimation and crop growth model. The assimilation system, 
evaluated for reliability and accuracy using two years of winter wheat growth data under varying 

conditions, consistently aligned with actual measurements for leaf area index, biomass, and yield. 

 
Table 1: Assessing various existing methods, reviewing their strengths and weaknesses 

 
AUTHORS METHODS ADVANTAGES DISADVANTAGES 

Tripathi et al. 

[16] 

DLMLP  High precision. 

 Better performance. 

 Expanding locations improves 

evaluation thoroughness. 

Seydi et al. 

[17] 

DL  Exceptional precision 

achieved across diverse 

NDVI datasets. 

 Framework effectiveness  

varies across diverse regions. 

 Optimizing framework may need 

extensive experimentation. 

Ali et al. 

[18] 

SNNOC  Yields high accuracy and 

kappa coefficient. 

 Provides timely insights 

before harvest. 

 Demands resources, expertise for 

model. 

 Deviations from assumptions  

affect SEBAL model prediction 

reliability. 

Ma et al. 

[19] 

SP-UCI  Improved effectiveness.  Increase data types for better 

representation. 

Meraj et al. 

[20] 

CASA  Strong correlation confirms 
approach's reliability, 

accuracy. 

 Method holds promise for 

regional crop yield. 

 Parameter inaccuracies may bias  
yield estimates. 

 Temporal scope limits model's 

interannual variability. 

Ma et al. 

[21] 

AMM- 

FuseNet 
 Excels with minimal 

training  

data. 

 Minimal accuracy 

reduction. 

 Dataset specificity limits 

generalizability to diverse regions. 

Uribeetxebarria 

et al. [22] 

CatBoost  Improves wheat yield 

prediction accuracy. 

 Algorithm needs rare  

high-resolution yield data. 

Yeasin et al. 

[23] 

ML  Precise spatial monitoring 

with high resolution. 

 Validate over broader area, larger 

sample is needed. 

Trivedi et al.  

[24] 

CMT  Improved adaptability.  Optimize sampling for model 

improvement. 

Singha et al. 
[25] 

CC  Sentinel-1 monitors tuber 
quality and yield. 

 Ignores future data access changes. 

Munaganuri et  

al. [35] 

DDQGCN  Reduced response delays 

and enhanced precision 

 Exploring complex neural networks 

further enhance predictive 

capabilities. 

Shao et al. [36] ML  High accuracy in estimating 

crop water consumption. 

 No significant benefit from 

additional data types beyond 

multispectral. 
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Yang et al. 

[37] 

ML  Enhanced generalization 

capabilities of the model. 

 increased computational complexity 

and require extensive tuning. 

Ramzan et al.  

[38] 

DNN  Optimal forecasting 

accuracy 

 Limited predictor scope and data 

scarcity hinders model accuracy. 

 
In 2022, Meraj et al. [20] introduced a ML algorithm for wheat acreage estimation. Various ML 

classification algorithms were employed, and the Carnegie-Ames-Stanford Approach (CASA) 

system was applied to calculate wheat yield. Wheat acreage was determined through supervised 
classification, utilizing Random Forest (RF) and Support Vector Machine (SVM) classifiers. The 

classification accuracy of these methods was then compared based on ground-truthing. In 2022, 

Ma et al. [21] presented the Attention-based Multi-Modal image Fusion Network (AMM-

FuseNet). The network leveraged a hybrid strategy involving the channel attention mechanism 
and Densely connected Atrous Spatial Pyramid Pooling (DenseASPP). The performance of the 

proposed network demonstrated competitiveness against leading-edge segmentation networks 

like DeepLabv3+, SegNet, and Unet. In 2022, Uribeetxebarria et al. [22] optimized wheat yield 
prediction using sentinel-1, sentinel-2 data with the Categorical Boosting (CatBoost) algorithm. 

They evaluated the approach on 39 fields, suggesting future studies consider high-resolution 

meteorological and edaphic variables for a more comprehensive analysis. In 2022, Yeasin et al. 
[23] applied ML techniques to assess sugarcane phenology. The study explored individual and 

combined data effectiveness, evaluated temporal behaviors, and suggested broader-scale 

validation studies with a larger sample size. 

 
In 2023, Trivedi et al. [24] advocated an efficient Cropland Mapping Technique (CMT) with 

focus on sentinel-2 and sentinel-1 metrics. Elevation and texture-based features played crucial 

roles, influencing crop distribution and spatial differences in small, irregular fields. The study 
advised image stratification and optimized sampling for enhanced model performance and 

transferability. In 2022, Singha et al. [25] demonstrated an efficient approach for monitoring 

potato cropping areas using polarized images from sentinel-1 C band in different phenological 
stages. The google earth engine Cloud Computing (CC) framework allowed rapid pre-processing, 

facilitating quick data acquisition and processing. Table 1 assessed existing methods with their 

benefits and limitations. 

 
In 2024, Munaganuri et al. [35] introduced the Deep Dyna Q Graph Convolutional Network 

(DDQGCN), which classified selected features into irrigation schedule classes. This network 

enhanced classification efficiency across diverse image sources and improved adaptability to 
different crop types and environmental conditions.In 2023, Shao et al. [36] developed models for 

estimating crop coefficients for irrigated maize in Northwest China's semi-arid region using 

Unmanned Aerial Vehicle (UAV) remote sensing and ML techniques. Six ML algorithms and 

deep neural network were employed for model development. 
 

In 2024, Yang et al. [37] explored UAV multi-sensor data fusion and ML for wheat yield 

prediction. They proposed layered ensemble method, feature-prioritized, and basic averaging 
ensemble techniques, which improved prediction accuracy.In 2023, Ramzan et al. [38] combined 

agrometeorological and remote sensing data to predict farm-level tea yield. The study proposed a 

Deep Neural Network (DNN) with three hidden layers, optimized through Bayesian search, for 
complex non-linear modelling using Landsat imagery. 

 

Problem statement 
 

Assessing soil health is crucial as it serves as a vital natural resource supporting all life on earth 

and directly impacting crop yields. Global studies use remote sensing for agricultural monitoring 
and yield estimation, but challenges arise in addressing crop variability, growth stages, and 
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environmental conditions. Agriculture productivity ties closely to climatic elements, fertilizer 
use, and soil fertility. Remote sensing faces difficulties in discriminating crops and dealing with 

cloud cover. Model calibration, validation, and multi sensor integration add complexity. This 

study proposes a solution employing a deep fusion with an attention neural network for accurate 

CYE based on soil health using RSI, addressing these challenges. 
 

3. PROPOSED METHODOLOGY FOR CROP YIELD ESTIMATION USING 

MHCA-CEVN 
 

The process begins with the utilization of remotely sensed data from Sentinel-1 Microwave 
satellites and Sentinel-2 optical data, complemented by field data, to assess key soil health 

parameters: Soil Moisture, Soil Salinity, and Soil Organic Carbon (SOC). The derived soil health 

parameters, along with the optical remote sensing data, are then used to estimate crop yield. The 

research employs two primary datasets: remotely sensed images and numerical data, including 
soil health parameters, area, rainfall, temperature, air quality index, and quantities of SO2 and 

NO2. 

 

 
 

Figure 1. System model 

 

The process starts with the pre-processing of satellite images using the enhanced guided multi-

layer side window box filter and feature extraction via an improved non-subsampled shearlet 
transform. numerical data undergo normalization and transformation, with crucial features 

selected through the hybrid gold rush mantis search optimizer. A deep visual attention-based 

fusion method integrates the two feature sets, which are subsequently fed into a multi-head cross-
attention network combined with a capsule energy valley network for crop yield estimation. The 

performance of the proposed method is evaluated using various metrics. Ultimately, the approach 

aims to enhance the precision of crop yield predictions, offering potential improvements in 

farming techniques to mitigate crop losses. Figure 1 shows the proposed system model. 
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3.1.  Enhanced Guided Multi-Layer Side Window Box Filter for Preprocessing the 

Satellite Image 
 
Satellite image preprocessing is crucial for enhancing quality and ensuring accurate analysis by 

addressing inherent noise, correcting atmospheric interferences, and standardizing radiometric 

values. The enhanced guided multi-layer side window box filter is a sophisticated technique for 

preprocessing satellite images. By addressing noise, atmospheric effects, and radiometric 
inconsistencies, it improves image quality and enables more accurate analysis. The filter's multi-

layer and guided mechanisms, combined with the side window approach, make it a versatile tool 

for various image processing tasks.The guided filter improves image quality while preserving 
edges, contributing to optimized satellite image preprocessing for superior clarity in subsequent 

analytical processes [26]. Commencing the process, the input satellite images serve as the initial 

input for preprocessing, employing the enhanced guided multi-layer side window box filter. 
 

The filtered equation is represented by Equation (1): 

 

     lbkaPlkwbaP org

r

k

t

l

SWF 
 

,.,,

1 1

                                           (1) 

 

where,  baPSWF ,  indicates the filtered images,  baPorg ,  is the original image,  lkw , is the 

window function. The original satellite image is fed into the filter. The filter applies the guided 

multi-layer side window box approach to refine the image. The filtered image is obtained, which 

serves as the input for the subsequent feature extraction process. 
 

In the realm of side window filtering, aligning the window's side or corner with the edge of an 

object in the image enhances adaptability and performance in a range of image fusion tasks. The 
filtered image, obtained as the output of the pre-processing, serves as the input for the subsequent 

feature extraction process. 

 

3.2. Improved Non Subsampled Shearlet Transform for Feature Extraction 
 

After preprocessing satellite images, feature extraction becomes crucial, distilling essential 
information for precision. It identifies patterns, reduces dimensionality, enhancing interpretability 

for tasks like classification and object recognition.  

 

 
 

Figure 2. Block diagram of improved non subsampled shearlet transform. 
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The selection of the transform for feature extraction from pre-processed satellite images stems 
from its unique ability to capture intricate details, edges, and textures at various scales and 

orientations. This adaptability makes it a powerful tool, enhancing the capability to discern and 

analyse complex spatial patterns in satellite imagery [27].  

 

Figure 2 shows the block diagram of improved non subsampled shearlet transform. 1f  is the 

frequency of the wavelet extracting information from signals. kf  represents the central frequency 

of the thk  sub band during signal decomposition into frequency ranges. 

 

The enhanced non-subsampled shearlet transform enhances feature extraction by first 

decomposing signals into frequency sub-bands using wavelet transforms. It then applies shearlet 

filters at various scales and orientations to capture directional features and textures. The process 
involves using scale and shear matrices to control the filter application, yielding coefficients that 

represent the signal’s characteristics. These coefficients are combined to form a comprehensive 

feature vector, capturing essential image information across multiple scales and directions. This 
method improves edge and texture detection while ensuring robustness and shift-invariance, 

making it highly effective for complex image analysis tasks. 

 

Introduce the scale matrix sM , where s  denotes the scale parameters of the image, calculated by 

Equation (2). Following the decomposition of the sub band image using the shear matrix in the 

direction of non-subsampled shearlet, the quantity v  represents the number of shearlet filters 

generated at a specific scale s . Equation (3) and Equation (4) present the formula for image 

redundancy sV  following transformer decomposition iterations within a total scale of S . 
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The formulation of the feature extraction is expressed by Equation (5). 
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where,  lks ,  is the coefficients of the shearlet basis functions,  balk ,,  are the shearlet basis 

functions at scale k  and direction l , and  ,,baWf  represents the improved non subsampled 

shearlet transform coefficient. 
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Table 2. Improved non subsampled shearlet transform algorithm 

 

 
 

Table 2 provides the improved non subsampledshearlet transform algorithm. The image 

processing workflow begins by converting the input image into the frequency domain using a 2 

dimension Fast Fourier Transform (FFT), facilitating subsequent analysis by simplifying the 
image representation. A shearlet spectrum is then generated for each desired scale and 

orientation, providing a structured framework to characterize shearlet properties for analysing 

specific image features. Shearlet coefficients are computed by convolving the frequency domain 
image with the corresponding shearlet spectrum, offering a detailed representation of the image 

content at various scales and orientations. These calculated coefficients are stored for efficient 

access in subsequent processing. The frequencies are split into low and high groups, where low-
frequency coefficients capture overall structure, and high-frequency coefficients highlight 

intricate details. A data weighting method is applied to high-frequency coefficients to reduce 

noise and enhance sparsity, leading to a streamlined representation. Finally, essential features are 

extracted from high-magnitude shearlet coefficients, emphasizing their significance in capturing 
distinctive aspects of the image and improving the accuracy of feature extraction for further 

analysis. 

 

3.3.  Data Normalization and Transformation Technique for Preprocessing of 

Numerical Data 
 

Data normalization and transformation techniques are essential preprocessing steps for numerical 

data. Normalization encompasses bringing the data to a standardized range, often between 0 and 

1, ensuring consistent comparisons. Transformation modifies the distribution of data, addressing 
issues like skewness. Common methods involve min-max scaling, Z-score normalization, and 

logarithmic or power transformations. These techniques enhance model performance, mitigate 

the impact of outliers, and facilitate meaningful interpretation of numerical features in various 
data analysis and ML applications. 

 

The formula for min-max normalization technique for data normalization and transformation, is 
given by Equation (6) 

minmax

min'

rr

rr
r




                                                      (6) 

where, r  is the original image, minr and maxr are the minimum and maximum values of the 

characteristics respectively and 
'r is the output image. This equation standardizes feature values, 

transforming them to a range from 0 to 1, facilitating effective comparison and analysis. 
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3.4. Hybrid Gold Rush Mantis Search Optimizer for Feature Selection 
 

Essential for streamlined data analysis and ML, feature selection trims irrelevant or redundant 

features in large datasets, curbing overfitting and computational complexity. By choosing the 
most relevant subset, it enhances model efficiency, interpretability, and accuracy, fostering a 

deeper understanding of underlying data patterns and aiding effective decision-making across 

diverse domains. 
 

 Mantis Search optimization algorithm 
 
Mantis Search Optimization (MSA) algorithm is motivated by the specific predatory conduct and 

occasional occurrences of sexual cannibalism observed in praying mantises, offering an 

innovative approach to optimization, MSA is represented by Equation (7). 

 acn
t

c
t
c YYrYA 1

                                                    (7) 

1t
cA is updated value for parameter at time t . t

cY  is current value of cY at time t . cY is variable 

representing characteristic. aY is variable representing a different characteristic and nr  is scalar 

or coefficient used in the update process. 

 

 Gold Rush optimization algorithm 
 

The advantage of this is the selection of different movement options without a force in decision-

making. So, this optimization is used in proposed method for fusion of input features. The 
representation of gold rush optimizationis given by Equation (8) 

  




n

c

cYcB

1

2
1                                                           (8) 

where,  cB1
 is represents fusion parameter using optimization algorithm. 

 

 Hybridization of Gold Rush Mantis Search optimization algorithm 
 

The process involves combining the GRMS optimization algorithm with hybrid techniques to 

perform feature selection on input data. This hybrid approach aims to boost the efficiency and 

effectiveness of the attribute selection process, optimizing the selection of relevant features for 
subsequent analysis or modelling. The implementation of GRMS for feature selection treats each 

feature as an independent variable. In this model, an individual represents a subset of features, 

and the fitness function evaluates the performance of a model built with those selected features 
[28-30]. 

The hybridization of mantis search optimization algorithm and gold rush optimization algorithm 

gives the Equation (9) and denoted as  qY . 

 

      qBqAFqY cc                                                       (9) 

 

where,  qAc is output of MSA algorithm and  qBc is output of GRMS algorithm. Fitness 

evaluation equation formulated by Equation (10). 

  qYScoreYF

n

c

ct .                                                           (10)                    

where tF  is fitness function. The final output of feature selection is represented by Equation (11) 
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 
n

c

S NzYrMr ,,,'
                                                            (11) 

 

where, Sr  is the selection output, 'r is the input image, Y is the target variable, z size of features, 

N number of features to be selected.  

 

 
 

Figure 3. Flow chart of GRMS. 

 

The below Figure 3. shows the flowchart for GRMS algorithm. The process begins with step 1, 
where pre-processed data is inputted into the hybrid algorithm, encompassing dataset features or 

any pertinent information essential for its operation. Subsequently, in step 2, the gold rush and 

mantis search optimization algorithm undergo hybridization, leveraging the strengths of both to 

craft a more potent and efficient algorithm. Moving to step 3, the fitness of selected features is 
assessed using Equation (10), with those exhibiting low fitness discarded and high-fitness 

features retained. Step 4 involves feature ranking based on their fitness, establishing a 

hierarchical order for the next phase. In step 5, various selection methods beyond feature ranking 
are explored to identify the ideal combination of features. Step 6 culminates in the prime feature 

combination identification, guided by the ranked features and selection methods, aiming for 

optimal performance on the validation dataset. Finally, step 7 involves training the hybrid 
algorithm on the training dataset using the chosen features, ultimately generating the best output 

on the test dataset. This comprehensive process underscores the systematic approach to 

enhancing algorithmic performance through hybridization and feature selection. 

 

3.5. Deepvisual Attention for Feature Fusion 
 

Feature fusion facilitates the amalgamation of varied attributes, fostering a comprehensive 
comprehension of the agricultural landscape. The integration of information from disparate 

sources, including satellite imagery, weather data, and soil quality assessments, augments the 

model's capacity to grasp the synergies and interdependencies among variables. This, in turn, 
results in a more precise and all-encompassing estimation of crop yield by capturing the intricate 

relationships within the agricultural ecosystem [31]. 
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In remote sensing feature fusion, the deep attention network employs for fusion. The process 
begins with an encoder that extracts features from various data types, including NDVI, 

hyperspectral images, moisture images, building/road data, crop land information, and 

environmental data (rainfall, temperature, humidity). The architecture integrates attention 

mechanisms that assign weights based on feature significance, focusing on relevant spatial or 
spectral regions during fusion. The decoder then reconstructs the fused features, generating a 

comprehensive representation that enhances the model's ability to identify elaborate designs and 

interrelations within the remote sensing data. 
During this procedure, the two features derived from the previously mentioned step specifically, 

the images extracted through non subsampled shearlet transform and the selected features 

obtained through hybrid gold rush mantis search optimize are combined through the application 
of deep visual attention. 

 

Feature fusion equation is represented by Equation (12) 

 

c

N

c

c PF 
1

                                                              (12) 

 

where, F represents the fused output N is number of features to be fused, 
cP is thc features to be 

fused and c attention weights corresponding to the thc  feature.   represents element-wise 

multiplication, and  denotes the summation over all input features. 

 

3.6. Multi-Head Cross Attention Network with Capsule Energy Valley Network 

Based Classification Method 
 

The integration of a MHCA-CEVN holds promise for advancing CYE. Multi head cross attention 
proves pivotal by allowing selective focus on pertinent information from diverse sources, such as 

remote sensing and weather data. This approach ensures more accurate predictions by 

considering relevant information across modalities and learning complex relationships between 
different data sources. 

 

The input features are initially processed through a 11 convolution layer to reduce the number of 

channels. Following this, 33 , 31 , and 13  convolution kernels are employed to accurately 

map spatial interactions. The spatial attention unit comprises a set of four convolution layers 
paired with one activation function, designed to capture local features at multiple scales. The 

channel attention block includes two linear layers along with one activation function. Cross-head 

attention, which combines spatial and channel attention units while maintaining their 

independence, is also utilized. The above process is mathematically expressed by Equation (13). 
 

   miWheadWSpatial spatialii ,1,, 


       

   miSpatialheadSpatialChannel ichanneliii ,1,,'   (13) 

 

where, m  indicates the number of cross attention mechanisms, W


isthe weighted featuremap, 

ihead  and '
ihead  are referred to as the spatial attention component and the channel attention 

component respectively, spatual  and channel represent their coefficients, 
iSpatial  and 

iChannel  

signify the outputs of the thi spatial attention and channel attention, individually. 
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Meanwhile, capsule networks, with their unique spatial relationship and part whole hierarchy 
capturing ability, enhance the analysis of complex features within images, crucial for accurate 

yield predictions. Integrating these methodologies within the energy valley network framework 

could revolutionize CYE, contributing to improved accuracy, resource allocation, and agricultural 

sustainability [32-34].  
 

The predictions for the next layer capsules are determined through a multiplication with a matrix 

of weights, as illustrated by Equation (14). 

XBCap ii                                                                     (14) 

 

where, 
iCap is input of capsule i in present layer, iB is the weights matrix. X  represents the input 

data (such as remote sensing imagery, meteorological data, and soil information) 
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This Equation (15) ensures that the length of the capsule output vector id represents the 

probability. It non-linearly scales the input vector 
iCap  to have a length between 0 and 1, 

preserving the direction of 
iCap . Energy valley network defined by Equation (16). 

 

 
2

 
i ii dOutOutEn                                                             (16) 

 

The energy function  OutEn  measures the discrepancy between the capsule output 
iOut and the 

vector id . The goal is to minimize this energy, which aligns the capsule outputs with the 

normalized inputs. 
iOut is calculated by 

i
i

iji dROut  , in that ijR is routing coefficients. 

The formula for estimating crop yield is expressed by Equation (17). 

 

    iiiY OutEchannelSpatialMfE ,,                                    (17) 

 

where, the input data includes information acquired from remote sensing platforms (such as 

satellite or aerial imagery), meteorological information (encompassing factors like rainfall, 
temperature, and humidity), soil information (including details such as soil type, nutrient content, 

and water availability), and past crop production data specific to the field or crop in question are 

extracted,  ii channelSpatialM , is result generated by the multi-head cross-attention network, 

acquiring insights into the connections among features extracted from diverse data sources  iOutE  

is result obtained from the capsule energy valley network, acquiring hierarchical representations 

of both image data and historical yield data, f  is a function that integrates the outcomes of both 

network methods to produce the ultimate yield estimation. Figure 4 shows the block diagram of 

MHCA-CEVN based classification method. 
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Figure 4. Block diagram of MHCA-CEVN based classification method 

 

The MHCA-CEVN methodology integrates advanced techniques, including enhanced satellite 

image preprocessing, non-subsampled shearlet-based feature extraction, and hybrid GRMS for 

crucial feature selection. The amalgamated features are input into MHCA-CEVN, a multi-head 
cross attention network with capsule energy valley network, enhancing crop yield estimation 

accuracy through selective focus on diverse data sources and improved comprehension of 

intricate agricultural patterns, aiming to revolutionize accuracy, resource allocation, and 
sustainability in agriculture 

 

4. RESULTS  
 

In this section, various evaluation criteria, including Symmetric Mean Absolute Percentage Error 
(SMAPE), accuracy, sensitivity, error rate, F1-Score, and Mean Absolute Percentage Error 

(MAPE) functions, are examined. These parameters offer a comprehensive evaluation of the 

accuracy and dependability of identified changes, aiding in assessing the efficacy of the proposed 
technique. 

 

4.1. Experimental Setup 
 

The study utilized spyder anaconda navigator on windows 10 with python 3.10, operating on a 

robust system featuring 32 GB of RAM and an Intel(R) Core (TM) GeForce RTX 1080 super 
GPU @ 3.40GHz processor. After finalizing the network design, a comprehensive analysis 

explored factors like epoch count, repetitions, and a fixed learning rate of 0.001. With a set 

iteration value of 100, this detailed approach aimed to reveal variable interactions and their 
impact on experimental outcomes. 

 

4.2. Dataset Description 
 

The study employed Synthetic Aperture RADAR (SAR) and optical data from European Space 

Agency (ESA)sentinel-1 and sentinel-2 satellites as the primary remote sensing dataset. On-site 
field data were gathered using a Spectrum Technologies Field Scout SMEC 300 soil sensor. 

Samples of soil from the field were dispatched to Soil Organic Carbon (SOC) in %and pH 

determination. Crop yield information for the seasons 2018–19 to 2022–23 was obtained from 
Rupnagar's farming community [16]. Detailed dataset information is given in Table 3. Figures 5 

(a-e) represents geospatial overview and wheat crop analysis in Rupnagar district, Punjab. 
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Table 3: Dataset used 

 
Data Category Resolution 

of space 

Date of obtaining 

Sentil-1 SAR/Microwave channels with 
polarizations channels. 

5 m × 20 m, 
multi 

looked to 

14 m 

21/11/2018, 
23/12/2018, 

24/01/2019, 

20/11/2019, 

23/12/2019, 

21/01/2020, 

24/11/2020, 

23/12/2020, 

25/01/2021, 

20/11/2021, 

19/12/2021, 

21/01/2022, 
21/11/2022, 

28/12/2022, 

21/01/2023. 

Sentinel-2 

A, 2B 

 

Optical/multispectral  

sentinel-2's Band 3 is Near Infrared (NIR),  

and Band 8 is Short Wave Infrared (SWIR). 

Band 4 represents red, and Band 8  

represents NIR. To account for varying  

spatial resolutions in sentinel-2's spectral 

bands, all 13 bands were resampled to a 

uniform 14 m spatial resolution. 

10 m, 

modified 

to 14 m 

21/11/2018, 

23/12/2018, 

24/01/2019, 

20/11/2019, 

23/12/2019, 

21/01/2020, 

24/11/2020, 

23/12/2020, 

25/01/2021, 

20/11/2021, 
19/12/2021, 

21/01/2022, 

21/11/2022, 

28/12/2022, 

21/01/2023 

Field Data 

 

Conductance (mS/m), Soil Moisture 

Percentage (%), and Temperature ( C0 ) 

- 21/11/2022, 

22/12/2022, 

21/01/2023 

Laboratory 

test 

results. 

SOC (in %) and ph. - 21/11/2022, 

22/12/2022, 

21/01/2023. 

Wheat 

yield 

statistics. 

Collected from Rupnagar farming survey, 

supplemented by government portal-

https://aps.dac.gov.in/APY/Public_Report1. 
aspx 

 

- 2018–19, 

2019–20, 

2020–21, 
2021–22, 

2022–23 

Seasons. 
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Figure 5. (a) Map of Indian states with Punjab highlighted, (b) Punjab state pinpointing Rupnagar district in 

red, (c) Typical incorrect colour composite of Rupnagar district, (d) Plantation areas in the study area 

cultivating wheat excluding other land use/land cover features, and (e) Wheat crop field displaying a pixel 

area designated for on-site data accumulation. 

 

4.3. Performance Metrics 
 
The evaluation criteria, which include accuracy, sensitivity, error rate, F1-score, MAPE, and 

SMAPE, are analysed. 

 

Table 4 enumerates the equations used to derive various parameters. P stands for precision and R  
stands for recall. True Positives (TP) indicate the count of accurate positive predictions, True 

Negatives (TN) represent the count of accurate negative predictions, False Positives (FP) denote 

the count of incorrect positive predictions, False Negatives (FN) signify the count of incorrect 

negative predictions. A stand for accuracy, S represents recall, 
1F is the F1-score, and ER

denoted error rate. kO  is the original value for observation k , kP  is predicted value for 

observation k , n  is the number of observations. iy is the actual value of the dependent variable 

(actual crop yield) for the thi observation 


iy is the predicted value of the dependent variable 

(predicted crop yield) for the thi observation. 


y  is the mean of the actual values of the dependent 

variable. 

 
Table 4. Formulas used 

 
Parameter used Formula 

Accuracy 

FPFNFNTP

TNTP
A




  

F1-score 

RP

PR
F




2
1  

Error Rate 
100

.

.


spredictionOfTotalNo

spredictionIncorrectOfNo
ER  

MAPE 

100
1

1




 


n

k k

kk

O

PO

n
MAPE  
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SMAPE 

100

2

1

1





 



n

k kk

kk

PO

PO

n
SMAPE  

Sensitivity 

FNTP

TP
S


  

2R  












































n

i
i

n

i
ii

yy

yy

R

1

2

1

2

2 1  

RMSE 

 


















n

i
ii yy

n
RMSE

1

1
 

 

4.4. Comparative Assessment 
 
The experimental investigation of CYE using the proposed technique includes the examination of 

accuracy, sensitivity, error rate, F1-score, MAPE, and SMAPE. These metrics are computed and 

juxtaposed with traditional methods. 

 
Figure 6 gives accuracy investigation for CYE in RSI, evaluating precision by identifying 

changes and unchanged areas relative to total pixels or regions. The presented approach shows 

superior accuracy when contrasted to DLMLP [16], SNNOC [18], CASA [20], and ML [23], 
achieving 38.53%, 2.72%, 14.08%, and 10.89% greater accuracy, respectively, at 100 

epochs.Sensitivity analysis, shown in Figure 7, indicates the proposed approach surpasses ML 

[23], CMT [24], and CC [25], achieving improvements of 7.80%, 22.06%, and 3.87% at 100 

epochs, respectively. 
 

  
Figure 6. accuracy. Figure 7. sensitivity. 
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Figure 8. Error rate. 
 

Figure 9. F1-score. 

 
Figure 8delves into error rates, serving as a robust performance metric. The suggested approach 

consistently outperforms, SNNOC [18], CASA [20], and ML [23], with significant superiority 

observed, achieving notable error rate reductions of 26.01%, 54.01%, and 44.58%, respectively, 
compared to existing approaches.The F1-score, a unified metric incorporating precision and 

recall, evaluates a system's efficiency in correctly identifying true positives with reduced false 

positives. Comparisons with AMM-FuseNet [21], ML [23], and CMT [24] demonstrate the 

suggested approach's higher F1-score. At 100 epochs, significant improvements are observed, 
with increases of 36.66%, 4.66%, and 5.83% compared to existing methods, as depicted in Figure 

9. 

 

  
 

Figure 10. MAPE. 

 
Figure 11. SMAPE. 

 

 

Figure 10 visualizes the MAPE analysis for CYE in RSI, revealing the suggested approach's 
superior performance with a 24.43%, and 27.18% reduction in MAPE compared to SNNOC [18], 

and CASA [20], respectively. This metric is crucial for accurate prediction evaluation, especially 

effective in handling data with seasonal patterns.Figure 11 depicts the SMAPE analysis, 
emphasizing the suggested approach's reduced SMAPE with substantial improvements of 

19.29%, 36.11%, and 27.18% at 100 epochs when compared to DLMLP [16], SNNOC [18], 

CASA [20], respectively, in CYE using RSI. 
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4.5. NDVI: A Measure of Wheat Plant Health Over Time 
 

The Figure 12 depicts a line graph of the NDVI for wheat plants, tracking plant health during the 

growing season. It shows rising NDVI until flowering, signalling active growth, followed by a 
decline as plants mature. Key growth stages are marked, aiding in monitoring crop development.  

 

 
 

Figure 12. NDVI graph 

 

The NDVI profile, influenced by weather, nutrients, and pests, serves as a crucial tool for crop 

monitoring and issue identification. It depicts phases like tillering, flowering, ripening, and 

harvesting. Following the tillering process, the plant undergoes growth, and there is a subsequent 
period before it begins to flower. This pattern aids in monitoring and estimating rice crop yield. 

 

4.6. Crop Yield Prediction Performance Comparison 
 

The table serves as a valuable reference for assessing and comparing the effectiveness of diverse 

methods in predicting crop yields based on the presented statistical metrics.  
 

Table 5. Crop yield prediction performance comparison 

 

 
Table 5 illustrates a performance comparison in predicting crop yields.The suggested method 
proves to be the most accurate method for predicting crop yield among those listed in the table. 

This is evident from its prominent 2R value of 0.95 and the lowest RMSE value of 0.65. These 

metrics emphasize the close alignment between predicted and actual crop yields, surpassing the 
performance of alternative methods. 
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4.7. Discussion  
 

MHCA-CEVN model for crop yield estimation is proposed, which significantly advances 

agricultural analytics by integrating sentinel-1 and sentinel-2 satellite data with field 
measurements. Proposed model, utilizing advanced preprocessing techniques like enhanced 

guided multi-layer side window box filtering and non-subsampled shearlet transforms, achieves 

an impressive accuracy of 97.59%, sensitivity of 95.21%, F1 -score of 90.21%, MAPF of 5.01% 
and an error rate of just 6.65%. These metrics surpass existing methods, demonstrating superior 

performance. The model’s deep visual attention-based fusion and hybrid feature selection ensure 

a more comprehensive and precise estimation, offering substantial benefits for resource 

optimization and sustainable farming practices. Future work will expand its application and refine 
additional parameters to enhance its predictive capabilities. 

 

The MHCA-CEVN model in proposed research shows remarkable efficacy in crop yield 
estimation by integrating remote sensing data with soil health parameters. Although proposed 

research work focuses on a specific crop and soil type, the model's methodology is highly 

adaptable for other crops and soils. By retraining the model with remote sensing and soil health 
data specific to new crops and soil types, and employing advanced preprocessing and hybrid 

feature selection techniques, the model will capture the unique characteristics of the new 

agricultural context in future experiment. Calibration with ground truth data ensures predictive 

accuracy, while iterative improvement based on validation results allows for fine-tuning. The 
model's scalability and transferability are evaluated across different geographic and climatic 

conditions, ensuring broad applicability. Customization for specific crop and soil challenges, 

such as varying growth cycles and nutrient needs, further enhances its versatility, making the 
MHCA-CEVN model a robust tool for diverse agricultural management scenarios and CYE. 

 

5. CONCLUSIONS 
 

This research work explores deep fusion with attention neural networks for soil health-based 
CYE through RSI. The results showcase the methodology's efficacy in capturing intricate 

relationships between soil health parameters and crop yield. Attention mechanisms, especially in 

the fusion process, enhance prediction accuracy by focusing on pertinent features. The deep 
fusion approach seamlessly integrates multi-modal information from remote sensing data, 

offering a holistic understanding of the agricultural landscape. The attention neural network 

adeptly weighs information from diverse sources, emphasizing the significance of soil health 

factors in CYE. This not only refines predictions but aligns with sustainable agriculture goals by 
highlighting soil health importance. RSI provide a non-intrusive, scalable solution for large-scale 

agricultural monitoring, promising precision agriculture insights. While a substantial 

advancement, future research avenues include exploring additional soil health parameters and 
advanced attention mechanisms for diverse crops and environments, along with investigating 

scalability and transferability for broader geographical applications. In essence, the presented 

deep fusion with attention neural network approach holds great potential for advancing CYE 
methodologies, contributing to technology's role in sustainable and efficient agricultural 

practices. Future work will focus on refining predictive capabilities by incorporating additional 

soil health parameters and advanced preprocessing techniques. Retraining the model with data 

specific to new crops and soil types, exploring advanced attention mechanisms, and assessing 
scalability for broader contexts will enhance CYE methodologies and support sustainable 

agricultural practices. 
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