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ABSTRACT 
 
In the field of spatial computing, one of the most essential tasks is the pose estimation of 3D 

objects. While rigid transformations of arbitrary 3D objects are relatively hard to detect 

due to varying environments introducing factors like insufficient lighting or even occlusion, 

objects with pre-defined shapes are often easy to track, leveraging geometric constraints. 

Curved images, with flexible dimensions but a confined shape, are essential shapes often 

targeted in 3D tracking.  

 
Traditionally, proprietary algorithms often require specific curvature measures as the input 

along with the original flattened images to enable pose estimation for a single image 

target. In this paper, we propose a pipeline that can detect several logo images 

simultaneously and only requires the original images as the input, unlocking more effects in 

downstream fields such as Augmented Reality (AR). 
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1. INTRODUCTION 
 

Our objective is to develop an algorithm for tracking curved images by accuratelyestimating the 
diameter, transition, and rotation of cylinder-like objects in realtime. This algorithm has 

significant potential for applications such as augmentedreality in retail, where it overlays digital 

information onto curved products, as wellas in robotic grasping and human-robot interaction for 

learning demonstrations.The process involves using YOLOv8 [1–3] for logo detection, 
Convolutional NeuralNetwork (CNN) [4] for diameter estimation, and SIFT [5] for feature 

extraction,culminating in pose estimation through solving a Perspective-n-Point (PnP) problem 

[6]. This approach enhances the algorithm’s capability to handle complexreal-world scenarios 
effectively. 

 

ZapWorks currently provides a basic, proprietary tool that supports curvedimage tracking [10], as 
depicted in Figure 1. Given its closed-source nature, ourmain objective is to develop a 

comparable model using convolutional networksand traditional estimation methods [11, 12]. A 

significant limitation of ZapWorks’solution is its capacity to detect only a single, predetermined 

image, such as the logo on a wine bottle shown in Figure 1. To address this, we want to enhance 
our model’s ability to recognize multiple pre-trained logos autonomously, without the need to 
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input specific logo IDs for each usage. Our ultimate aim is to evolve this model into a few-shot, 
closed-set algorithm, similar to those found in other pose-estimation frameworks [13, 14], thus 

vastly improving its utility and efficacy in a variety of real-world scenarios. 

 

 
 

Figure 1. AR Effects shown by ZapWorks’ single-image pose-estimation algorithm 

 

Our work provides the following contributions: 

 
1. We synthesize the training & evaluation dataset using Blender, comprising over 20,000 

images, enabling model training for curved image detection, tracking, and diameter 

estimation. 

2. We introduce a novel framework for 6D pose estimation of curved images, leveraging a 
combination of SIFT and solving a PnP problem. 

3. We propose a novel CNN-based architecture tailored for estimating the curvature of 

images (i.e., the diameter of the underlying cylinder) based on the bounding box of the 
logo image. 

 

2. RELATED WORKS 
 

2.1. General Object Detection 
 

In the field of general object detection, methodologies are categorized into one-stage and two-
stage detectors. Two-stage detectors, such as R-CNN [15] and its variants Fast R-CNN [16] and 

Faster R-CNN [17], initially generate region proposals that likely contain objects, which are 

subsequently classified and refined in terms of bounding box coordinates [18, 19]. These models 
are noted for their high accuracy, especially in complex scenes with small or overlapping objects 

[20, 21], but tendto operate slower due to their two-phased approach. On the other hand, one-

stage detectors like You Only Look Once (YOLO) [4] and Single Shot Multibox Detector (SSD) 
[22] simplify the detection process by directly predicting bounding boxes and class probabilities 

in a single step, trading some accuracy for significant gains in speed and efficiency. For instance, 

typical applications such as a self-guided retail checkout process developed by Tan et al. [23] 

showcases the real-time advantage of one-stage detectors like YOLO. Furthermore, an exemplar 
work by Dang et al. [24] demonstrates the strong adaptability of the YOLO. Dang et al.’s work 

not only fine-tuned the bounding box output using new datasets, but also presented the high-

precision classification of small items like pills using the YOLO network. Furthermore, their 
research, which focuses on recognition targets that share same shape and color (typical barriers to 

manual classifications), proves the strong generalization ability of the YOLO network and sheds 

light on how it can be utilized in more complex real-life scenarios. 
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2.2. 6D Object Pose Estimation 
 

In the field of pose estimation, methodologies are categorized into traditional geometric 

techniques and advanced deep-learning approaches [25–28]. Traditional approaches often involve 
feature extraction and matching with 3D models using Perspective-n-Point (PnP) solutions or 

Iterative Closest Point (ICP) [29, 30] algorithms. Modern deep learning techniques, such as 

PoseCNN [31, 32], leverage convolutional neural networks to predict object pose directly from 
RGB images, enhancing efficiency and scalability. Hybrid methods like DenseFusion [33] and 

PVNet [34] integrate RGB data with depth information, improving accuracy and robustness in 

complex scenes [35–37]. These methods can effectively handle occlusions and varying lighting 

conditions, crucial for applications in augmented reality, robotics, and autonomous navigation. 
 

2.3. Convolutional Neural Networks 
 

CNNs have been adapted for various complex image-processing tasks by modifying the 

embedding layers. For instance, in style transfer, CNNs are engineered to encode style and 

content features separately, combining them to produce new, artistic images. In object detection, 
adjustments to the embedding layer integrate with region proposal networks to enhance detection 

accuracy [38]. Such modifications improve the network’s ability to extract detailed features 

crucial for tasks like facial recognition or medical imaging anomaly detection [39, 40]. These 
adaptations underscore the flexibility of CNNs to meet specific operational demands across 

diverse applications [41]. 

 

3. DATASET 
 
Given the specificity of our research needs, we opted to create a synthetic dataset using Blender, 

as no suitable dataset was available online. This dataset includes 20,000 images, generated from 

20 different target images, each affixed to cylinders of various diameters and heights. For each 
cylinder, over 1000 image frames were produced to capture diverse perspectives. Note that, in 

this dataset, the term ’target image’ specifically refers to any image used to represent a logo. 

 

 
 

Figure 2. Collection of 20 different target images (some are removed due to anonymization) 
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Figure 3. Sample of Cylinder Object Across Varied Backgrounds 

 

3.1. Dataset Generation 
 
For each iteration, we selected one of the 20 target images in sequence to ensure a comprehensive 

evaluation across all variations (see all target images in Figure 2). To enhance the model’s 

adaptability to different backgrounds, we incorporated 15 distinct 360-degree background 

images. For example, the cylinder with the Cal logo can be placed into various backgrounds as 
shown in Figure 3. 

 

Additionally, we generated cylinders with diameters ranging from one to two times the width of 
the attached image, placing the target image on the side of the cylinder. The camera was 

maneuvered around the cylinder to capture images from multiple angles, ensuring that the target 

image remained visible regardless of perspective. To simulate realistic conditions, such as objects 

captured off-center as might occur in real-world usage, we varied the cylinder’s position within 
each image. This methodological diversity is crucial for training our model to accurately detect 

targets under a variety of conditions. 

 
During the synthesis process, we recorded additional training data, including the label width, 

label height, and the camera’s intrinsic matrix, which are essential for applying the Scale 

Invariant Feature Transform (SIFT) and calculating the transformation matrix. We documented 
the ground truth data for each synthesized image, detailing the cylinder’s relative position and 

rotation, measured by Euler angles, in relation to the camera, as well as its diameter. 

Additionally, we recorded the camera’s intrinsic matrix, which is a fundamental component in 

camera calibration. The intrinsic matrix is a 3x3 matrix that transforms 3D coordinates from the 
camera’s view into 2D image coordinates, facilitating the conversion of real-world measurements 

to pixel measurements [42]. It includes parameters such as the focal lengths (fx and fy), which 

determine the scaling in the x and y directions, the skew coefficient (s), which accounts for any 
non-rectangularity between the x and y pixel axes, and the principal point coordinates (cx and 

cy), which indicate the intersection of the optical axis with the image plane. This matrix 

accurately projects 3D points onto the 2D image plane, allowing for precise image formation and 
analysis [43]. 

 

For clarity and consistency, we define the curvature of the image target as the ratio between the 

cylinder’s diameter and the height of the image target (HoI). Figure 4 illustrates a sample image 
pair from the dataset, accompanied by its relevant training and testing data, showcasing the 

dataset’s capacity to thoroughly evaluate our model’s performance. 

 
As the dataset randomly generated backgrounds and cylinder’s diameter, we split the first 90% of 

the data into training datasets while the remaining 10% as the validation dataset. The split in the 

order can avoid backtracking the image index. 
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4. METHOD 
 
Generally, we divide the problem into four steps, including 1) detecting the bounding box of the 

image, 2) estimating the curvature of the image, 3) finding correspondences between the flattened 

image target and the input image capture, and4) estimating the pose of the image. Figure 5 

presents the pipeline in detail using a training image as an example. The pose of the image is 
hence referring to the pose of the cylinder, where the image is always attached to (and centered 

to) thenegative y-direction of the cylinder, with the top of the cylinder being the positive z-

direction and the right being the positive x-direction. 
 

 
 

Figure 4. Synthesized dataset consisting of paired images and corresponding data examples 

 

 
 

Figure 5. Our pipeline of curved-image pose-estimation. The pipeline contains a fine-tune YOLOv8 
network [1], a self-trained CNN, a feature matching algorithm using SIFT [5], and an algorithm for PnP [6] 

pose computation 
 

4.1. Image Classification & Detection 
 

For step 1), inspired by Tan et al. [23], who leverages the detection head structure from YOLOv8 

to conduct high-precision object recognition, we fine-tune a pre-trained YOLOv8 network using 
the small checkpoint (yolov8s.pt) provided by prior literature to detect the bounding boxes for the 

images. With a 50-epoch training process using 921 training captures per image target (20 image 

targets in total in our dataset), the validation box loss, referring to the regression Complete 

Intersection over Union (CIoU) loss [44], dropped to 0.14355 as shown in Figure 6, representing 
a decent prediction result. Notice that the YOLOv8 network also performs the image 

classification in this step. 
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Figure 6. The training loss (left) and the validation loss (right) for fine-tuning the YOLOv8 network. 

 

4.2. Curvature Estimation 
 

For step 2), we propose a new convolution-based network for predicting the curvature of the 
image. We experimented with two differently-sized networks with both the Huber loss function 

(δ = 0.4) [45, 46] and the traditional mean squared error (MSE) loss function [47]. Both networks 

include 3 convolution layers, each followed by a max-pooling layer with kernel size 2 ∗ 2, and 

two fully connected layers, where one layer encodes the kernel output from the prior 
convolutional layer into vector embedding and the second layer fully connects the first layers’ 

output and combines into one single output value as the curvature prediction. All layers use the 

Rectified Linear Unit (ReLU) activation function, which is a standard usage [48] for training 
convolutional networks. Specifically, the small-sized network has convolutional layers with 

kernels numbers 32, 64, 64, with the kernel size being 5 ∗ 5, 3 ∗ 3, 4 ∗ 4, followed by a 64-

dimension vector embedding layer, while the large-sized network has convolutional kernel 

numbers being 32, 64, 128, 128, with the kernel size being 5 ∗ 5, 3 ∗ 3, 3 ∗ 3, and followed by a 
128-dimension vector embedding layer. In total, the small-sized network contains 189,057 

parameters while the large-sized network contains 684,865 parameters. 

 
All training processes were set to run for 50 epochs, and an early stopping mechanism was 

applied when the validation loss stopped decreasing for consecutively 4 epochs. With training 

results shown in Table 1, the small-sized model with the Huber loss got the best performance. In 

the following section of evaluation and result, we evaluate both the Small-Size-Huber-Loss 
model and the Small-Size-MSE-Loss model to give a better indication of the effects of the two 

different loss functions. 

 

4.3. Finding Feature Correspondences 
 

In this step, we utilize the SIFT algorithm to find the image correspondences between the flat 
image target and the image capture. The Fast Library for Approximate Nearest Neighbors 

(FLANN) [49] was then utilized to find the matches between the feature descriptors using the K-

nearest-neighbors method [50]. A ratio of 0.95 was then used in the ratio test to filter the bad 
matches. 
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Table 1: Value of metrics during training 

 
Model Type Best 

Epoch 

Val Loss Huber 

(𝜹 = 0.4) 

Val Loss MSE 

Small-Size-Huber-Loss 24 0.0266 0.0787 

Large-Size-Huber-Loss 5 0.0523 0.1175 

Small-Size-MSE-Loss 8 0.0466 0.1042 

Large-Size-MSE-Loss 4 0.0640 0.1522 

 

4.4. Pose Estimation 
 

Given the curvature prediction, we can easily map the original points in the flat image target onto 

the curved surface in the cylinders’ coordinate system using the following formula, where r 

stands for the radius of the cylinder (notice that all image coordinates are using the unit of HoI.): 
 

𝜃 = 𝑋𝑇𝑎𝑟𝑔𝑒𝑡 −
𝑇𝑎𝑟𝑔𝑒𝑡𝑊𝑖𝑑𝑡ℎ

2
 

 

𝑥𝐶𝑦𝑙 = 𝑟 ∗  𝑠𝑖𝑛(𝜃) 

 

𝑦𝐶𝑦𝑙 = −𝑟 ∗  𝑐𝑜𝑠(𝜃) 

 

𝑧𝐶𝑦𝑙 =
𝑇𝑎𝑟𝑔𝑒𝑡𝑊𝑖𝑑𝑡ℎ

2
− 𝑌𝑇𝑎𝑟𝑔𝑒𝑡  

 

Then, given the correspondences between the extracted image features, we can perform the PnP 

pose computation as our last step in the pipeline. To make our pipeline more robust against the 
errors generated during the SIFT feature extraction process (caused by the non-linear image 

distortion on the curved surface), we utilize the RANSAC method [51] to solve the PnP problem 

and get the pose estimation. 

 

5. EVALUATION & RESULT 
 

Our pipeline takes only the target image and the context image as input and accurately predicts 

the 6D pose (rotation and translation) of the target image using a hypothesized cylindric shape 
with a predicted diameter. Figure 7 demonstrates the visual result of our prediction. Notice that in 

real use cases, the cylindric shape that the target image curls around does not necessarily need to 

appear in the context image. Here in the figure, the white cylinder is generated for illustration  

 

 
 

Figure 7: Original Image (left), Yolo Detection (middle), and pose estimation (right) result of our pipeline. 

 

and comparison purposes only. In addition, we also conducted a quantitative analysis of our 
models as shown in Table 2. Using the Small-Size-Huber-Loss and the Small-Size-MSE-Loss 

model, we can see the significant difference in the error of diameter estimation. The rotation error 

(based on the inner product of unit quaternions, Φ6 ≡ 2 ∗ Φ3 in [52–54]), as well as the 
translation error, are also provided as a reference. Similar methods involving efficient prediction 
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models for different tasks can be found in works such as [55–58], where data-efficient 
reinforcement learning, adaptive feature generation [59, 60], and reasoning structures are utilized 

for optimal results. 

 
Table 2: Quantitative analysis of the pipeline performance with different models for curvature estimation 

 
Metrics Small-SizeMSE-Loss 

Model 

Small-SizeHuber-

Loss Model 

YOLO Success Rate 0.967 0.967 

IoU 0.963± 0.060 0.963± 0.060 

Time Taken (s) 0.635 ± 0.156 0.626 ± 0.152 

Diameter Error (Hol) 0.247± 0.208 0.176± 0.157 

Rotation Error (rad) 2.524± 0.557 2.521± 0.558 

Translation Error (Hol) 50.445±19.109 50.731±19.031 

 

6. DISCUSSION, LIMITATIONS, AND FUTURE WORKS 
 
Our pipeline provides the flexibility to simultaneously be compatible with multiple target images, 

solving the scalability issue in existing public methods [10]. Specifically, considering the dataset 

generation process, our pipeline has the ability to complement the insufficient 3D clues that a 

single planar image may exhibit, which improves its compatibility in terms of target image 
categories. Similar processes can be applied to and enhance the performance of existing 

applications [61–64],which is not limited to the field of AR. For instance, eye-tracking 

algorithms [65– 67] can also take similar approaches in addition to the machine-learning-primary 
architecture to refine their results, which could be applied to the manufacturing of head-mounted 

displays [68, 69]. Applications in other fields, such as tracking and classifying irregular-shaped 

objects in real-time checkout systems mentioned in Tan et al.’s work [23] or general-purpose 

region tracking [70, 71], can also benefit from implementing an additional and synchronous layer 
of pose estimation. 

 

During training, we found that Huber loss outperformed Mean Squared Error (MSE) loss in our 
curvature estimation model. This points to potential improvements by exploring alternative loss 

functions and refining the model’s architecture for optimal performance. Future efforts can focus 

on enhancing the model’s real-time performance, integrating advanced machine learning 
techniques like reinforcement learning or attention mechanisms [72, 73], and expanding the 

dataset to include a wider variety of shapes and textures. Additionally, we aim to further refine 

the curvature estimation model, optimizing its architecture for better accuracy and efficiency, 

similar to the optimization strategies discussed in [74–76] for self-supervised learning. 
 

Additionally, though our approach to curved image pose estimation shows promise, it has 

specific limitations that suggest avenues for future research. One key limitation is related to our 
dataset. Minor errors introduced by Blender’s rendering optimization can cause the intrinsic 

matrix to inaccurately reflect the camera mapping, leading to discrepancies in pose estimation. A 

possible way that future work could address this issue is to generate datasets with a white-box 
rendering pipeline for improved accuracy. 

 

By addressing these limitations and exploring these future directions, we hope to advance the 

field of curved image pose estimation, with significant implications for augmented reality and 
industrial applications. 
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7. CONCLUSION 
 
In this paper, we have presented a comprehensive solution to the challenging problem of image 

pose estimation on a curved surface, offering both a concrete and scalable methodology and an 

in-depth analysis. Our work is grounded in the creation of a large synthetic dataset consisting of 

over 20,000 images, which serves as a foundation for training and evaluating our proposed 
models. We introduced a robust pipeline for 6D pose estimation of curved images, effectively 

leveraging a combination of YOLOv8 for object detection and a novel Convolutional Neural 

Network (CNN) architecture tailored for curvature estimation. 
 

Our approach addresses the limitations of traditional methods that are restricted to single-image 

detection. By enabling the simultaneous detection of multiple target images, our pipeline 

significantly enhances the capability of pose estimation systems, paving the way for new 
possibilities in a variety of downstreamapplications. This is particularly impactful in the field of 

AR, where our model’s ability to accurately overlay digital content on physically curved surfaces 

enhances user engagement and interaction. Additionally, our framework holds promise for 
broader industrial applications, including robotic manipulation and human-robot interaction, 

where precise tracking and pose estimation are critical. 
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