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ABSTRACT 
 

In the era of rapid advancements in artificial intelligence, the geospatial field is 

experiencing transformative changes. Traditional methods for land cover 
classification and anomaly detection have often been inconsistent and inaccurate, 

leading to significant real-world issues such as resource misallocation, unnoticed 

illegal activities like deforestation, unmonitored topographical changes such as 

unauthorized constructions, unattended forest fires, and border fence crises, all of 
which exacerbate climate change and urbanization challenges. This study 

systematically explores various machine learning (ML) techniques and their 

application to publicly available geospatial datasets. Specifically, it compares 
selected Convolutional Neural Networks (CNNs) and other ML models on these 

datasets to evaluate multiple performance metrics and conduct a comparative 

analysis. While numerous ML models have been previously employed for land 
cover classification and anomaly detection, this review seeks to enhance 

performance metrics and improve classification accuracy. Prior studies have 

employed techniques such as Random Forest on Sentinel-2 data (Gromny et al., 

2019), multiple regression approaches on Landsat data (Wu et al., 2016), and 
Principal Component Analysis (PCA) on OpenStreetMap data (Feldmeyer et al., 

2020). Our study introduces the application of advanced models like VGG16, U-

Net, and Isolation Forest to geospatial datasets, assessing their impact on 
enhancing land cover classification and anomaly detection. This research not only 

aims to achieve higher classification accuracy but also contributes to the field by 

providing insights into the effectiveness of these models and proposing future 
directions and opportunities. 

 

1. INTRODUCTION 
 

Geospatial analysis, particularly land cover classification and anomaly detection, has become 
increasingly vital due to its extensive applications in environmental monitoring, urban planning, 

and national security. Inaccuracies and inconsistencies in these processes can lead to severe 

problems, such as resource misallocation, which is a significant global challenge. Traditional 
machine learning (ML) methods have often contributed to this misallocation, adversely affecting 

agriculture, forestry, urban planning, and humanitarian aid sectors. Moreover, inaccuracies in 

these methods can facilitate deforestation and unauthorized construction, leading to ecosystem 

disruptions and negatively impacting local communities. 
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Unchecked illegal construction results in topographical changes, complicating urban planning 
efforts and potentially leading to urban sprawl. The inability of traditional models to detect the 

early stages of forest fires can escalate into natural disasters, severely affecting wildlife habitats 

and human settlements. Additionally, inaccurate monitoring at border fences, crucial for national 

security, can hinder the identification of potential security breaches, further exacerbating national 
security concerns. 

 

Forest inventory and analysis in the United States rely on remote sensing and geospatial 
technologies to improve data accuracy and support resource management (Nelson et al., 2007). 

Geospatial problems manifest in various applications, with artificial intelligence (AI) at the 

forefront of technological advancements, enhancing model enrichment and transformational 
processes. These advancements often require the integration of various ML techniques (Breunig, 

2020). This systematic literature review explores the effectiveness of advanced ML techniques on 

publicly available geospatial datasets, specifically focusing on enhancing the accuracy and 

efficiency of land cover classification and anomaly detection in geo-imagery. The critical 
question addressed is: How can advanced models like VGG16, U-Net, and Isolation Forest 

improve geospatial data analysis? 

 
The primary objective is to conduct a comparative analysis of VGG16, U-Net, and Isolation 

Forest on geospatial datasets such as Sentinel-2, Landsat, and OpenStreetMap. These ML models 

are evaluated based on multiple performance metrics to determine their effectiveness in 
classifying land cover and detecting anomalies, tasks previously handled by traditional models. 

While various ML techniques have been employed for these purposes in past studies, this 

systematic review aims to explore the comparative effectiveness of advanced models to achieve 

higher classification accuracy and more precise land cover classification and anomaly detection. 
For instance, Gromny et al. (2019) applied Random Forest for land cover classification with 

Sentinel-2 data, Wu et al. (2016) used five-regression approaches for biomass estimation with 

Landsat imagery, and Feldmeyer et al. (2020) employed PCA techniques to generate socio-
economic indicators from OpenStreetMap data. This study aims to surpass these performances by 

leveraging the capabilities of VGG16, U-Net, and Isolation Forest. 

 

This study enhances geospatial intelligence (GEOINT) in several keyways: 
 

- Application of Advanced Models: It demonstrates the application of VGG16, U-Net, and 

Isolation Forest on geospatial datasets, highlighting their capabilities and limitations. 
- Comprehensive Model Evaluation: It evaluates the effectiveness of these models in improving 

the accuracy of land cover classification and the precision of anomaly detection, contributing to 

more reliable geospatial data analysis. 
- Future Research Directions: It identifies potential improvements and future research 

opportunities in applying ML techniques to geospatial data, encouraging ongoing innovation and 

refinement in the field. 

 
By integrating insights from key studies in geospatial data management and machine learning, 

including Breunig et al. (2020), Praveen et al. (2016), and Kiwelekar et al. (2020), this systematic 

review provides a comprehensive analysis of current methodologies. This review sets the stage 
for future advancements in geospatial intelligence, showing promising results in the traditional 

enhancement of GEOINT tasks (Breunig, 2020). Traditional methods like GNSS and LSTM have 

demonstrated that a substantial portion of data is geographic (Morais, 2012), underscoring the 
importance of continuous improvement in geospatial analysis techniques. 

 

 



Computer Science & Information Technology (CS & IT)                                          25 

 

1.2. Background 
 

GEOINT (Geospatial Intelligence) methods and the promising potential of advanced machine 

learning (ML) techniques for geospatial tasks are transforming the field. This research examines 
the collection, analysis, and interpretation of data related to Earth's surface and its activities. 

Traditionally, GEOINT studies have relied heavily on manual processing, leading to significant 

performance limitations. While effective, these traditional methods are labor-intensive and often 
require a multi-step, time-consuming approach. The advent of advanced data science and ML 

techniques has ushered in a new era of GEOINT capabilities, enabling more efficient and 

accurate analysis of vast amounts of geospatial data. 

 
This research highlights the importance of geospatial intelligence and incorporates various data 

fusion techniques. Low and high-level data fusion, such as the combination of multiple 

information sources via Kalman Filter and Bayesian Networks, address sustainable development 
challenges (Kussul et al., 2015). By integrating these techniques, the study aims to enhance the 

accuracy and efficiency of GEOINT analyses. 

 
Machine learning, particularly deep learning, has shown remarkable potential in processing and 

analyzing geospatial data. Techniques such as Convolutional Neural Networks (CNNs) have 

revolutionized image classification and object detection tasks, enabling the automatic 

identification and classification of objects in satellite images with high accuracy. For instance, 
VGG16 and U-Net models excel at delineating features in satellite imagery, facilitating detailed 

and precise analysis. Additionally, novel methods for generating geospatial intelligence from 

social media posts, as proposed by Sufi and Alsulami, provide a unique approach to analyzing 
these data activities using Named Entity Recognition (NER) techniques (Sufi and Alsulami, 

2022). 

 
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks have 

further advanced the field by enabling the analysis of temporal sequences in geospatial data. This 

capability is crucial for monitoring changes over time, providing insights into dynamic 

environmental and urban processes. The intersection of competitive intelligence and geospatial 
intelligence offers strategic advantages across various domains (Othenin-Girard, Caron, and 

Guillemette, 2011). 

 
Semantic segmentation, which involves labeling each pixel in an image with a class, benefits 

significantly from models like U-Net and SegNet. These models excel at delineating features in 

satellite imagery, enhancing the detail and analytical capabilities of geospatial analyses. 

Additionally, anomaly detection methods such as Isolation Forest and One-Class SVM provide 
robust tools for identifying unusual patterns in geospatial data. These methods are essential for 

applications like environmental monitoring and disaster management. 

 
The integration of these advanced methodologies into GEOINT is facilitated by the availability of 

extensive open-source datasets. Sentinel-2 and Landsat satellite images, provided by programs 

like Copernicus and the US Geological Survey (USGS), offer high-resolution, multispectral data 
invaluable for detailed geospatial analysis. OpenStreetMap (OSM) provides comprehensive 

vector data, which can be used in conjunction with raster data for more holistic GEOINT 

analyses. The comprehensive review by Gao (2021) highlights the transformative impact of 

geospatial artificial intelligence (GeoAI) on traditional GEOINT analysis, demonstrating the 
potential for significant advancements in this field. 

 

Moreover, the integration of big data analytics with geospatial data offers opportunities for real-
time processing and analysis, enabling timely decision-making in critical situations such as 
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disaster response and urban planning. Techniques like data augmentation and transfer learning 
can further enhance model performance by leveraging pre-existing knowledge from related tasks, 

thus reducing the need for extensive labeled datasets. 

 

The growing accessibility of cloud computing resources also facilitates the scalable processing of 
large geospatial datasets, enabling more complex and computationally intensive analyses. Cloud 

platforms like Google Earth Engine and Amazon Web Services (AWS) provide powerful tools 

for geospatial data processing and analysis, making advanced GEOINT capabilities more 
accessible to researchers and practitioners. 

 

In conclusion, the integration of advanced machine learning techniques into geospatial 
intelligence holds immense potential for improving the accuracy and efficiency of land cover 

classification and anomaly detection. By leveraging the capabilities of models like VGG16, U-

Net, and Isolation Forest, and utilizing extensive open-source datasets, this research aims to push 

the boundaries of traditional GEOINT methods and pave the way for future advancements in the 
field. 

 

2. RELATED WORK 
 
The integration of traditional data science and machine learning (ML) techniques, such as Long 

Short-Term Memory (LSTM) and Global Navigation Satellite Systems (GNSS), into geospatial 

intelligence (GEOINT) has significantly expanded potential applications and capabilities. These 

advancements have impacted areas such as imagery and remote sensing, Geographic Information 
Systems (GIS) data, and Open-Source Intelligence (OSINT) (Breunig et al., 2020). Breunig et al. 

(2020) also discuss ongoing progress in GEOINT data management, highlighting the importance 

of advanced methodologies in addressing future challenges. Praveen et al. (2016) emphasizes the 
role of big data environments in enhancing geospatial data analysis, providing a solid foundation 

for sophisticated ML applications. Additionally, adaptive learning systems are leveraging ML 

methods to provide customized educational experiences (Kolluru, Mungara, and Chintakunta). 
Kiwelekar et al. (2020) review deep learning techniques for geospatial data analysis, highlighting 

their effectiveness in tasks such as image classification and object detection. 

 

The transformative impact of artificial intelligence on geospatial intelligence is further explored 
by Dold and Groopman (2017), who discuss prospects and the potential of AI in this domain. 

Kussul et al. (2015) demonstrate the practical benefits of integrating GEOINT and data fusion 

techniques for sustainable development, showcasing the effectiveness of advanced analytical 
methods. 

 

Recent studies have explored novel applications of GEOINT, such as the method introduced by 

Sufi and Alsulami (2022) for generating geospatial intelligence from social media posts, 
illustrating the diverse data sources that can be leveraged using advanced techniques. Othenin-

Girard et al. (2011) discuss the strategic advantages of integrating competitive intelligence with 

geospatial intelligence, emphasizing the synergy between these domains. 
 

The emergence of Geospatial Artificial Intelligence (GeoAI) has led to significant advancements 

in the field. Temporal land use analyses in the Uttara Kannada District reveal substantial forest 
fragmentation, with evergreen forest cover decreasing from 57.31% in 1979 to 32.08% in 2013 

(Ramachandra et al., 2016). Gao (2021) and Gao (2020) provide comprehensive overviews of 

GeoAI, reflecting on recent advancements and potential applications. VoPham et al. (2018) 

highlight GeoAI's potential for environmental epidemiology, enhancing public health research 
through sophisticated spatial analysis. 
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Efficiency improvements in energy conversion are demonstrated by the combined calculation of 
thermoelectric modules (UG et al.), while Döllner (2020) explores the innovative applications of 

GeoAI in urban planning and infrastructure management using 3D point clouds and geospatial 

digital twins. Gramacki et al. (2023) emphasize the need for standardized frameworks to advance 

GeoAI, underscoring the importance of unified approaches in the field. Roussel and Böhm (2023) 
review geospatial explainable AI (XAI), focusing on the transparency and interpretability of AI 

models in GEOINT applications, which is critical for enhancing trust and reliability in these 

systems. 
 

Mai et al. (2023) discusses the opportunities and challenges of foundation models for GEOINT, 

proposing directions for future research. Lunga et al. (2022) highlight the significance of GeoAI 
at the ACM SIGSPATIAL conference, identifying it as a new frontier in geospatial research. The 

potential of ML for 3D point clouds and geospatial digital twins is well-documented, 

emphasizing the importance of these technologies in modern GEOINT (Döllner, 2020). 

Standardizing geospatial AI is essential for advancing the field, as discussed in the ACM 
SIGSPATIAL workshop proceedings (Gramacki et al., 2023). 

 

The transformative impact of advanced data science and ML techniques on geospatial 
intelligence is evident in the collective findings of these studies. Leveraging cutting-edge 

methodologies and diverse data sources, this research illustrates the enhanced capabilities and 

new opportunities available in GEOINT, setting the stage for continued innovation and 
development in this dynamic field. This comprehensive review serves as a crucial reference for 

researchers and practitioners aiming to push the boundaries of geospatial intelligence and its 

applications. 

 

2.2. Overview and Historical Importance 
 
Geospatial Intelligence (GEOINT) has a rich history that dates back to traditional methods such 

as mapmaking, photogrammetry, and remote sensing. Initially, GEOINT heavily relied on 

manual processes and basic analytical methods, making the tasks time-consuming and labor-

intensive. The introduction of satellite imagery in the mid-20th century was a groundbreaking 
development, providing unprecedented access to spatial data and transforming the way 

geographic information was gathered and analyzed. This shift laid the foundation for the 

integration of more advanced technologies. 
 

The advent of computer technology in the 1980s and 1990s significantly advanced GEOINT 

capabilities by enabling sophisticated data processing and analysis. Geographic Information 

Systems (GIS) emerged as essential tools for managing and visualizing spatial data, supporting 
applications ranging from city planning to environmental surveillance. These technological 

advancements revolutionized the field, allowing for more comprehensive and detailed geospatial 

analyses. 
 

The turn of the century brought significant advancements in data science and machine learning 

techniques, marking a new era for GEOINT. These technologies have dramatically improved the 
efficiency and accuracy of handling large amounts of geospatial data. Machine learning models, 

including various learning algorithms, have shown impressive potential in automating complex 

tasks such as image categorization, object identification, and semantic segmentation. The 

integration of geospatial analysis with urban geometry provides valuable insights into the 
structural dynamics of urban environments (Pagliardini et al., 2010). 

 

Convolutional Neural Networks (CNNs) have revolutionized image analysis, facilitating object 
detection and classification within satellite images. Innovations such as U-Net and SegNet have 
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further advanced the field by offering sophisticated techniques for image segmentation, which is 
crucial for detailed feature extraction. Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks have enhanced temporal analysis capabilities, enabling the tracking 

of changes over time across diverse geospatial datasets (Saxena et al., 1997). These 

advancements have been pivotal in various applications, including urban planning, disaster 
management, and environmental monitoring (Gao, 2021; Gao, 2020). 

 

The importance of these technological advancements cannot be overstated. Advanced geospatial 
analysis and modeling are essential for understanding and managing urban structure dynamics 

(Jiang and Yao, 2010). This research has unlocked new opportunities for applications in national 

security, disaster response, and environmental surveillance. For instance, in disaster response, the 
ability to quickly analyze satellite images and identify irregularities has significantly improved 

response times and efficiency. Geospatial technologies are also pivotal in remapping border 

areas, enhancing the understanding of border dynamics and related activism (Walsh, 2013). 

 
The integration of machine learning in combating misinformation has also played a crucial role in 

promoting accurate news consumption in the digital era (Kolluru, Mungara, and Chintakunta). 

The emergence of Geospatial Artificial Intelligence (GeoAI) has revolutionized the 
understanding and utilization of geospatial data. GeoAI combines AI technologies with 

geospatial data to provide powerful tools for predictive analysis, decision-making, and real-time 

monitoring. Research on the geospatial modeling of the US-Mexico border, for example, 
highlights the "funnel effect," showing increased mortality rates and the impact of surveillance on 

migration patterns (Chambers et al., 2021). 

 

Recent studies have explored novel applications of GEOINT. Sufi and Alsulami (2022) 
introduced methods for generating geospatial intelligence from social media posts, illustrating the 

diverse data sources that can be leveraged using advanced techniques. The intersection of 

competitive intelligence and geospatial intelligence has been explored, demonstrating strategic 
advantages in various domains (Othenin-Girard et al., 2011). The potential of GeoAI for 

environmental epidemiology, as discussed by VoPham et al. (2018), underscores its ability to 

enhance public health research through sophisticated spatial analysis. 

 
The integration of big data analytics with geospatial data offers real-time processing and analysis 

opportunities, enabling timely decision-making in critical situations. Cloud computing resources 

have further facilitated the scalable processing of large geospatial datasets, making advanced 
GEOINT capabilities more accessible to researchers and practitioners (Mai et al., 2023). The 

significance of GeoAI in geospatial research was highlighted at the ACM SIGSPATIAL 

conference, identifying it as a new frontier in the field (Lunga et al., 2022). 
 

In conclusion, the systematic integration of advanced data science and ML techniques into 

GEOINT has had a transformative impact. Leveraging cutting-edge methodologies and diverse 

data sources, this research illustrates the enhanced capabilities and new opportunities available in 
GEOINT. The comprehensive review of current methodologies and future directions sets the 

stage for continued innovation and development in this dynamic field. 

 

2.3. Datasets and Subject ML models 
 

The effectiveness of geospatial intelligence (GEOINT) heavily relies on the quality and diversity 
of the datasets used, as well as the advanced machine learning (ML) models applied to analyze 

these data. This section provides an overview of the key datasets, and the ML models commonly 

employed to enhance GEOINT capabilities. 
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Key Datasets 
 

A. Sentinel-2 Satellite Images 

 

- Source: Copernicus Program 
- Description: Sentinel-2 provides high-resolution optical imagery at spatial resolutions of 

10m, 20m, and 60m. The multispectral data includes 13 spectral bands, making it suitable for 

a wide range of applications such as land cover classification, vegetation monitoring, and 

disaster management. The high temporal resolution (revisiting every 5 days) ensures timely 
and accurate data collection. 

- Use Cases: Applications include monitoring agricultural practices, detecting changes in 

urban areas, and assessing natural disasters like floods and wildfires. Sentinel-2's high-

resolution imagery is crucial for precise and timely geospatial analysis (Drusch et al., 2012). 
 

B. Landsat Satellite Images 

 

- Source: United States Geological Survey (USGS) 
- Description The Landsat program provides both historical and current multispectral data 

with spatial resolutions ranging from 15m to 60m. Since the 1970s, Landsat has been 

invaluable for temporal analysis and change detection, offering a long-term dataset that 

supports extensive environmental monitoring. 
- Use Cases: Key applications include long-term environmental monitoring, urban expansion 

analysis, and forestry management. Landsat's extensive historical data archive is essential for 

studying environmental changes over time and understanding long-term trends (Wulder et al., 

2012). 
 

C. OpenStreetMap (OSM) 

 

- Source: OpenStreetMap Community 

- Description: OpenStreetMap (OSM) provides a comprehensive, crowd-sourced vector 
dataset of global geographic features, including roads, buildings, and land use. Continuously 

updated by a global community, OSM is a rich source of contextual geospatial information. 

- Use Cases: Applications include urban planning, navigation and routing services, and 

disaster response planning. The detailed and up-to-date nature of OSM data supports a wide 
range of geospatial analyses, enhancing the accuracy and relevance of GEOINT projects 

(Haklay and Weber, 2008). 

 

Subject ML Models 
 

A. Convolutional Neural Networks (CNNs) 
 

- Models: AlexNet, VGGNet, ResNet, Inception 

- Applications: CNNs are pivotal for image classification and object detection tasks. These 

models excel at recognizing patterns and features in satellite images, making them ideal for 
identifying buildings, roads, natural features, and land cover types. CNNs have demonstrated 

significant success in automating complex geospatial tasks, improving both efficiency and 

accuracy (Krizhevsky, Sutskever, and Hinton, 2012; Simonyan and Zisserman, 2015; He et 

al., 2016; Szegedy et al., 2015). 
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A. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) Networks 

 

● Applications: Temporal sequence analysis. RNNs and LSTMs are particularly useful for 
analyzing time-series geospatial data, enabling the monitoring of changes and trends over 

time. 

 

Model Description Application 

RNN Network for sequential data processing Analyzing temporal sequences 

LSTM RNN variant that handles long-term dependencies Monitoring environmental changes 

 

B. U-Net and SegNet 
 

● Applications: Semantic segmentation. These models are designed to label each pixel in an 

image, providing detailed classification maps essential for tasks like land cover mapping and 
infrastructure delineation. 

 

Model Description Application 

U-Net Encoder-decoder architecture with skip connections Detailed feature extraction 

SegNet Encoder-decoder architecture for segmentation 
Urban and rural area 

mapping 

 

C. Anomaly Detection Models 
 

● Models: Isolation Forest, One-Class SVM 

● Applications: Identifying unusual patterns and changes in geospatial data. These models are 
crucial for detecting anomalies in environmental monitoring and disaster management. 

 

Model Description Application 

Isolation Forest Ensemble method for detecting anomalies Environmental anomaly detection 

One-Class 

SVM 
SVM variant for single-class classification Identifying rare events 

 

Model Description Application 

AlexNet 
Early CNN model with five convolutional 

layers 
Basic image classification 

VGGNet Deep CNN with uniform layer structure High-precision image recognition 

ResNet CNN with residual learning framework Complex image classification tasks 

Inception CNN with inception modules for efficiency Large-scale image analysis 
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By leveraging high-quality datasets and advanced ML models, GEOINT can achieve 
unprecedented accuracy and efficiency in geospatial analysis. The integration of cutting-edge 

technologies is crucial for addressing the complex challenges in GEOINT, paving the way for 

innovative solutions and future advancements in the field. 

 
The integration of these datasets and ML models facilitates comprehensive geospatial analysis, 

enabling the extraction of valuable insights and supporting decision-making in various 

applications. For instance, downloading and preprocessing satellite images from Sentinel-2 and 
Landsat using specific APIs have allowed us to efficiently prepare the data for ML model training 

and analysis. Using models like VGG16 for image classification and U-Net for semantic 

segmentation helps achieve high accuracy in identifying and mapping geospatial features. 
 

By leveraging these advanced datasets and ML models, researchers and practitioners can 

significantly enhance the capabilities of geospatial intelligence. This advancement addresses 

complex challenges in fields such as national security, disaster management, and environmental 
monitoring, ultimately contributing to more informed and effective decision-making processes. 

 

3. METHODOLOGY 
 
This methodology section shows great significance and here it is tried to employ the research 

paper through various ML coding techniques. This in turn aims to enhance Geospatial 

Intelligence (GEOINT) through the integration of advanced data science and machine learning 

techniques. Now let’s say that this systematic approach encompasses several key stages. These 
stages may include data acquisition, preprocessing, model training and evaluation, and the 

exporting of model predictions. So, in the first phase, the high-resolution geospatial datasets from 

various sources are secured. Secondly, the Sentinel-2 and Landsat satellite images will be 
obtained using dedicated APIs. The OpenStreetMap (OSM) data provides valuable vector 

information for contextual geospatial analysis and will be obtained by the free repos too. Now 

running these datasets, so that they offer comprehensive and diverse geospatial data essential for 
robust analysis. 

 

The pre-processing is a key step to any methodology involving the datasets but also that it 

ensures the datasets are suitable for machine learning models. Satellite images are normalized 
and resized to a consistent format. Enhancements are done to the model’s ability to process and 

analyze the data effectively. OSM data is also converted to a GeoDataFrame and transformed to a 

common coordinate reference system. Finally facilitating is seamless and the integration with 
other geospatial datasets is robust. 

 

The core of the methodology involves following GEOINT tasks: 

 
1. Image Classification 

2. Semantic Segmentation 

3. Anomaly Detection 
 

3.2. Data Acquisition 
 
The first step involves acquiring high-resolution geospatial datasets essential for enhancing 

GEOINT capabilities. The focus is on three primary datasets: Sentinel-2 satellite images, Landsat 

satellite images, and OpenStreetMap (OSM) data. 
 

 



32                                         Computer Science & Information Technology (CS & IT) 

A. Sentinel-2 Satellite Images: 
 

● Procedure: SentinelAPI to query and download Sentinel-2 data. The area of interest is 

specified using a GeoJSON file converted to WKT format for querying. 

 
Code: 

 

defdownload_sentinel_data(user, password, area_of_interest): 

api = SentinelAPI(user, password, 'https://scihub.copernicus.eu/dhus') 
    footprint = geojson_to_wkt(read_geojson(area_of_interest)) 

    products = api.query(footprint, date=('20220101', '20220131'), platformname='Sentinel-2') 

api.download_all(products) 

 

B. Landsat Satellite Images: 

 
● Procedure: Landsatxplore API to search for Landsat-8 scenes within the specified date range 

and geographical coordinates, and download the identified scenes using Earth Explorer. 

 

Code: 
 

defdownload_landsat_data(user, password, area_of_interest): 

api = API(user, password) 

    scenes = api.search(dataset='LANDSAT_8_C1', latitude=area_of_interest['lat'], 

longitude=area_of_interest['lon'], start_date='2022-01-01', end_date='2022-01-31') 

ee = EarthExplorer(user, password) 

for scene in scenes: 
ee.download(scene['entity_id']) 

 

C. OpenStreetMap (OSM) Data: 
 

● Procedure: OSM data for the area of interest is downloaded using the osmapi library, which 

provides vector data for various geographic features. 

 
Code: 

 

defdownload_osm_data(bbox): 

api = osmapi.OsmApi() 

osm_data = api.Map(bbox[0], bbox[1], bbox[2], bbox[3]) 
    return osm_data 

 

3.3.Data Preprocessing 
 

Data preprocessing ensures that the datasets are suitable for machine learning models and 

involves the following steps: 
 

A. Image Preprocessing: 

 
● Procedure: Satellite imagesconverted to RGB format, normalized to a [0, 1] scale, and resized 

to 256x256 pixels. 
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Code: 
 

defpreprocess_image(image_path): 

image = cv2.imread(image_path, cv2.IMREAD_COLOR) 

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

image = cv2.normalize(image, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, 

dtype=cv2.CV_32F) 

image = cv2.resize(image, (256, 256)) 

returnimage 

 

B. OSM Data Preprocessing: 

 
● Procedure: OSM data is converted to a GeoDataFrame and transformed to the EPSG:4326 

coordinate reference system. 

 
Code: 

 

defpreprocess_osm_data(osm_data): 

gdf = gpd.GeoDataFrame.from_features(osm_data) 

gdf = gdf.to_crs(epsg=4326) 

returngdf 

 

3.4. Model Training 
 

Various machine learning models are employed for different GEOINT tasks, including image 

classification, semantic segmentation, and anomaly detection. 
 

A. Image Classification: 

 

● Model: VGG16 
● Procedure: The VGG16 model is used for classifying satellite images into multiple 

categories. 

 
Code: 

 

def create_vgg16_model(input_shape, num_classes): 
base_model = VGG16(weights='imagenet',include_top=False,input_shape=input_shape) 

x = base_model.output 

x = Flatten()(x) 
x = Dense(1024, activation='relu')(x) 

predictions = Dense(num_classes, activation='softmax')(x) 

model = Model(inputs=base_model.input,outputs=predictions) 

    for layer inbase_model.layers: 
layer.trainable = False 

model.compile(optimizer=Adam(),loss='categorical_crossentropy',metrics=['accuracy']) 

    return model 
 

datagen = ImageDataGenerator(validation_split=0.2) 

train_generator = datagen.flow_from_directory('path_to_dataset', target_size=(256,256), 
batch_size=32,class_mode='categorical',subset='training') 
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validation_generator = datagen.flow_from_directory('path_to_dataset', 
target_size=(256,256), batch_size=32,class_mode='categorical',subset='validation') 

model = create_vgg16_model((256, 256, 3), num_classes=10) 

model.fit(train_generator, validation_data=validation_generator,epochs=10) 

 

B. Semantic Segmentation: 

 
● Model: U-Net 

● Procedure: U-Net is applied to the results from the VGG16 model to enhance accuracy 

 
Code: 

 

defcreate_unet_model(input_shape): 

inputs = Input(shape=input_shape) 

conv1 = Conv2D(64, (3, 3), activation='relu',padding='same')(inputs) 

conv1 = Conv2D(64, (3, 3), activation='relu',padding='same')(conv1) 

pool1 = MaxPooling2D(pool_size=(2,2))(conv1) 
conv2 = Conv2D(128, (3, 3), activation='relu',padding='same')(pool1) 

conv2 = Conv2D(128, (3, 3), activation='relu',padding='same')(conv2) 

pool2 = MaxPooling2D(pool_size=(2,2))(conv2) 

conv3 = Conv2D(256, (3, 3), activation='relu',padding='same')(pool2) 

conv3 = Conv2D(256, (3, 3), activation='relu',padding='same')(conv3) 

pool3 = MaxPooling2D(pool_size=(2,2))(conv3) 

conv4 = Conv2D(512, (3, 3), activation='relu',padding='same')(pool3) 

conv4 = Conv2D(512, (3, 3), activation='relu',padding='same')(conv4) 

pool4 = MaxPooling2D(pool_size=(2,2))(conv4) 

conv5 = Conv2D(1024, (3, 3), activation='relu',padding='same')(pool4) 

conv5 = Conv2D(1024, (3, 3), activation='relu',padding='same')(conv5) 
up6 = concatenate([UpSampling2D(size=(2,2))(conv5), conv4], axis=-1) 

conv6 = Conv2D(512, (3, 3), activation='relu',padding='same')(up6) 

conv6 = Conv2D(512, (3, 3), activation='relu',padding='same')(conv6) 

up7 = concatenate([UpSampling2D(size=(2,2))(conv6), conv3], axis=-1) 

conv7 = Conv2D(256, (3, 3), activation='relu',padding='same')(up7) 

conv7 = Conv2D(256, (3, 3), activation='relu',padding='same')(conv7) 

up8 = concatenate([UpSampling2D(size=(2,2))(conv7), conv2], axis=-1) 

conv8 = Conv2D(128, (3, 3), activation='relu',padding='same')(up8) 

conv8 = Conv2D(128, (3, 3), activation='relu',padding='same')(conv8) 

up9 = concatenate([UpSampling2D(size=(2,2))(conv8), conv1], axis=-1) 

conv9 = Conv2D(64, (3, 3), activation='relu',padding='same')(up9) 
conv9 = Conv2D(64, (3, 3), activation='relu',padding='same')(conv9) 

outputs = Conv2D(1, (1, 1), activation='sigmoid')(conv9) 

model = Model(inputs=[inputs],outputs=[outputs]) 

model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'

]) 

    return model 

 

unet_model = create_unet_model((256, 256, 3)) 

unet_model.fit(train_generator, 

validation_data=validation_generator,epochs=10) 

 

C. Anomaly Detection: 

 
● Models: Isolation Forest and One-Class SVM 
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● Procedure: Now to find the path in the image paths and then try to apply the Isolation Forest 
to it. 

 

Code: 

 

defprepare_anomaly_data(image_paths): 

data = [] 
for path inimage_paths: 

        image = preprocess_image(path) 

data.append(image.flatten()) 

returnnp.array(data) 
 

deftrain_isolation_forest(data): 

    model = 
IsolationForest(contamination=0.01) 

model.fit(data) 

return model 

 
deftrain_one_class_svm(data): 

    model = OneClassSVM(nu=0.01) 

model.fit(data) 
return model 

 

image_paths = ['path_to_image1', 
'path_to_image2', ...] 

anomaly_data = 

prepare_anomaly_data(image_paths) 

isolation_forest_model = 
train_isolation_forest(anomaly_data) 

one_class_svm_model = 

train_one_class_svm(anomaly_data) 

 

3.5. Model Evaluation 
 

Evaluation is a critical step in the methodology, ensuring that the performance of the machine 

learning models is thoroughly assessed. The classification models are evaluated using metrics 

such as accuracy, precision, recall, and F1 score. Anomaly detection models, which can be more 
challenging to evaluate, are assessed using ROC-AUC scores and precision-recall curves. 

 

A. Classification Model Evaluation 
 

To evaluate the performance of classification models, the following metrics are used: 

 
o Accuracy: The ratio of correctly predicted instances to the total instances. 

o Precision: The ratio of correctly predicted positive observations to the total predicted 

positives. 

o Recall: The ratio of correctly predicted positive observations to all observations in actual 
class. 

o F1Score: The weighted average of Precision and Recall. 
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Code: 
 

defevaluate_classification_model(y_true, y_pred): 

    accuracy = accuracy_score(y_true, y_pred) 

    precision = precision_score(y_true, y_pred, average='weighted') 

    recall = recall_score(y_true, y_pred, average='weighted') 

    f1 = f1_score(y_true, y_pred, average='weighted') 

return accuracy, precision, recall, f1 

 

y_true = [0, 1, 1, 0, 1] 
y_pred = [0, 1, 0, 0, 1] 

accuracy, precision, recall, f1 = evaluate_classification_model(y_true, y_pred) 

print(f'Accuracy: {accuracy}, Precision: {precision}, Recall: {recall}, F1 Score: {f1}') 

 

B. Anomaly Detection Model Evaluation: Anomaly detection models are evaluated using the 
following metrics, 

 

 ROC-AUC Score: The area under the receiver operating characteristic curve, which measures 
the model's ability to distinguish between classes. 

 Precision-Recall Curve: A plot that shows the trade-off between precision and recall for 

different threshold settings. 
 

Code: 

 

defevaluate_anomaly_detection_model(model, X_test, y_test): 

y_pred = model.predict(X_test) 
roc_auc = roc_auc_score(y_test, y_pred) 

    precision, recall, _ = precision_recall_curve(y_test, y_pred) 

returnroc_auc, precision, recall 

 

roc_auc, precision, recall = evaluate_anomaly_detection_model(isolation_forest_model, 

anomaly_data, y_true) 

plt.plot(recall, precision) 

plt.xlabel('Recall') 

plt.ylabel('Precision') 

plt.title('Precision-Recall Curve') 

plt.show() 

 

3.6. Exporting Predictions 
 

The final step involves exporting the predictions from the models for further analysis. Predictions 

are saved as GeoTIFF files, which are compatible with various geospatial analysis tools. 
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A. Export Predictions to GeoTIFF: 
 

● Code: 

 

defexport_predictions_to_geotiff(predictions, output_path, transform): 
withrasterio.open(output_path, 'w', 

driver='GTiff',height=predictions.shape[0],width=predictions.shape[1],count=1,dtype=predicti

ons.dtype,crs='+proj=latlong',transform=transform) as dst: 

dst.write(predictions, 1) 

 

predictions = np.random.rand(256, 256) 

transform = from_origin(0, 0, 1, 1) 

export_predictions_to_geotiff(predictions, 'path_to_output.tif', transform) 

 

4. RESULTS 
 

The performance of the ML models in this study shows accurate and precise results, with metrics 

such as accuracy, precision, recall, F1 score, and ROC AUC score. These metrics provide 
insights into the effectiveness of the models in enhancing geospatial intelligence. The results 

demonstrate the models' ability to handle complex geospatial data and offer valuable insights into 

their practical applications. 
 

4.2. Image Classification 
 
 Model: VGG16 

 

 Accuracy: The VGG16 model achieved an accuracy of 85%. This high level of accuracy 
indicates the model's capability to effectively discern distinct geospatial features and suggests 

potential for further exploration. 
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4.3. Semantic Segmentation 
 

Model: U-Net 

 
● Precision: The U-Net model achieved a precision of 82%, accurately labeling pixels 

corresponding to different land cover types such as buildings, vegetation, and water. 

● Accuracy and Recall: The model's accuracy and recall are both at 77%, indicating reliable 
performance in semantic segmentation tasks. 

 

4.4. Anomaly Detection 
 

Model: Isolation Forest 

 
● ROC AUC Score: The Isolation Forest model achieved a ROC AUC score above 0.9, 

demonstrating high robustness. 

● Precision-Recall Curve: The model's robustness is clearly shown in the precision-recall 

curve. 
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4.5. Observations and Challenges 
 

Following were the observations made during the execution of the code and its related parts: 
 

 Slight Overfitting:There was slight overfitting observed between the training and validation 

metrics. Although the models performed well on the training data, their performance on the 

validation data was marginally lower, indicating a need for further tuning or more advanced 
regularization techniques to enhance generalization 

● Model Convergence: Ensuring that the models reached an optimal state within a reasonable 

number of epochs posed a challenge. This required careful tuning of hyper-parameters such 

as learning rate, batch size, and the number of epochs.  
● Improved data pre-processing would likely yield better results. 

 

5. CONCLUSION 
 
This systematic research study has demonstrated the significant potential of advanced data 

science and machine learning (ML) techniques in enhancing geospatial intelligence (GEOINT). 

By employing sophisticated models such as VGG16 for image classification, U-Net for semantic 

segmentation, and Isolation Forest for anomaly detection, this study has shown marked 
improvements in both the accuracy and efficiency of geospatial data analysis.  
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The results obtained from applying these models to real-world datasets illustrate the robust 
performance achievable across various geospatial tasks. Specifically, the VGG16 model achieved 

high accuracy in classifying satellite images into categories such as urban, rural, and water 

bodies. The U-Net model provided highly reliable pixel-level segmentation for detailed land 

cover classification. Finally, the Isolation Forest model effectively detected anomalies with a 
high ROC AUC score. 

 

However, the study also encountered challenges such as slight overfitting and issues with model 
convergence, indicating a need for further refinement. Optimizing these models can be achieved 

by providing multimodal datasets and employing advanced regularization techniques. 

 

6. FUTURE WORK 
 
Future research should focus on integrating more advanced machine learning architectures, 

employing transfer learning and domain adaptation techniques, and exploring multi-modal data 

fusion to enhance model robustness and generalization. Additionally, the development of real-
time GeoAI applications presents various ethical considerations that must be addressed. These 

considerations are crucial for the responsible and effective deployment of GEOINT technologies, 

ensuring that advancements in GEOINT capabilities are both ethically sound and practically 
beneficial. 

 

In conclusion, this study highlights the transformative impact of advanced ML techniques on 

geospatial intelligence. By addressing current challenges and focusing on future advancements, 
the potential for GEOINT to significantly enhance decision-making processes in fields such as 

national security, disaster management, and environmental monitoring is substantial. The 

ongoing optimization and ethical deployment of these technologies will play a pivotal role in the 
future of geospatial intelligence. 
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