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ABSTRACT 
 
This paper addresses the problem of accurate swipe detection and battery life management 

in wearable devices [1]. We proposed a device that utilizes accelerometers and gyroscopes 

to detect swipe gestures and analyze user interactions [2]. The system's core technologies 

include advanced sensor fusion for gesture recognition and real-time data processing. 

Challenges included ensuring high accuracy in gesture detection and optimizing battery life 
under continuous use. We conducted experiments to test these aspects, finding an average 

swipe detection accuracy of 91.6% and battery life extending up to 13 hours under active 

use. Our approach improved upon existing methodologies by refining gesture recognition 

algorithms and optimizing power consumption [3]. The results demonstrate that our device 

effectively balances performance and battery efficiency, making it a viable solution for 

real-time gesture tracking applications [4]. This innovation has potential applications in 

user interaction enhancement and energyefficient wearable technology.  

 

KEYWORDS 
 
IoT (Internet of things), Machine Learning, Could Computing  

 

1. INTRODUCTION 
 

The rise of short form videos on social media has begun to exacerbate the negative effects of 
screentime on well-being. The negative effects of screetime on psychological well-being has 

been established in the literature, and this effect is particularly pronounced for adolescents and 

children (Twengea & Campbell, 2018). In adolescents, high users of screentime (7+ hours/day) 
compared to low users (1 hour/day) are more than twice as likely to be diagnosed with 

depression, anxiety, or have behavioral issues. Even moderate use (4 hours/day) is associated 

with “less curiosity, lower self-control, more distractibility, more difficulty making friends, less 

emotional stability, being more difficult to care for, and inability to finish tasks”. Thus, the 
correlation between screentime and reduced psychological wellbeing is statistically established, 

and is an issue that needs to be addressed [5].  

 
In recent times short form videos have become increasingly popular forms of screentime for 

adolescents. This is because short form content on social media platforms such as TikTok, 

Instagram, and YouTube are addictive by design [6]. Algorithms on these platforms utilize the 
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principle of random reinforcement—same as slot machines—to hook it’s users. The endless 
scroll allows users to spend hours on the platforms without even realizing it. Short form video 

addiction is especially pernicious as it effects the brains dopamine reward system, increasing 

boredom and restlessness, which perpetuates the vicious cycle. In the long run, short form 

content addiction could lead to lower life outcomes.  
 

Method 1: Accelerometer-based Detection aims to recognize swipe gestures using motion 

sensors. Its shortcomings include false positives and difficulty distinguishing similar gestures. 
Our project improved accuracy by refining gesture recognition algorithms and adjusting sensor 

sensitivity. Method 2: Machine Learning Models uses predictive analytics for swipe detection. 

While effective, it requires extensive training data and can be computationally expensive. We 
addressed this by integrating lightweight models and continuous data collection for real-time 

adjustments. Method 3: Battery Management Techniques focuses on optimizing power 

consumption. Challenges include balancing performance with battery life. Our approach 

involved minimizing sensor polling frequency and implementing power-saving modes to extend 
battery life. Each method has its limitations, but our enhancements aimed to provide a more 

accurate and efficient swipe detection system.  

 
To change, one first needs awareness of the problem. SwipeVigil is able to accurately track when 

one swipes throughout the day. With this data, comes self knowledge as SwipeVigil displays 

hotspots where one is most prone to distraction. Using machine learning, SwipeVigil is able to 
predict on what days and on what times the user swipes. This is an effective solution since 

SwipeVigil not only collects screentime data, but also is able to predict and analyze the data. 

Compared to virtual screentime trackers, SwipeVigil analyzes one’s physical movement which is 

able to deduce more information. Virtual solutions can only measure total screentime, not what 
actually happens during that screetime. SwipeVigil tracks the users hand gestures which give 

insight into the user’s activities and state. For example, if the user is continuously swiping for 

hours, SwipeVigil can deduce that user is stuck in a doom scrolling loop. It is also able to 
differentiate between active and passive use, such as texting on social media vs mindlessly 

consuming content. Additionally for virtual interventions there is the argument of ‘fighting tech 

with tech’ where there is a conflict of interest. In conclusion, SwipeVigil gives accurate and 

detailed information back to the user, allowing self-knowledge which is the first step to change.  
 

In Section 4, two key experiments were conducted to evaluate our device’s performance. 

Experiment A focused on testing the accuracy of swipe detection. We set up this experiment by 
having users perform swipes and similar gestures while wearing the device, then compared 

detected swipes against actual swipes to measure accuracy. The significant finding was an 

average detection accuracy of 91.6%, with occasional misinterpretations of similar gestures 
impacting performance. Experiment B assessed battery life under active use versus idle 

conditions. The device was used continuously and compared against idle data. Results showed 

that the battery lasted up to 13 hours during active use, compared to a more gradual decline in 

idle mode. The faster battery drain during active use highlights the high power consumption of 
the sensors. These findings guide improvements in swipe detection algorithms and power 

management.  

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. The Accuracy of the Swipe Detections  
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During the design of SwipeVigil, the accuracy of the swipe detections was one of the first things 
on our minds. More accurate data leads to more accurate predictions and more effectiveness for 

the user. Most false detections came from the user simply moving their hand around, not actually 

swiping on a device. How we could resolve this problem is by using two methods. First, we 

could find a right threshold for the accelerometer to detect a swipe. This threshold can’t be too 
low or too high, but just in the right range for a swipe. We could measure this threshold through 

running trials. Second, we could implement a double accelerometer design: one on the wrist, one 

on the finger. The logic goes, when the user is swiping on a device, generally their wrist stays in 
place. Thus, we would only detect swipes when the wrist accelerometer is at rest, and the finger 

is moving [7]. Through these methods we could minimize false detections.  

 

2.2.Not Having Enough Data   
 

Once we have collected the data, we plan on using machine learning to do predictive analytics on 
when the user will most likely swipe. The problem we can encounter during this step is not 

having enough data for the machine learning model to be built robustly. We could overcome this 

by collecting more data from the user to build a more accurate model.   
 

2.3.The Ergonomics of the Device  
 
The ergonomics of the device is also a point of importance. If the device is uncomfortable to 

wear, the user might not wear it consistently enough to collect enough data for our machine 

learning model [8]. Thus, we could improve the ergonomics of the device through using 
lightweight 3d printed components and comfortable materials to attach to the hand. Focusing on 

the ergonomics could lead to better adherence and overall better feedback to the user.   

  

3. SOLUTION 
 
The 3 major components of our program is the App, Device, and Database. The program starts 

with the device which is comprise of a processing unit, and an accelerometer. Here the 

accelerometer measures the movement of the user’s thumb and sends the data to the processing 
unit. We coded the processing unit such that when the acceleration matches the pattern of a 

swipe, the processing unit will send the data to the database wirelessly through cellular. Then the 

app reads the data in the database which corresponds to the device registered and displays the 

data. The total amount of swipes and number of swipes in a day are displayed. Additionally a 
heat chart of what times of day the swipes happened is displayed as well.   

 

To make this program we used many different applications. For database we used Firebase and 
to develop the app we used Flutter framework [9]. For the device, we used components from 

Adafruit and Boron.  
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Figure 1. Overview of the solution  

 

The purpose of the deviceInfoWidget component is to retrieve and display device-specific 

information from a Firebase database within a Flutter application [10]. This widget provides a 
user interface element that shows various pieces of data related to a device, such as its ID, the 

last time it was updated, the total number of swipe events, and a graphical representation of 

swipe activity. This information is essential for users who want to monitor and interact with the 

device's data in a clear and organized manner.  
 

 
 

Figure 2.  Screenshot of the swipe vigil  
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Figure 3. Screenshot of code 1  
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This code defines a Flutter widget called deviceInfoWidget that displays various pieces of 
information about a device. The widget takes three parameters: deviceData, deviceID, and 

deviceName. The deviceData parameter is a map that contains data about the device, including 

historical event data. The widget begins by extracting the keys of the deviceData["data"] map, 

which represent different timestamps of recorded events. These keys are then converted into a list 
and sorted in ascending order, ensuring chronological order. The most recent event data, 

identified by the last key in this sorted list, is stored in lastEvent.  

 
The widget then returns a Column that contains several child widgets. These widgets are 

structured to display information in a visually appealing manner using Card widgets, which are 

styled with padding for spacing and a Row layout for each piece of data. The first card displays 
the device ID, while the second card shows the timestamp of the last event, extracted from 

lastEvent["published_at"]. Another card shows the total number of swipe events recorded by the 

device, derived from the length of deviceEventDataKeys.  

 
Additionally, the widget includes two custom components: swipesTodayWidget(deviceData) and 

DaySwipeChart(deviceData). The swipesTodayWidget likely provides a summary of swipe 

activity for the current day, while DaySwipeChart presents a visual representation of swipe data 
over time. The entire content is wrapped in a SingleChildScrollView to allow scrolling if the 

content exceeds the screen size.  

 
At the bottom of the Column, there is an ElevatedButton labeled "Unregister Device," which 

currently has no assigned functionality (onPressed: () {}). This button is presumably intended to 

allow the user to unregister the device from the system. Overall, the widget is designed to 

present detailed device information and activity data in a clear and organized manner.  
The purpose of the component that counts the number of swipes and plots them on a chart is to 

visually represent user activity data, specifically the number of swipes over different hours of the 

day. This visualization helps users understand patterns in their swipe behavior, such as peak 
usage times and trends throughout the day, providing valuable insights into their device 

interaction habits.  

 

 
 

Figure 4. Peak usage times and trends  
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Figure 5. Screenshot of code 2  

 

The provided code snippet is a Flutter widget that constructs a line chart using the fl_chart 
package, which is commonly used for creating various types of charts in Flutter applications 

[11]. The widget is built using the build method, which returns a Widget to display within the 
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application. This method first generates a list of data points called spots using a helper function 
getSpots(). These points represent the coordinates on the chart that the line will follow.  

 

To determine the vertical intervals (or steps) on the Y-axis, the code calculates interval based on 

the difference between the maximum (maxSwipes) and minimum (minSwipes) swipe values 
divided by the number of steps (steps). If this calculated interval is less than 1, it is set to 1 to 

ensure a minimum spacing. The interval is then truncated to a double to ensure it is a whole 

number.  
 

The widget returns an AspectRatio widget with a specified aspect ratio of 2, which wraps around 

a LineChart widget. The LineChart widget is configured using the LineChartData class to define 
the data and appearance of the chart. Within LineChartData, various properties are set, such as 

titlesData, which controls the visibility and styling of the titles and labels on the chart axes.  

 

The titles on the X-axis and Y-axis are defined with specific widgets and styles. The Y-axis, 
labeled as "Swipes," displays titles at intervals defined by the calculated interval, using a method 

leftTitleWidgets to generate the labels. The X-axis is labeled "Time of Day" and displays titles at 

fixed intervals of 4 units using the bottomTitleWidgets method. Both the top and right titles are 
hidden by setting showTitles to false.  

 

The lineBarsData parameter specifies the data for the line on the chart, including its appearance 
and the data points (spots) it should follow. The line is drawn with a width of 5 pixels and is not 

curved, providing a straight-line graph. This setup effectively creates a customized line chart that 

visualizes swipe data over different times of the day, with a focus on clear, configurable labels 

and intervals for easy interpretation.  
 

The hardware component detects swipes using sensors like accelerometers and gyroscopes, 

which measure motion and orientation [12]. It relies on gesture recognition algorithms to identify 
swiping gestures. This real-time data collection is crucial for analyzing user interactions and 

screen time, providing foundational data for further processing and visualization.   

 

 
 

Figure 6. Screenshot of code 3  

 

This code is designed for use in an embedded system, likely involving a microcontroller that 

interfaces with a haptic motor and an accelerometer/gyroscope sensor (LSM6DSOX). The loop() 
function is the main routine that repeatedly executes. First, the code triggers a haptic motor effect 

by setting up a waveform using drv.setWaveform(0, effect) and ending it with 
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drv.setWaveform(1, 0), then initiates the haptic feedback with drv.go(). This suggests the system 
provides tactile feedback, possibly as a notification or alert.  

 

Next, the code retrieves data from an accelerometer and a gyroscope by calling 

lsm6dsox.getEvent(&accel, &gyro, &temp). This function populates the accel and gyro variables 
with the latest sensor data, capturing acceleration (in meters per second squared) and rotational 

velocity (in radians per second) along the x, y, and z axes. The values are then stored in local 

variables accel_x, accel_y, accel_z for acceleration, and gryo_x, gryo_y, gryo_z for gyroscope 
data.  

 

Following this, the code formats the sensor data into a JSON string using the snprintf() function, 
which is stored in the message variable. This formatted string is then published to the Particle 

Cloud with the event name "posture" and set to PRIVATE, ensuring the data is securely sent. 

The Serial.print statements output the accelerometer readings to the serial monitor, which is 

useful for debugging and monitoring sensor data in real-time [13]. Finally, the code pauses for 5 
seconds (delay(5000)) before repeating the loop, allowing the system to continuously monitor 

and report sensor data at set intervals.  

 

4. EXPERIMENT 
 

4.1.Experiment 1 
 
A potential blind spot in our program is the accuracy of swipe detection by the hardware sensors. 

Ensuring reliable swipe detection is crucial for gathering accurate user interaction data.  

 
To test the accuracy of swipe detection, we will set up an experiment where users perform a 

series of swipes and non-swipe gestures while wearing the device. The experiment will be 

conducted in a controlled environment, minimizing external variables that could affect sensor 

readings. We will source control data by recording the actual gestures performed, and we will 
compare this with the data detected by the device. By evaluating the device’s accuracy in 

detecting true swipes and distinguishing them from other movements, we can assess its 

performance and identify any discrepancies or false positives.  
 

 

Figure 7. Figure of experiment 1  

 
The swipe detection accuracy experiment data shows the performance of a swipe detection 

system across five trials. On average, the system accurately detected 91.6% of the swipes. The 

system had an average of 4 false positives and 5.8 false negatives per trial. The highest detection 
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accuracy was 95.7%, and the lowest was 87.5%. This indicates that while the system is generally 
reliable, there is some variability in its ability to accurately detect swipes.  

 

4.2. Experiment 2  
 

Another blind spot in the program is the battery life of the device during continuous use. 

Ensuring the device can operate efficiently over extended periods is essential.  
 

To test battery life, we will conduct an experiment where the device is used continuously over a 

24-hour period, simulating normal usage patterns. The device will log swipe data while the 

battery percentage is monitored at regular intervals. Control data will be sourced from a fully 
charged device left idle, to determine baseline power consumption without active usage. This 

experiment is designed to evaluate how active sensor use impacts battery drain compared to 

standby mode. By comparing active and idle power consumption, we can identify opportunities 
to optimize the device’s battery performance for real-world use.  

 

 
 

Figure 8. Figure of experiment 2  

 
The battery life experiment data shows that the device's battery drains faster under active use 

compared to idle conditions. After 13 hours, the battery is fully depleted (0%) under active use, 

while it retains 87% of its charge in idle mode. The data demonstrates a consistent decline in 

battery life, with a steeper drop for active use due to higher power consumption by the device's 
sensors and processing activities. In contrast, the battery life under idle conditions decreases 

more gradually, indicating lower power usage when the device is not actively detecting swipes.   
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5. RELATED WORK 
 
This study is a meta-analysis on intervention methods to combat screentime among children 0-18 

years old. The analysis found that interventions incorporating goal-setting, feedback, and 

planning were particularly effective. Also interventions with smaller group sizes worked better.  

This article describes a ten step behavioral intervention to reduce screentime. Their interventions 
follow the Fogg Behavioural Model where habitual behavior result from the combination of 

prompts, ability, and motivation. By targeting each specific area with the interventions they were 

able to reduce screetime usage. However, these interventions do not give awareness of the user’s 
own habits such as the times of day when they are prone to distraction. In contrast, SwipeVigil 

provides that information.   

 

The article explores interventions aimed at mitigating the impact of screen time on mental health 
in children and adolescents. Key interventions include promoting better sleep hygiene, increasing 

physical activity, and fostering real-world social interactions. These strategies are designed to 

counteract the mechanisms—such as disrupted sleep, sedentary behavior, and social isolation— 
that link excessive screen time to mental health issues like anxiety and depression.  

 

6. CONCLUSIONS 
 

The limitations of our project is as follows: adherence and accuracy. For adherence, if the user 
does not wear the device consistently, the predictions will be inaccurate and the utility of the 

device will be lowered. Thus to improve adherence, we could make the device more lightweight 

and unobtrusive to the user [14]. This would involve minimizing the size of components and 
using materials that are more comfortable for the user. On the other hand, the accuracy of the 

device involves the accuracy of the detections and the accuracy of the predictions. To improve 

the accuracy of the detections, we could use a machine learning algorithm and give it a dataset of 
accelerations during a swiping motion [15]. This algorithm would then be able to more 

accurately predict when a swipe happens. For the accuracy of the predictions, it would involve 

optimizing the machine learning model with more data. Overall, by improving the adherence and 

accuracy of SwipeVigil, it can become a more effective product.  
 

Knowledge is the pathway to change, and one of the biggest problems facing today’s adolescents 

is excessive screentime usage. SwipeVigil breaks us out of the trap of distraction using accurate 
tracking and predictive analytics.  
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