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ABSTRACT 
 

Object detection is a pivotal technology in computer vision that detects multi-class objects 

with their localizations in an image. It can untangle the enigma of complicated scenes in 

the real world. Two main algorithms for implementing object detection are Single-Shot 

Detector (SSD) and Faster RCNN, which have unique structures of deep learning neural 

networks. This study compares two prominent object detection algorithms: SSD and Faster 

R-CNN, focusing on Intersection over Union (IoU) thresholds and runtime efficiency. 

Using COCO data sets with the validation of 2017, we evaluate the bounding box 

localization and recognition accuracy of both algorithms. By analyzing IoU thresholds and 

time efficiency, our findings offer insights into selecting optimized algorithms for different 

object detection tasks. 
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1. INTRODUCTION 
 

1.1. Differences Between Image Recognition and Object Detection 
 
Image recognition and object detection are key computer vision components with distinct goals 

and applications. Image recognition focuses on identifying a specific object or class within an 

image, typically providing a label for the entire image [1].  

 
For instance, an image might be classified as depicting a "cat" or a "dog." In contrast, object 

detection not only identifies multiple objects within a single image but also pinpoints their exact 

locations. This is typically accomplished by drawing bounding boxes around each detected 
object, enabling the analysis of complex scenes with several elements. 

 

The key challenge of object detection lies in its ability to not only classify multiple objects but 

also accurately localize them. While image recognition is concerned with assigning a label, object 
detection requires both classification and spatial information, making it more complex. The 

ability to handle varying object sizes, multiple objects, and occlusions (where objects overlap or 

are partially hidden) is critical in object detection, bringing this task closer to human-level visual 
understanding [2]. 
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1.2. Challenging Evaluation Metrics for Object Detection 
 

Evaluating object detection models is inherently more complex than image recognition. In image 

recognition, success is determined by matching the predicted label to the ground truth. Object 
detection, however, requires additional precision in the form of localization. It is not enough for a 

model to predict the correct class label; it must also place a bounding box around each object in 

the image with a high degree of accuracy [3,4,5]. 
 

One example of this challenge is in a scene with five zebras. While a model may correctly 

identify "zebra" as the class label, if the bounding boxes do not accurately correspond to the 

location of the zebras, the detection is considered imprecise. Therefore, both class accuracy and 
spatial accuracy are critical for robust object detection. 

 

Adding another layer of complexity is the need for exact annotations of an object's size and 
position, which can be challenging to estimate visually. To address this, metrics like Intersection 

over Union (IoU) are utilized to quantify the overlap between the predicted bounding box and the 

ground truth, providing a clear measure of localization accuracy. 
 

2. RELATED WORK 
 

In recent years, the field of object detection has advanced significantly, leading to the 

development of various models designed to enhance accuracy, speed, and applicability across 
different tasks. In this section, we explore two prominent models, Single Shot Detector (SSD) 

and Faster R-CNN, which represent the two main approaches to object detection: single-stage 

and multi-stage pipelines. Additionally, we discuss the importance of utilizing the COCO dataset 
for training and evaluating these models, as well as the metrics employed to compare their 

performance. 

 

2.1. Single Shot Detector (SSD) 
 

The Single Shot Detector (SSD) is an object detection model that employs a single-stage 
architecture. This approach enables the model to perform both object classification and 

localization simultaneously in one forward pass through the neural network. It is faster than 

multi-stage models because it avoids the need for a region proposal stage. SSD employs a base 

network, typically VGG16, which acts as a feature extractor. On top of this, SSD adds several 
convolutional layers to detect objects at different scales. These layers predict the bounding boxes 

and class scores for each object directly from the feature maps [6,7,8,9,10,11]. 

 

2.1.1. Performance and Applications  

 

SSD is widely known for its balance between speed and accuracy. Thanks to its architectural 

design, the SSD model is capable of processing images in real time. This makes it ideal for 
applications that demand rapid detection, such as autonomous driving, surveillance systems, and 

live video analysis. However, SSD tends to struggle with detecting small objects due to its single-

stage structure, where smaller objects may not be detected in lower-resolution feature maps 
[6,7,8,9,10,11]. 

 

2.1.2. Why Pytorch? 

 

The implementation of SSD in PyTorch is advantageous due to the framework’s flexibility and 

strong support for dynamic computation graphs. PyTorch is widely adopted for research and 
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development because of its ease of use, active community support, and seamless integration with 
GPU acceleration, which is essential for training large models like SSD on datasets such as 

COCO. 

 

2.2. Faster-RCNN 
 

Faster R-CNN is a multi-stage object detection model that builds on the earlier R-CNN and Fast 
R-CNN architectures. A significant innovation in Faster R-CNN is the integration of the Region 

Proposal Network (RPN). In the initial stage, the RPN generates a set of candidate object 

proposals, which are then used for further processing. The second stage of Faster R-CNN 

processes these proposals using a convolutional network to classify objects and refine their 
bounding boxes. This two-stage process allows for more precise object detection, especially for 

smaller objects and crowded scenes [12,13,14,15]. 

 

2.2.1. Performance and Applications  

 

While Faster R-CNN is slower than SSD, it offers superior accuracy, particularly in cases where 
fine-grained localization is required. This makes it well-suited for tasks where accuracy is more 

important than speed, such as medical image analysis, wildlife monitoring, and detailed video 

analytics. The multi-stage approach enables the model to handle complex scenes with 

overlapping objects, ensuring higher precision even in challenging environments [12,13,14,15]. 
 

2.2.2. Comparison of SSD and Faster-RCNN 

 
The key difference between SSD and Faster R-CNN lies in their architecture. SSD is a single-

stage detector, which optimizes speed by detecting objects directly from feature maps without a 

region proposal step. This makes SSD more efficient but less accurate for small objects and 
crowded scenes. In contrast, Faster R-CNN is a two-stage detector, first proposing regions and 

then refining the detection. This results in slower processing but higher accuracy, especially when 

dealing with complex images or small objects. 

 

2.3. COCO Datasets 
 

The COCO (Common Objects in Context) dataset is a widely used benchmark for object 
detection, segmentation, and captioning tasks. The COCO 2017 dataset is particularly important 

for training and evaluating models like SSD and Faster R-CNN due to its diversity and 

complexity. The dataset includes [16]: 
- 118,000 training images 

- 5,000 validation images 

- 41,000 test images 
Each image is annotated with objects from 91 categories, such as "person," "vehicle," and 

"animal." These categories are further grouped into 12 super-categories, including "furniture," 

"appliance," and "sports" [16]. 

 

2.3.1. Comparison Between COCO Versions 

 

COCO provides several versions (2014, 2015, 2017), with the 2017 version being widely used in 
current research due to its updated annotations and larger dataset size. The variety of objects, 

including small, medium, and large objects, as well as the crowded scenes, make COCO an 

excellent dataset for evaluating object detection models in diverse and realistic contexts [16]. 
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2.3.2. Importance of COCO for Model Evaluation 

 

COCO’s detailed annotations, which include bounding boxes, segmentation masks, and 

keypoints, allow for precise evaluation of both object localization and classification. This 

comprehensive dataset ensures that models are tested on challenging real-world scenarios, 
making it a gold standard for object detection research. 

 

2.4. Object Detection Metrics (LSVRC – Large Scale Visual Recognition Challenge) 
 

Two primary metrics are used to evaluate object detection models: runtime efficiency and 

recognition accuracy [17,18]. 
 

2.4.1. Runtime Efficiency 

 
Runtime efficiency evaluates how quickly the model can process images and detect objects. For 

real-time applications, such as autonomous driving, faster models like SSD are preferable 

because they can process more frames per second (FPS) compared to models like Faster R-CNN, 
which are slower due to their multi-stage processing [17,18]. 

 

2.4.2. Recognition Accuracy 

 
Recognition accuracy is measured using metrics like Intersection over Union (IoU), which 

calculates the overlap between predicted bounding boxes and the ground-truth annotations. 

Higher IoU thresholds indicate more precise localization. While Faster R-CNN typically achieves 
higher IoU scores, SSD may struggle with small objects due to its single-stage approach. For 

multi-object detection, achieving high IoU thresholds across multiple objects remains 

challenging, as it requires precise localization of each object in the image [17,18]. 
 

2.4.3. Application to SSD and Faster R-CNN 

 

Both SSD and Faster R-CNN are evaluated based on a balance between speed and accuracy. SSD 
excels in scenarios requiring real-time detection, where small trade-offs in accuracy are 

acceptable. With its more intricate architecture, Faster R-CNN is particularly well-suited for tasks 

where accuracy is of utmost importance, such as detecting small objects or identifying items in 
crowded environments. These trade-offs between speed and accuracy should be carefully 

considered when choosing the most appropriate model for specific tasks. 

 

3. METHODOLOGIES 
 

3.1. Object Detection Metric and the IoU Measurements 
 

Object detection metrics serve to figure out two following relations, which are shown below: 
 

- Each bounding box should be mapped to the related class label. 
 

- The bounding box with the class label in ground truth annotation should be mapped to the 

related one in the model’s prediction. 
The intersection of union (IoU) is the basis for determining two relations. The IoU is derived 

from the Jaccard index, which measures the correlation between two areas. The correlation 

between the two trajectory areas is converted to an overlapping area between the vicinity. The 

bigger the value of correlation, the larger the overlapping area. The extreme case is if trajectory 



Computer Science & Information Technology (CS & IT)                                              213 

areas resemble each other, the value of IoU is 1. The other extreme case is that if two areas are 
independent of each other, the value of IoU is 0. Hence, the range of values in IoU is between 0 

and 1 [19,20,21,22,23,24,25]. 

  

In turn, the IoU equation between the ground truth annotation and the model’s prediction is 
shown below [19,20]: 

 

 
 

Even though the constant threshold of IoU is critical to evaluating recognition accuracy in object 

detection, specific IoU values vary in different literatures. In [26], the constant thresholds of IoU 
are 0.26, 0.27, 0.49, 0.59, 0.65 and 0.66. In [27], the constant thresholds of IoU are 0 and 0.125. 

In [28], the constant thresholds of IoU are 0.38, 0.56, 0.67 and 0.76. However, we will propose 

the suggested constant thresholds for the explanations in the experiment.  
 

3.2. Case Studies of TP, FP, FN, and TN 
 
Another four important indexes of object detection metrics are TP, FP, FN, and TN, with the 

definition shown below [19,20]: 

- TP: Truth Positive 

- FP: False Positive 

- FN: False Negative 

- TN: Truth Negative 

Next, by using COCO data sets, four metric indexes are redefined [19,20]: 

 

- TP: The set bounding box makes the overlapping area greater than the iou threshold, and the 

predictive class label is the same as the COCO annotation. 

 

- FP: The set bounding box makes the overlapping area less than the iou threshold, even 

though the predictive class label is the same as the COCO annotation. 

 

- FN:  the set bounding box in prediction is independent of the bounding box in ground truth, 

no matter whether the class labels between the prediction and the COCO annotation are the 

same. 
 

- TN: The set bounding box makes the overlapping area greater than the iou threshold, but the 

predictive class label differs from the COCO annotation. 
As an illustration, the image in the COCO 2017 validation, “000000000885.jpg” [16], is 

deployed to explain the four redefined metrics, shown in Fig.1-4.  
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Fig.1 The Case of TP with COCO Image, “000000000885.jpg” 

 

In Fig.1, the red bounding box in the model’s prediction fits well with the COCO ground truth in 
green. Meanwhile, the red label annotation in the model’s prediction, “person”, is the same as the 

COCO annotation in green.  

 

 
 

Fig.2 The Case of FP with COCO Image, “000000000885.jpg” 

 

In Fig.2, the red bounding box in the model’s prediction is not big enough to cover the COCO 
ground truth in green, even though the red label annotation in the model’s prediction, “person”, is 

the same as the COCO annotation in green. This means that the performance of the model’s 

prediction is weak.  
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Fig.3 The Case of FN with COCO Image, “000000000885.jpg” 

 

Fig.3 shows no overlapping area between the red bounding box in the model’s prediction and the 
COCO ground truth in green. There is no correlation between the prediction and the ground truth, 

no matter whether the red label annotation in the model’s prediction, “person,” is the same as the 

COCO annotation in green. In this case, we do not need to consider the iou.  

 

 
 

Fig.4 The Case of TN with COCO Image, “000000000885.jpg” 

 
In Fig.4, although the red bounding box in the model’s prediction fits well with the COCO 

ground truth in green, as the red label annotation in the model’s prediction, “sheep,” is different 

from the COCO annotation in green, “person,” it loses its meaning when calculating the iou. 
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3.3. Proposed Recognition Accuracy 
 

The recognition accuracy is proposed and measured, which is shown below. 

 

3.3.1. Proposed_AP(Average Precision) 

 

Given an object in the COCO data set, the total number of bounding boxes in the model’s 
prediction is related to average recognition precision if the IoU is greater than the IoU threshold. 

The IoU threshold, as a constant between 0 and 1, is empirical data that determines the object 

detection metrics [19,20].  

 

3.3.2. Proposed_mAP (mean Average Precision) 

 
Based on the proposed_AP, the equation of the proposed mAP is shown below [19,20]: 

 

 
 

3.4. Pseudo Algorithm for Single Shot Detector 
 

The pseudo-code for object detection is shown below in Tab.1: 

 
Table 1.  The pseudo-code for Single Shot Detector. 

o Import libraries to support object detection 

o Get a pre-trained model of Single Shot Detector 

o Initialize class label, iou_threshold, bbox_groundTruth, bbox_prediction, 

counter_groundTruth and counter_prediction 

o Outer loop in different sizes of images 

 Fetch data frame of ground truth annotation in COCO_2017 validation 

 Fetch the total number of bounding boxes per image in ground truth annotation 

 Fetch the total number of bounding boxes per image per class object in ground 
truth annotation 

o Inner loop in the total number of bounding boxes per image in ground truth 

 Get the same number of bounding boxes in the model’s prediction 

o The 3rd loop in the total number of bounding boxes per image per class object in 

ground truth 

 Compare class labels between the ground truth annotation and the model’s 
prediction 

 If the comparison is the same, calculate the iou between the ground truth 

and the model’s prediction 

 If iou is over the iou threshold, counter_prediction increments 

o End loop 

o End loop 

o End loop 

o Calculate the recognition accuracy 
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3.5. Pseudo Algorithm for Faster-RCNN 
 

The pseudo-code for Faster RCNN is similar to that for Single Shot Detector. The difference is, 

however, in the pseudo-code for Faster RCNN, inside the “Outer loop in different sizes of 
images”, the operation of “Fetch the total number of bounding boxes per image per class object in 

ground truth annotation” is replaced with the operation of using a threshold to get the total 

number of bounding boxes in the model’s prediction. In turn, the inner loop is repeated based on 
the total number of bounding boxes in the model’s prediction, rather than the total number of 

bounding boxes per image in ground truth. 

 

4. EXPERIMENTS 
 

4.1. Parameters in the Pre-trained Models 
 

The experiment is conducted to leverage the evaluation of object detection between Single-Shot 
Detector and Faster RCNN. To implement the experiment, two pre-trained models of Single-Shot 

Detector and Faster RCNN are utilized with the support of Pytorch. As SSD is based on VGG16 

with the structure of scale jittering, different scales used for training the SSD are [0.07, 0.15, 
0.33, 0.51, 0.69, 0.87, 1.05]. In addition, the total number of parameters, including hyper-

parameters, is 35641826. On the other hand, Faster RCNN is based on the Resnet50 as its basic 

structure, and the total number of parameters used for training the model is 41755286. 
 

4.2. Constant IoU thresholds and COCO 2017 validation 
 
Using COCO data with the 2017 validation as image sets, several constant thresholds of the IoU 

are trialed for object detection performance. The constant thresholds of the IoU are selected from 

the evenly normal distribution. Hence, the constant thresholds of the IoU used in the experiment 
are 0.25, 0.5, 0.75, and 0.9. Besides, eight class categories with high occurrences in COCO data 

sets are selected for object detection evaluation. The eight class categories in COCO data sets are 

“person”, “car”, “horse”, “tennis racket”, “cup”, “pizza”, “dining table”, and “laptop”. 

 
Besides, the configurations of implementing both SSD and Fatser-RCNN for object detection, are 

the graphic card - RTX 3060, and GPU usage for running the pre-trained model.  

 

5. EXPERIMENTAL RESULTS AND ANALYSES 
 

The experiment results and analyses are shown in Tab.2-5. 

 

5.1. The Experiments with Constant Threshold – 0.25 
 

The experiments with a constant threshold – 0.25 are conducted using both SSD and Faster-
RCNN. The results are shown in Tab.2. 

 

In Tab.2, our findings are shown below: 

 For running time efficiency, with the unit-second, different categories in Single Shot Detector 

are in Column Three, and Faster RCNN are in Column Six. On average, the Single Shot 
Detector is quicker seven times than Faster RCNN.  

 

 In each algorithm, given the class category and the total number of per-class category 

bounding boxes in ground truth, recognition accuracy results from the total number of 
bounding boxes in prediction divided by the bounding boxes in the ground truth.  
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 The red and bold row of the bounding box number of prediction indicates the principle of the 
pre-trained model is not the case that will occur in the real applications, because the bounding 

box number of prediction must not be beyond the bounding box number of COCO annotation 

as the maximum. Therefore, if the bounding box number of prediction is red and bold, the 

recognition accuracy is not taken into account.  
 

 With the iou_threshold - 0.25, Single Shot Detector outperforms Faster RCNN because 

Single Shot Detector has fewer rows with red and bold digits than Faster RCNN. However, 

the row with red and bold digits, which violates the regulation between prediction and the 
ground truth, indicates incorrect prediction or inappropriate bounding boxes in the prediction. 

As a result, the Single Shot Detector with fewer rows of red and bold digits is superior to 

Faster RCNN when iou_threshold is 0.25. 
 

 Consider the cause of the row with the red and bold digit where the total number of bounding 

boxes in prediction is greater than that in the ground truth annotation. The small value of the 

iou threshold as a gatekeeper will not be selected out but filtered in a lot of bounding boxes 

as the model’s prediction, where there may include the bounding boxes the ground truth 
annotation judges as FP. The bounding box's combination of TP and FP in prediction would 

be greater than sorely TP in ground truth annotation.  

 
Table 2.  Performance comparison between SSD and Faster-RCNN with constant threshold - 0.25. 

 
Class 

Category 

bbox of 

ground 

truth 

Single Shot Detector Faster RCNN 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

person 11004 1117.65 24383 X 7540.19 30626 X 

car 1932 1039.78 2546 X 7462.88 3429 X 

horse 273 1031.48 358 X 7676.19 425 X 

tennis 

racket 

225 1028.81 147 65.33 7367.42 241 X 

cup 899 1039.59 600 66.74 7001.41 1222 X 

pizza 285 1033.72 214 75.09 6988.11 86 30.18 

dining 

table 

697 1040.03 532 76.33 6994.75 713 X 

laptop 231 1031.83 160 69.26 9474.77 244 X 

 

5.2. The Experiments with Constant Threshold – 0.5 
 

The experiments with a constant threshold – 0.5 are conducted using both SSD and Faster-
RCNN. The results are shown in Tab.3. 

 

In Tab.3, our findings are shown below: 

 Compared with Tab.1, Tab. 2 has fewer red and bold rows, indicating better performance in 
iou_threshold with 0.5. 

 

 For time efficiency, approximately, running SSD for object detection is seven times quicker 

than Faster-RCNN.  
 

 As to recognition accuracy, given the class objects – “car,” “horse,” “dining table,” and 

“laptop,” the principle of SSD resembles Faster-RCNN, because their difference in 
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recognition accuracy is no greater than 10%. Given the class objects – “tennis racket” and 
“cup”, SSD is inferior to Faster-RCNN, because their difference in recognition accuracy is at 

least greater than 20%. Given the class objects – “pizza”, SSD is superior to Faster-RCNN, 

because their difference in recognition accuracy is at least greater than 40%. 

 

 Consider the cause of the row with the red and bold digit where the total number of bounding 
boxes in prediction is greater than that in-ground truth annotation. For object detection, 

multi-class categories’ small areas may cause the wrong FP bounding boxes. If multiple class 

categories exist in an image, all areas of the bounding box of prediction, the bounding box of 
ground truth, and their IoU (if their intersection is not zero) will be very small and sensitive. 

This means that a small variation from one iou threshold to another will make a huge 

difference in the ratio of TP bounding boxes to the FP in the model’s prediction, which will 
cause imprecise recognition accuracy.  

 
Tab.3: performance comparison between SSD and Faster-RCNN with constant threshold - 0.5. 

 
Class 

Category 

bbox of 

ground 

truth 

Single Shot Detector Faster RCNN 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

person 11004 1094.6 15752 X 7297.72 16339 X 

car 1932 1041.43 1585 82.04 7115.42 1784 92.34 

horse 273 1035.47 270 98.9 7077.43 246 90.11 

tennis 
racket 

225 1034.47 115 51.11 7388.36 158 70.22 

cup 899 1039.74 472 52.5 6917.97 729 81.09 

pizza 285 1032.74 157 55.09 6885.71 38 13.33 

dining 

table 

697 1049.46 337 48.35 6907.61 273 39.17 

laptop 231 1037.31 122 52.81 6867.72 151 65.37 

 

5.3. The Experiments with Constant Threshold – 0.75 
 

The experiments with a constant threshold – 0.75 are conducted using both SSD and Faster- 

RCNN. The results are shown in Tab.4. 
 

Tab.4: performance comparison between SSD and Faster-RCNN with constant threshold - 0.75. 

 
Class 

Category 

bbox of 

ground 

truth 

Single Shot Detector Faster RCNN 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

person 11004 1170.71 10835 98.46 7068.67 10138 92.13 

car 1932 1032.27 1030 53.31 6816.29 1016 52.59 

horse 273 1026.33 190 69.6 6789.46 170 62.27 

tennis 

racket 

225 1044 68 30.22 8771 104 46.22 

cup 899 1061.03 346 38.49 6790.68 476 52.95 

pizza 285 1034.4 125 43.86 6824.04 23 8.07 

dining 

table 

697 1035.14 212 30.42 6803.06 122 17.5 

laptop 231 1043.53 105 45.45 6767.64 110 47.62 

 

In Tab.4, our findings are shown below: 
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 As there is no red and bold row, the constant iou_threshold - 0.75,  can guarantee recognition 

accuracy, avoiding imprecise cases.  
 

 For time efficiency, running SSD for object detection is probably seven times quicker than 

Faster-RCNN.  

 

 As to recognition accuracy, given the class objects – “person”, “car”, “horse” and “laptop”, 

the principle of SSD resembles Faster-RCNN, because their difference of recognition 
accuracy is no greater than 10%. Given the class objects – “tennis racket” and “cup”, SSD is 

inferior to Faster-RCNN, because their difference in recognition accuracy is at least greater 

than 10%. Given the class objects – “pizza” and “dining table”, SSD is superior to Faster-
RCNN, because their difference in recognition accuracy is at least greater than 10%. 

 

5.4. The Experiments with Constant Threshold – 0.9 
 

The experiments with a constant threshold – 0.9 are conducted using both SSD and Faster-

RCNN. The results are shown in Tab.5. 

 
Tab.5: performance comparison between SSD and Faster-RCNN with constant threshold - 0.9. 

 
Class 

Category 

bbox of 

ground 

truth 

Single Shot Detector Faster RCNN 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

running 

Time 

(second) 

bbox 

Of 

predict 

recognition 

accuracy 

(%) 

person 11004 1116.82 7627 69.31 8429.98 5762 52.36 

car 1932 1011.38 668 34.58 7431.84 518 26.81 

horse 273 1015.4 112 41.03 6914.48 74 27.11 

tennis 

racket 

225 927.07 27 12 7017.67 35 15.56 

cup 899 948.39 210 23.36 7888.9 246 27.36 

pizza 285 940.65 72 25.26 7677.99 4 1.4 

dining 

table 

697 926.87 122 17.5 6768.92 56 8.03 

laptop 231 945.24 38 16.45 6728.89 53 22.94 

 
In Tab.5, our findings are shown below: 

 

 As there is no red and bold row, the constant iou_threshold – 0.9 can guarantee recognition 

accuracy, with avoidance of imprecise cases.  
 

 For time efficiency, running SSD for object detection is statistically seven times quicker than 

Faster-RCNN.  

 

 As to recognition accuracy, given the class objects – “car”, “tennis racket”, “cup”, “dining 
table” and “laptop”, the principle of SSD resembles Faster-RCNN, because their difference in 

recognition accuracy is no greater than 10%. Given the class objects – “person”, “horse” and 

“pizza”, SSD is superior to Faster-RCNN, because their difference in recognition accuracy is 

at least greater than 10%. 
 

 Compared with Tab.2-4, the recognition accuracy of both algorithms in Tab.5 is lower. This 

means that, when iou_threshold increases, the recognition accuracy of both algorithms 

decreases.  
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CONCLUSIONS 
 
The conclusions are drawn, which are shown below: 

 The advantage of choosing the constant iou_thresholds is simplifying the computation in 

implementing both algorithms.  

 

 The selection of constant thresholds is tricky for object detection performance, because the 

iou_threshold determines both performance evaluation stability and recognition accuracy. In 
the first placement, the small value of the iou_threshold, which filters in more predictive 

cases, will intrigue the unstabilized performance evaluation because the predictive cases may 

include both TP and FP cases. In the second placement, the large iou_threshold will ensure 
stability in the performance evaluation. Nonetheless, it narrows down the possibility of 

recognition accuracy because the iou_threshold is inversely proportional to recognition 

accuracy. 

  

 For object detection, using COCO 2017 validation, SSD is proven to be more optimized than 
Faster-RCNN. It is because that SSD is testified to be more efficient than Faster-RCNN and 

that SSD provides more performance evaluation stability than Faster-RCNN.  

 

 When the data sets are scalable, like COCO data with 2017 training sets, the question of 
which algorithm, either SSN or Faster-RCNN, is optimized for object detection still awaits 

the answer.  
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