
David C. Wyld et al. (Eds): NWCOM, ASOFT, ITCCMA, CSITY, BDIoT, MLNLP, SIGPRO, AIFZ– 2024 

pp. 57-66, 2024. - CS & IT - CSCP 2024                                                                 DOI: 10.5121/csit.2024.141905 

 
BUILDING A LOG STACK TRACE 

FRAMEWORK FOR MICROSERVICES 

ARCHITECTURE A SIMULATION STUDY 
 

Renjith Ramachandran 

 

Independent Researcher and Solutions Architect 
 

ABSTRACT 
 
Microservices architecture (MSA) has become increasingly popular in recent years due to 

its numerous benefits. Many companies are migrating their monolithic applications to an 

MSA, where each service operates independently, often with its own persistence layer, and 

interacts with both internal and external services. These services may also participate in an 

event-driven architecture, emitting and consuming events. However, as the number of 

services increases, it becomes more challenging to trace request flows across services for 

debugging. The sheer volume of logs generated by these systems can make data collection 

and analysis to identify the root cause resource-intensive and costly. While distributed 
tracing tools can track service calls, they often fall short in capturing custom logs across 

multiple services. Traditional logging approaches are inefficient in this context due to the 

complex interactions between services and limitations in log level configurations. This 

paper proposes a framework that can be integrated into each service within an MSA to 

collect log data and create a detailed stack trace of calls across services during events such 

as errors. This approach would help System Reliability Engineers and developers quickly 

debug issues and identify root causes. The framework supports structured logging, 

correlates logs with specific events and services, and enables efficient real-time monitoring 

of the system.  

 

KEYWORDS 
 
Distributed logging, Microservices Architecture, Event Driven Architecture, Framework. 

   

1. INTRODUCTION 
 

The term microservice was mentioned in 2014 by Martin Flower [2]. MAS is a distributed 
application where all its modules or elements are microservices and these can run independently 

[1] [2]. The complexity of Microservices architecture has increased over the years. New 

frameworks and architecture patterns were built to support microservices architecture. The 

concept of each service handling one specific functionality looked compelling initially. As the 
complexity of the business increased, microservices architecture became complex. Identifying an 

error through tracing also became complex [3].  

 
Distributed tracing involves the process of monitoring, profiling and logging the execution path 

through a distributed application at runtime in response to a user’s request. A user’s request 

typically results in behavior that can span across multiple services in the application, resulting in 

a distributed trace, a detailed record of the execution path through the application [4]. 
 

http://airccse.org/cscp.html
https://airccse.org/csit/V14N19.html
https://doi.org/10.5121/csit.2024.141905


58                                         Computer Science & Information Technology (CS & IT) 

Tracing tools are used to track calls between services for debugging errors and monitoring 
response times. Their popularity grew with the increased adoption of microservices architecture 

(MSA). These tools generate vast amounts of trace data from services for each request, making 

the collection and analysis of this data a significant challenge [5]. A critical aspect of tracing is 

identifying errors. When an error occurs, it's essential to capture not only the call stack but also 
the corresponding logs from each service. This helps the operational and development teams to 

debug issues more efficiently by examining the log stack trace. However, distributed tracing tools 

often provide log details only at the moment of the call, missing the full context of the invocation 
or method. To obtain the complete log details, the log levels in the application often need to be 

adjusted at runtime, which can lead to an overwhelming volume of log data, especially in high-

traffic applications.  
 

Several studies have been conducted to address this issue in complex distributed architectures. 

Identifying the root cause of failures in such environments is critically important, leading to 

multiple proposed solutions. Zhang et al. [8] reviewed various published works on failure 
diagnosis and found that most focus on root cause localization or failure classification rather than 

integrating error traceback with localization. Additionally, the paper, along with many 

researchers, suggests using machine learning and AI models to identify root causes from logs, 
which can significantly increase costs related to resources, infrastructure, and maintenance. 

 

Pathak et al. propose a simpler solution with the Self-Adjusting Log Observability Tool [9]. 
Although the tool simplifies the process, adjusting log levels at runtime can have a ripple effect, 

particularly in high-traffic situations. Moreover, the tool employs a blast radius approach [9], 

which may not effectively trace back through all services in the chain.  

 
The objective of this research is to address these limitations in tracing and error debugging, in 

microservices architecture (MSA) using a framework that is simple to implement and provides a 

log stack trace, rather than just a call stack trace, across all services. This approach would 
facilitate the quick identification and resolution of errors. The framework should automatically 

generate a log stack trace whenever an error occurs in any service within the chain of service 

invocations, eliminating the need for manual intervention. Furthermore, the framework should 

follow a consistent logging strategy, allowing both operations and development teams to 
effectively trace and resolve issues using the generated log data. This framework would 

significantly reduce the volume of logs generated, thereby accelerating the debugging process.  

 

2. LOGGING  
 

Software systems generate log files with information about the running program. Developers 

insert logging statements in to the which are then printed in to the log files and used at a later 

point for analysis [6]. Logging is crucial for traceability of the application. In MSA, each service 
generates logs. There are tools available which can aggregate logs from different services and 

give a unified view to the developers and reliability engineers.  

 

2.1. Log Levels 
 
There are different log levels available to limit the logging when the application goes to 

production.  

 
 

 

 



Computer Science & Information Technology (CS & IT)                                              59 

 

Table 1.  Log Levels [7] 

 
Log Level Comments 

SEVERE For fatal program errors 

WARNING For warning messages 

INFO For Informational messages during runtime 

CONFIG For Informational messages about config 

FINE Used for detailed info for debugging problems 

FINER Used for greater detailed info for debugging 

problems 

FINEST Used for greatest detailed info for debugging 

problems 

 

3. LIMITATIONS OF THE CURRENT METHODOLOGIES 
 

An increasing number of enterprises are adopting Microservices Architecture (MSA) due to its 

numerous benefits. However, as applications become more critical, any performance degradation 
or outages can lead to significant financial losses. In their study, Daniel et al. [10] identified 

"more complex monitoring" and "debugging difficulties" as two of the top 10 disadvantages 

associated with MSA. 

 
Numerous studies have been conducted to address monitoring challenges, with a growing trend in 

using AIOps to tackle tracing problems. Common use cases for AIOps include anomaly 

detection, root cause analysis, and event correlation. However, due to the vast amount of data 
collected from various systems, machine learning and AI experts often need to invest 

considerable time in analysing the data to identify the root cause of issues [11][12]. Yunke 

further discusses the challenges of using AIOps in the thesis. AIOps is currently viewed as being 
in the phase of inflated expectations. Enterprises may face infrastructure-related challenges if 

they are unprepared to adapt to the requirements of AIOps. The thesis also elaborates on data 

quality challenges, emphasizing that data must be collected in a specific manner to satisfy AIOps 

requirements. Additionally, it addresses data manipulation challenges, noting that the large 
volume of data generated by distributed systems must undergo multiple transformations before it 

is suitable for AIOps [12]. 

 
The Traditional logging mechanism used in most of the microservices application in MSA has 

been useful until the complexity of the architecture and volume of the requests grew. They have 

the following limitations. 

 
Limited Visibility:  It will be difficult to get a unified view of the system in a complex distributed 

system [13]. 

 
Limited Error Context: Only the service where the error occurred logs detailed error information, 

leaving other services without context for troubleshooting. 

 
Inconsistent Logging Levels: Each service operates at a different logging level, which can lead to 

inconsistent data across services and complicate debugging efforts. 

 

Error Response Isolation: Other services in the chain only receive the error response from the 
invoking service, lacking detailed logs that is essential for root cause analysis. 

 



60                                         Computer Science & Information Technology (CS & IT) 

Real-Time Log Level Adjustment: Modifying the log level in real-time during production to 
capture additional details can produce an overwhelming volume of log data, complicating 

management and analysis. 

 

Potential for Performance Impact: Increased logging, especially at more detailed levels, can 
adversely affect the performance of services, leading to potential latency issues. 

 

Complexity in Root Cause Analysis: Collecting and correlating logs from multiple services to 
identify the root cause of errors adds complexity to the debugging process. 

 

Higher Resource Consumption: The generation of excessive logs can lead to increased storage 
requirements and resource consumption, potentially impacting system performance and costs. 

 

Correlation of Logs: Due to the decoupled nature of services, tracking the flow of a single request 

or event across multiple services necessitates the use of correlation IDs or trace IDs to link logs 
from different services. 

 

Considering the shortcomings of traditional logging mechanisms and modern approaches like 
AIOps, a new framework is required to overcome these challenges and complexities. This 

framework should bridge the existing gaps and provide a more efficient solution for monitoring 

and troubleshooting in modern systems. It should be easy to implement, collecting only the 
essential data needed for analysis while minimizing noise by excluding irrelevant logs.  

 

4. LOG STACK TRACE FRAMEWORK 
 

The goal of the Log Stack Trace Framework is to create a straightforward solution that 
overcomes the limitations of traditional logging methods and modern observability approaches. 

The framework aims to produce only relevant data for error tracing, eliminate the need for 

changing log levels at runtime, and provide a complete trace of logs across multiple systems 
when an error occurs. Logs from different systems will be collected based on specific events, and 

upon the occurrence of such an event, all related logs will be aggregated and sent to a centralized 

system for analysis.  

 
Figure1 below illustrates a sample flow in a microservices architecture (MSA). In the diagram, 

"MS App" represents a microservice. The logging framework is integrated into the application. 

As shown, MS App 1 invokes MS App 2 and MS App 3 using HTTP API requests. MS App 3 
interacts with a database to save or retrieve data. Meanwhile, MS App 2 calls MS App 4 via an 

HTTP API request, and MS App 4 subsequently calls MS App 5, which in turn communicates 

with an external system located outside the enterprise firewall. 

 



Computer Science & Information Technology (CS & IT)                                              61 

 

 
 

Figure 1.  A Sample Application Flow in MSA 

 

4.1. Components of the Framework 
 

The Framework consists of the following components.  

 
    Table 2.  Framework Components 

 
Log Level Comments Indicator 

Logging 
Framework 

An embedded framework is installed within the MS App, 
providing functionalities for logging. 

 
Logging 

Agent 

Side Car Agent which collects logs from Apps and pushes to a 

Logging App for analysis 

 
Logging 

App 
Console 

Dashboard console which will collect all the logs and provide 

search functionalities and reporting 
 

 

4.2. Internals of the Framework 
 

Figure 2 illustrates the call trace where App1 invokes App3 using an HTTP API request. The 

Logging Framework internally stacks or buffers the log entries whenever `logger.log` statements 

are executed. In the event of a specific trigger, such as an error, the Logging Framework captures 
and logs the trace, as shown in Figure 3, both to a local log file and in JSON format to the 

Logging App Console (Figure 4). App3 calls invokeDB(), which results in an error. This triggers 

App3 to generate JSON data, send it to the logging agent, and log the information. The 
framework captures all logged data preceding the error, providing a complete call stack, which 

facilitates easier debugging.  

 

As the control returns to App1, as shown in Figure 2, the error thrown by App3 is propagated 
back to App1. App1 then handles the error. While handling the error, the logging framework logs 



62                                         Computer Science & Information Technology (CS & IT) 

the stacked data from previous calls to the local log file and sends the corresponding JSON data 
to the Logging App Console via the Logging Agent.  

 

The error could be of multiple reasons. It could be database connectivity or query issues or errors 

from the interfacing app or network related issues. The call stack trace along the log stack trace 
can help reliability engineers to identify the issue.  

 

 
 

Figure 2.  MS App1 invoking MS App3 

 

4.3. Log Structure 
 

 
 

Figure 3.  Log Trace Structure 

 



Computer Science & Information Technology (CS & IT)                                              63 

 

 
 

Figure 4.  Log Trace Structure in JSON format 

 

Figure 5 shows Microservice Apps at scale. Each of the new containers are identified using the 

container id in the log file.  
 



64                                         Computer Science & Information Technology (CS & IT) 

 
 

Figure 5.  Cluster with more nodes 
 

4.4. Advantages of the Framework 
 

Easy Integration: The framework is available as a library that can be easily incorporated into 

microservice applications. It can also be set up without the need for a logging agent or an app 
console. The framework generates log entries in a predefined format that can be grouped and 

analysed effectively. 

 
Backward Compatibility: The framework can function as a traditional logger, supporting various 

log levels for flexibility. 

 

Logs Only Relevant Information: It produces only relevant log entries, minimizing unnecessary 
data and simplifying the process of issue analysis. 

 

No Complex Infrastructure Requirements: The framework does not rely on complex data analysis 
systems, machine learning models, or AIOps infrastructure for error analysis. 

 

Automatic Log Collection During Errors without log level updates: When an event such as an 
error occurs, the framework automatically collects all necessary log information from different 

systems, regardless of the current log level settings. 

 

Effective Error Localization: Developers and reliability engineers can efficiently pinpoint the 
source of errors and trace the logs back to the respective services. 

 

Reduces False Alerts: As the framework is capturing logs during errors and there is a way to 
correlate the errors from different systems using id, the number of false alerts reduces.  

 

4.5. Future Scope 
 

Further study is necessary to ensure that the framework can accommodate all potential scenarios. 

Additional testing is also required to extend the framework to support event-driven architecture. 
Once the research is complete and the results are favourable, the framework can be published to a 

centralized repository, such as GitHub, for developers to access and integrate into their 



Computer Science & Information Technology (CS & IT)                                              65 

 

microservices. Two frameworks are needed: one for the core logging framework and another for 
the logging agent. The framework can operate without the logging agent as a standard logger.  

 

5. CONCLUSIONS 
 

As microservices architecture gains traction due to its agility, scalability, and faster release 
cycles, it is crucial to develop frameworks that address some of its shortcomings. Architectural 

patterns and frameworks have been created to facilitate the adoption of microservices. However, 

the distributed nature of microservices introduces several challenges, including the difficulty of 
tracing logs across different systems. While numerous studies have explored this topic, most lean 

towards utilizing advanced technologies like AI or ML to address the issue. While the benefits of 

these technologies are undeniable, there is an urgent need for a simple framework that can be 

easily integrated with existing applications without incurring excessive resource, cost, and 
infrastructure overhead. This paper proposes an extensible framework designed to resolve issues 

associated with traditional approaches while minimizing overhead. The framework aims to 

alleviate one of the key pain points of microservices architecture, enabling companies to build 
applications more efficiently. 

 

REFERENCES 
 
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, 

‘‘Microservices: Yesterday, today, and tomorrow,’’ in Present and Ulterior Software Engineering. 

Cham, Switzerland: Springer, 2017, pp. 195–216.  

[2] J. Lewis and M. Fowler, ‘‘Microservices: A definition of this new architectural term,’’ 

MartinFowler.com, 2014, vol. 25, nos. 14–26, p. 12. 

[3] Velepucha, V., & Flores, P. (2023). A survey on microservices architecture: Principles, patterns and 

migration challenges. IEEE Access, 11, p.88339–88358. 

https://doi.org/10.1109/access.2023.3305687  
[4] Jacob, S., Qiao, Y., & Lee, B. (2021). Detecting cyber security attacks against a microservices 

application using distributed tracing. Proceedings of the 7th International Conference on 

Information Systems Security and Privacy, https://doi.org/10.5220/0010308905880595 pp. 589-595 

[5] Parker, A., Spoonhower, D., Mace, J., & Sigelman, B. (2020). Distributed Tracing in practice. 

O’Reilly Media, Inc. pp1-5 

[6] Gholamian, S., & Ward, P. A. S. (2022). A Comprehensive Survey of Logging in Software: From 

Logging Statements Automation to Log Mining and Analysis. arXiv [Cs.SE]. Retrieved from 

http://arxiv.org/abs/2110.12489 pp. 1-5 

[7] ONJava.com: An introduction to the java logging api. (n.d.). 

https://www.inf.ed.ac.uk/teaching/courses/ec/miniatures/logging-up.pdf, pp. 3-4 

[8] Zhang, S., Xia, S., Fan, W., Shi, B., Xiong, X., Zhong, Z., ... & Pei, D. (2024). Failure Diagnosis in 
Microservice Systems: A Comprehensive Survey and Analysis. arXiv preprint arXiv:2407.01710. 

[9] Pathak, D., Verma, M., Chakraborty, A., & Kumar, H. (2024, July). Self Adjusting Log 

Observability for Cloud Native Applications. In 2024 IEEE 17th International Conference on Cloud 

Computing (CLOUD) (pp. 482-493). IEEE. 

[10] dos Santos Krug, D., Chanin, R., & Sales, A. Exploring the Pros and Cons of Monolithic 

Applications versus Microservices. 

[11] L. Yu, Z. Zheng, Z. Lan, T. Jones, J. M. Brandt and A. C. Gentile, "Filtering log data: Finding the 

needles in the Haystack," IEEE/IFIP International Conference on Dependable Systems and 

Networks (DSN 2012), Boston, MA, USA, 2012, pp. 1-12, doi: 10.1109/DSN.2012.6263948.  

[12] Y. Hua, “A systems approach to effective aiops implementation,” Ph.D. dissertation, Massachusetts 

Institute of Technology, 2021. 

[13] P. Thantharate, "IntelligentMonitor: Empowering DevOps Environments with Advanced 
Monitoring and Observability," 2023 International Conference on Information Technology (ICIT), 

Amman, Jordan, 2023, pp. 800-805, doi: 10.1109/ICIT58056.2023.10226123. 

 

 



66                                         Computer Science & Information Technology (CS & IT) 

AUTHOR 
 
Renjith Ramachandran received his Bachelor's Degree in Electronics and 

Communications Technology from India and his Master's Degree in Computer Science 

from the US. He spent 12 years as a consultant, taking on various roles from Software 

Engineer to Architect, and working with clients in industries such as Telecom, Banking, 

and Insurance. He currently serves as a Solutions Architect, with research interests that 

focus on software architectures, emerging technologies, and the development of 

innovative tools and frameworks. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

©2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

 

 

https://airccse.org/

	Abstract
	Keywords
	Distributed logging, Microservices Architecture, Event Driven Architecture, Framework.


