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ABSTRACT 
 

The discovery of new materials has been a protracted and labor-intensive endeavor, relying on 
iterative trial-and-error methodologies. Recently, materials informatics has been transforming 

this process by employing advanced data science and computational tools to expedite the 

discovery of novel materials, such as generative design material formulas, and predict material 

properties. However, predicting crystal three-dimensional structures remains a challenging task 

rooted in both the fundamental nature of materials and the limitations of current computational 

methods. Inspired by the power and success of artificial intelligence (AI) models, especially the 

deep learning techniques and natural language processing (NLP) algorithms, we consider 

capturing complex atom descriptions and relationships as text information and explore whether 

we can use the ability of language models to predict atomic coordinates. In this work, we 

explore multiple text generation models and employ the Longformer-Encoder-Decoder (LED) 

model to construct preliminary crystal structures based on detailed atom descriptions. 
Subsequently, these structures are further refined by a random forest regressor, which 

generates the final crystal configurations. Our experiments show this method excels in 

capturing the intricate atom relationships and effectively translating these associations into the 

specified crystal formats. We also focus on optimizing data representation for both atom 

descriptions and crystal structures and use clear metrics to evaluate accuracy and stability. Our 

results indicate that this method has promising potential and could improve the prediction of 

material crystal structures. Our source code can be accessed freely at 

https://github.com/RMaarefdoust/Crystal-Structure-Prediction. 
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1. INTRODUCTION 
 

TMaterials play a crucial role in driving technological progress and innovation. By developing 

new materials with specific properties, scientists can create new products or improve the 
performance of existing ones to address a wide range of challenges. However, traditional 

methods of designing and developing novel materials are a time-consuming, labor-intensive 

process that relies heavily on iterative trial-and-error experimentation, or even intuitive insights, 

such as Density Functional Theory (DFT) calculations [1], which is a quantum mechanical 
modelling method to investigate the electronic structure of many-body systems, especially in 
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atoms. The emerging material informatics is set to revolutionize the traditional paradigm, 
leveraging the powerful synergy between data science and computational tools [2]. This 

innovative subject integrates machine learning and deep learning techniques with extensive 

datasets. Material informatics not only accelerates the discovery and selection of materials but 

also enables a more profound analysis of a vast array of materials data. Consequently, researchers 
gain deeper insights into the behavior of materials, facilitating swifter and more informed 

decision-making throughout the development cycle. 

 
Materials informatics has significantly advanced in generating new chemical formulas and 

predicting material properties [3]. Despite these advances, accurately predicting crystal three-

dimensional structures remains challenging. This difficulty primarily arises from the need to 
model the orderly arrangement of atoms within a lattice. The complexity inherent in this research 

is further exacerbated by the diverse range of interatomic forces involved, including ionic, 

covalent, metallic, and van der Waals forces, among others [4]. The intricate interplay of these 

forces substantially complicates the prediction of how atoms will organize themselves into a 
stable and coherent structure. As artificial intelligence models become increasingly powerful, 

researchers are increasingly utilizing deep learning models, machine learning algorithms and 

evolutionary algorithms to improve the accuracy of crystal structure prediction [5]. For example, 
Chen et al. proposed the GN-OA [6] model which utilizes graph networks to optimize crystal 

structures with atomistic potentials. M3GNet [7] was trained on the massive database of 

structural relaxations performed by the Materials Project [8] over the past ten years and has broad 
applications in structural relaxation, dynamic simulations and property prediction of materials 

across diverse chemical spaces. These studies have advanced the progress in crystal structure 

prediction, but there are extensive opportunities for further exploration and discovery. 

 
Inspired by the notable success of natural language processing algorithms, our study explores the 

intriguing possibility of transforming complex atomic descriptions and relationships into textual 

data. This approach aims to leverage the sophisticated predictive capabilities of text models to 
predict atomic coordinates. To this end, we evaluate various NLP generation models to assess 

their efficacy and performance in predicting atomic coordinates within specific material 

formulas. For instance, we investigate the classic Long Short-Term Memory (LSTM) method [9], 

the emerging and popular BART [10] and Sentence-BERT (SBERT) [11], etc. Our findings 
highlight the Longformer [12] as particularly adept for crystal structure prediction tasks, 

especially beneficial in processing extensive documents that require maintaining context across 

expansive text spans. The Longformer’s efficient attention mechanism, coupled with its 
proficiency in handling lengthy sequences and its robust encoder-decoder architecture, makes it 

an exemplary tool for this advanced application. 

 
In this paper, we introduce a new approach to predict material structures with advanced 

computational models with a focus on deep learning techniques tailored for text generation. The 

cornerstone of our approach is to augment traditional methods by integrating natural language 

processing algorithms. This integration enables us to accurately model complex atomic 
relationships and predict crystal structures with enhanced precision and efficiency. Our 

overarching aim is to propel the field of materials science forward by applying these innovative 

computational strategies, thereby opening new avenues for research and practical application in 
material analysis, novel material discovery and material design. 

 

2. RELATED WORKS 
 

2.1. Prediction of Material Crystal Structures 
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Ryan et al. [13] applied deep neural networks to analyse a large collection of crystallographic 
data from crystal structure repositories. In their study, multiperspective atomic fingerprints were 

used to describe coordination topology, which allowed them to distinguish chemical elements and 

identify structurally similar atomic sites, revealing trends that can be related to the periodic table. 

Furthermore, this model predicted the likelihood of forming new compounds with a high degree 
of accuracy, demonstrating its potential to assist in the discovery of new materials, particularly 

those containing a variety of chemical elements. 

 
The CALYPSO was developed for predicting stable or metastable crystal structures, addressing 

the challenge of determining structures based solely on chemical compositions and external 

conditions like pressure. By employing a particle swarm optimization algorithm along with 
techniques such as symmetry constraints, a bond characterization matrix, and a penalty function, 

CALYPSO enhances structural diversity and avoids premature convergence. These 

advancements have demonstrated high efficiency and success in various systems. By leveraging 

these innovative techniques, CALYPSO can accurately predict crystal structures, making 
significant advances in the field of material behavior at the atomic level [14]. 

 

2.2. Text Generation 
 

Text generation has been revolutionized by deep learning, particularly with the rise of pre-trained 

language models (PLMs). Recurrent Neural Networks (RNNs), Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), Bidirectional RNNs (BRNNs), and Convolutional Neural 

Networks (CNNs) are commonly used in text generation models [15], while BART and SBERT 

have shown promising results in various text generation tasks. 
 

The T5 (Text-to-Text Transfer Transformer) [16] is a flexible model for tasks like classification 

and summarization. Pretrained on the C-4 1 dataset using a method similar to BERT, T5 is fine-
tuned in the PoinT-5 [17] methodology to rephrase extracted sentences into brief, informative 

summaries. The T5 tokenizer prepares input and output sequences, enabling the model to convert 

narrative sentences into clear and concise summaries, enhancing precision and informativeness in 

financial narrative summarization.  
 

Unlike traditional Transformer models, which struggle with long sequences due to the quadratic 

complexity of self-attention, the Longformer employs an attention mechanism that scales linearly 
with sequence length. Therefore, it can handle documents containing thousands of tokens without 

truncation or chunking. The model combines local windowed attention with task-motivated 

global attention, enabling it to capture local context and long-range dependencies. The 

Longformer has demonstrated state-of-the-art results in various tasks, including reading 
comprehension, classification, and summarization, outperforming models like RoBERTa on long 

document tasks. Furthermore, the Longformer-Encoder-Decoder (LED) variant extends the 

model to support generative sequence-to-sequence tasks. The Longformer’s efficient attention 
mechanism and its ability to process long documents in a single pass make it a powerful tool for a 

wide range of natural language processing applications [12]. 

 
However, T5 was found to be too large for our specific needs, necessitating the use of a smaller 

pre-trained model. Therefore, we opted for the Longformer Encoder-Decoder due to its efficient 

attention mechanism and suitability for handling long documents. This choice allowed us to fine-

tune and train model effectively for summarizing financial reports. 
 

2.3. Longformer-Encoder-Decoder (Led) 

                                                        
1 https://www.tensorflow.org/datasets/catalog/c4 
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The Longformer is highly suitable for text generation tasks, particularly for long documents, due 

to several key factors. As a result of its efficient attention mechanism, processing of longer texts 

does not require significant computational resources. By combining local windowed attention 

with task motivated global attention, the Longformer effectively focuses on relevant parts of the 
input while capturing the broader context. Regarding sequence-to-sequence tasks, the 

Longformer-Encoder-Decoder variant is ideal for summarizing and translating content due to its 

encoder-decoder architecture and efficient attention pattern. The Longformer has achieved state-
of-the-art results in long document tasks, such as the arXiv summarization dataset, showcasing its 

effectiveness in generating coherent and contextually relevant text. In addition, it can be pre-

trained on large corpora and fine-tuned for specific tasks, leveraging large datasets to learn 
general language patterns. Due to its ability to process long documents without truncating or 

chunking, it is a powerful tool for text generation when maintaining context is important [12]. 

 

Recent advancements in natural language processing have significantly benefited from the 
development of transformer-based models, particularly in handling long document tasks such as 

question answering and summarization. However, the self-attention mechanism in traditional 

transformers poses challenges due to its quadratic computational complexity concerning 
sequence length. Several models have been proposed to address this issue, including Longformer, 

Hierarchical Transformers, and BigBird, which present a variety of strategies that reduce 

computation costs while maintaining performance. Among these, the Poolingformer model 
introduces a novel two-level attention schema that combines sliding-window attention with 

pooling operations to process long documents efficiently. This approach not only reduces 

computational cost and memory consumption but also achieves superior performance on tasks 

such as the Natural Questions (NQ) [18] and TyDi QA [19] benchmarks, demonstrating its 
effectiveness in long document modelling [20]. 

 

2.4. Random Forest 
 

Random Forests is a powerful machine learning model that trains many decision trees on a 

dataset while also aggregating their predictions. High-dimensional data, missing values, and 
outliers are handled effectively by this ensemble method, which often only requires minimal 

hyperparameter tuning. GridSearchCV can be used to enhance performance by optimizing 

hyperparameters. The Random Forest method involves making bootstrapped samples, selecting 
random features to decrease overfitting, constructing multiple decision trees, and combining their 

outputs. Hyperparameters like the number of trees and tree depth can be adjusted during 

customization. GridSearchCV was used to improve these parameters and select the most 

appropriate model for each machine learning approach. The model’s performance can be 
improved by choosing the correct values for these hyperparameters. Although there are some 

drawbacks, such as the high training time for large datasets, Random Forests are versatile and 

effective for various predictive tasks. The combined use of Random Forests and GridSearchCV 
for heart disease prediction contributes to the advancement of machine learning applications in 

healthcare and aims to enhance patient outcomes globally [21]. Additionally, the use of 

GridSearchCV to fine-tune hyperparameters has been shown to improve performance in 
predictive tasks, though it may increase training time for large datasets [22]. 

 

3. METHODS 
 

We propose a novel approach to material crystal structure generation by employing natural 
language processing techniques, as shown in Fig. 1. Our method utilizes an LED model to 

generate crystal structures based on an input string representing the material’s atoms. The LED 
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output is then processed by a random forest regressor to predict the final crystal structure in the 
desired format. As a result of this. approach, it is possible to capture complex relationships 

between atoms through the NLP model, while the random forest regressor can be used to map 

between the LED decoder representation and the structured crystallographic data. However, 

successful implementation requires careful consideration of data representation for both atom 
strings and crystal structures, along with the specific role of the regressor in capturing spatial 

relationships. The evaluation metrics will be crucial for assessing the accuracy and stability of the 

generated crystal structures. 
 

 
 

Figure 1. The framework of our method. Initially, we undertake the pre-training of the 
Longformer-Encoder-Decoder model using a subset of the training dataset. This step allows the 

model to assimilate the fundamental patterns of crystal atomic coordinates. Subsequently, the 

pre-trained LED model is employed to generate preliminary atomic coordinates. These initial 
coordinates are then refined through a random forest regressor, which fine-tunes them to enhance 

predictive accuracy. In the subsequent stage, we deploy our custom-tailored LED models on a 

test dataset to assess their performance and to generate the final predicted crystal structures. This 

two-tier steps not only ensure the precision of the predictions but also establish a robust 
framework for effectively modeling and predicting complex crystal structures. 

 

3.1. Enhancing Random Forest Regression With Gridsearchcv 
 

A Random Forest Regressor is an ensemble learning method used for regression tasks that 

consists of constructing numerous decision trees during the training. By averaging predictions for 
all trees, the algorithm improves accuracy and reduces overfitting. Each tree is built from a 

random subset of the training data, considering a random subset of features during splits, 

ensuring robustness and generalization. GridSearchCV, a robust hyperparameter tuning method, 
optimizes machine learning models by exhaustively searching through a specified parameter grid 

[22]. 

 

3.2. Dataset 
 

The Materials Project is an open resource, providing freely accessible data to all interested 
parties. To facilitate efficient and large-scale data retrieval, the platform offers bulk download 

options. Recognizing that manual downloading can be a slow and labor-intensive process, the 

Materials Project provides an Application Programming Interface (API). This API enables users 

to download data seamlessly using popular programming languages.  
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We used the Materials Project API to collect approximately 10,000 CIF files2 from their website. 
This approach not only streamlines the data acquisition process but also aligns with the Materials 

Project’s commitment to providing accessible and user-friendly access to their extensive dataset. 

The data distribution and splitting details for the evaluation runs are summarized in Table 1. The 

first run utilized 4,900 LED data points with another split of 1053 points for the test and train 
datasets, as well as a smaller test set consisting of 71 points. As in Run 1, Run 2 involved a larger 

set of 8,826 LED data, the same allocation of 1,053 points for the test and train datasets, and 71 

points for a smaller test set. These consistent data split across both runs ensure a balanced and 
systematic approach to model training and evaluation, providing a robust foundation for 

performance comparison and analysis.  

 
Table 1.  Data Points Per Splits. 

 

 
 

3.3. Evaluation Metrics 
 

Our research focused on two important measures: training and validation loss. Our training loss 

reflects how well our model learns from the data it encounters during training. By measuring 
validation loss, we can determine whether the model continues to perform well on new data that 

it has not encountered previously. Keeping an eye on both of these measures enabled us to ensure 

our model learned well from the training data as well as handled new materials accurately. 

 

4. RESULTS 
 

In our research, we used the Longformer-Encoder-Decoder model, a type of advanced text 

generation model, to improve the prediction of material structures. Our approach involves 

inputting data about the elemental composition and sequence of materials into the model, 
allowing it to learn complex patterns and relationships. After training, we tested the model on a 

separate dataset to predict material structures. Our method provides a clear and effective 

framework for predicting material structures, using advanced AI models to advance materials 
science. 

 

LED is suitable for tasks that require handling long documents, offering improvements in 
attention mechanisms. As depicted in Fig 2, the training loss decreases from 0.716 to 0.314 and 

validation loss from 0.349 to 0.329 over the first six epochs, then both losses stabilize around 

these values for the remaining epochs. 

                                                        
2 https://next-gen.materialsproject.org/materials 
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Figure 2. First LED Train and validation loss for 10 epochs for 4900 materials 

 

As shown in Fig 3, both training and validation losses decrease over 10 epochs, with training loss 
reducing from 0.772 to 0.516 and validation loss from 0.566 to 0.515. 

 

 
 

Figure 3. Second LED Train and validation loss for 10 epochs for 8826 materials  

 

The evaluation results presented in Table 2 highlight the performance of two different runs. For 

Run 1, the Mean Squared Error (MSE) for the training set is 0.088, while the test set MSE is 
slightly higher at 0.098. This indicates a relatively low error in both the training and testing 

phases, suggesting good model performance. Similarly, Run 2 shows a training set MSE of 0.087 

and a test set MSE of 0.096, demonstrating consistent results across both runs. Both runs 
involved fitting 405 folds, indicating a thorough cross-validation process to ensure robust and 

reliable evaluation. These metrics suggest that the models are well-fitted and have good 

generalization capabilities, as evidenced by the close values of the training and test MSEs. 
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Table 2. Evaluation Results. MSE indicates the mean square error. 

 

 
 

Table 3.  Selected Parameters Values after Grid Search. 

 

 
 

In our work, we employed GridSearchCV from scikit-learn [23] to fine-tune the hyperparameters 

of the Random Forest Regressor. We performed cross-validation to find the optimal setting for 

both runs by defining a grid with various values for the following: 

 
• #trees: Number of trees in the forest 

 

• Depth: Maximum Depth of each tree 
 

• SS: Minimum Samples required to Split a node 

 

• SL: Minimum Samples required to be at a Leaf node 
 

The optimal configurations for these parameters were evaluated and determined by two separate 

runs through systematic cross-validation [21], detailed in Table 3, which displays the values of 
the parameters after grid search. These finely tuned parameters highly improved the accuracy of 

our model, achieving an impressive MSE of 0.083 on the test dataset, which demonstrates the 

effectiveness of GridSearchCV in refining model performance. 
 

5. CONCLUSIONS 
 

Although our method successfully uses the Longformer-Encoder-Decoder (LED) model and a 

random forest regressor to predict material crystal structures, there are still several areas where 
we can explore and improve. The model's inability to handle novel or highly complex atomic 

configurations may be hampered by its reliance on predefined atomic descriptions as input 

strings. The model's generalizability to a wider range of materials and crystal structures could be 
enhanced by integrating dynamic input representations that adapt to diverse atomic systems in 

future work. 

 

Moreover, while a random forest regressor can be effective in refining atomic coordinates, it 
could be more advantageous to experiment with other predictive models. Deep learning-based 

regressors, ensemble models, or hybrid approaches can provide better accuracy, scalability, and 
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computational efficiency. By capturing the intricate relationships between atomic interactions, 
this could help improve the model's ability to predict accurate crystal structures. 

 

Providing training data that is both available and of high quality is another challenge. Since the 

LED model's performance is closely tied to the diversity and accuracy of its training data, 
obtaining larger and more varied datasets will be crucial for refining predictions, especially for 

materials with complex atomic behaviors. Advancing data augmentation techniques or synthetic 

datasets should be considered for future work to overcome these limitations. 
 

Finally, while our evaluation metrics have shown promising results, it is important to address the 

robustness of the model when confronted with noisy, incomplete, or low-quality data, which can 
occur in real-world scenarios. Future research should look into more complex evaluation metrics 

that are more compatible with practical applications in materials science. We aim to improve the 

versatility and accuracy of our approach by tackling these challenges, which could potentially 

open up the possibility of predicting and discovering new material structures. 
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