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Abstract. The increasing popularity of wireless sensing applications has led to a growing demand
for large datasets of realistic wireless data. However, collecting such wireless data is often time-
consuming and expensive. To address this challenge, we propose a synthetic data generation
pipeline using human mesh generated from videos that can generate data at scale.
The pipeline first generates a 3D mesh of the human in the video and then determines the initial
synthetic Doppler of the human motion. The initial synthetic Doppler will be noisy due to the
uncertainties involved during the mesh generation. To address this, we employ a trained Structured
State Space for Sequence Modeling (S4) model to denoise the initial synthetic Doppler to match
the Doppler signature from the radar device. We validated our pipeline on synthetic Doppler data
from four hand gesture videos and found that the final synthetic Doppler closely resembles the
real Doppler, outperforming existing U-Net-based models by 36% or more. Also, with smaller set
of denoised synthetic Doppler, the gesture classification model performance increased from 89.5%
to 92.7%.
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1 Introduction

Radio frequency (RF) sensing is a promising approach that has seen a lot of
development in past decades. These sensors offer signal richness comparable
to that of microphones and cameras but without any privacy constraints. The
mmWave radar is one of those example that has seen a lot of development over the
past years. These sensors are used for presence sensing, gesture recognition, and
in various smart home applications. However, the development of AI/ML models
for RF sensing as compared to development of signal processing algorithms has
always lagged behind due to lack of data. Comparing the datasets in computer
vision or language to the available mmwave radar datasets, the radar data is very
small and limited in scope. In addition, these radar datasets are typically focused
on a specific problem that the authors are trying to solve, and thereby are not
large enough to be used to train deep learning models.

In order to advance the development of AI/ML models for RF sensing,
we need to create larger and more diverse datasets. These datasets should be
representative of the real-world environments in which RF sensors will be used.
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Fig. 1: End-to-end V2W pipeline to generate synthetic wireless signal from
videos.

Thus, in this paper we propose an AI/ML based software pipeline that can
generate wireless data (in this work we have considered FMCW radar data as
an example) from vast available videos, same on the lines of [1]. The difference
being the use case of gesture, evaluation of different mesh generation algorithms,
and denoising of the Doppler feature using Structured State Space for Sequence
Modeling (S4).

The rest of the paper is organized as follows: Section 2 outlines the synthetic
wireless signal generation in detail, Section 4 presents the results and discussion,
and finally, the conclusions are drawn in Section 6.

2 Synthetic Wireless Signal Generation

Although this method can be used to generate wireless signals for any technology,
such as Bluetooth, WiFi, and cellular, in this work, we will consider synthetic
radar Doppler signal generation at a millimeter-wave frequency of 60 GHz. To
have a comparison between real wireless signal and synthetically generated wire-
less signal, we collect videos and radar signals simultaneously with 6 subjects.
Each subject is asked to perform 4 hand gestures: i) left-to-right, ii) right-to-left,
iii) up-to-down, and iv) down-to-up for 15 seconds, with the radar and video
camera set at the same frame rate of 30 frames per second (FPS). The complete
pipeline is shown in Fig. 1.

2.1 Mesh Fitting

The first block in this pipeline is the mesh generation of the subject in a video
scene. Mesh generation is a 3D representation of the subject against a static
background. In this block, the position of all vertices of the human body in the
video is estimated by an AI/ML mesh model. This AI/ML model fits a mesh to
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the subject by estimating the human poses and outputs a human pose mesh in
each video frame.

Fig. 2: Mesh generated at different video frames for a horizontal gesture. The
frames shown are 100, 110, 120, 130, and 140, and the blue dots in the mesh
represent vertices with (x,y,z) locations. These points will be tracked in every
frame to calculate Doppler values of the gesture.

2.2 RCS and Radial Velocity Generation

To transfer the computer vision modality to the wireless domain from the meshes
generated in each frame of the video, this block will generate a radar cross-
section and create a radial velocity profile. To achieve that, the movement of
each mesh point with respect to the virtual Doppler sensor is considered. Only
the non-occluded mesh points are considered in this process. In the process,
the frame rate of the video is adjusted to produce more realistic and smoother
variations, which get translated to a radial velocity profile.

2.3 Initial Synthetic Doppler Generation

For each video frame, the determined velocity values of each mesh vertex are
mapped to 32 Doppler bins. The counts in bins 14, 15, and 16 are nullified as
they have approximately zero velocity. This step is essentially in removing any
bias that will be created from the static vertices of the body mesh. Finally, the
histogram is divided by the total number of vertices in the human mesh to get the
probability mass function (pmf) value of each bin. These values are calculated
for each frame, and the initial velocity vs. Frame heatmap is generated. The
initial velocity vs. Frame heatmap is passed through a Gaussian smoothing filter
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to generate the initial synthetic Doppler heatmap. The entire synthetic Doppler
heatmap was divided into multiple segments of size 32×72 with an overlapping
factor of 10 frames. A similar ground truth Doppler images were generated from
the real FMCW radar at 30 FPS to use during training the denoiser model.

Fig. 3: Camera axis description.

2.4 Doppler Data Augmentation with Range Synthesis

The Z-axis is the optical axis of the camera (see Fig 3) which is converted to world
coordinates in the VIBE model through weak perspective camera model. The
euclidean distance between an assumed camera position (in world coordinates)
and each mesh points (in world coordinates) provide the range for each mesh
points. The demonstration of range estimation for each mesh point shown using
pyvista toolbox. The rendered depth plot of same image at distances of 2.2m
and 6m from camera position are shown in Fig. 4a and 4b, respectively. The
intensity values shown in color bar (on the right hand side) indicate the distance
from camera position to the respective vertex. The estimated range values from
different camera position is used to adjust the intensity of the Doppler signal and
added to the synthetic dataset for training.

2.5 Denoising Encoder-Decoder

The initial synthetic Doppler data is at a very coarse level and has noise because
of non-smooth mesh point movements from frame to frame. Considering higher
radar configurations such as the number of chirps and frame rate, the dimension
of the initial synthetic Doppler can be large. Also, synthetic Doppler has a
time-dependency between historical frames and are very long and implicitly
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(a) Range at 2m (b) Range at 6m

Fig. 4: Range synthesis of generated mesh from various virtual sensor locations.

continuous. Input data with long sequences and historical dependency is more
expensive for transformer-based models and achieve sub-optimal performances.
This made us look beyond attention-based approaches and thus consider a state-
space-based model.

State Space Models A state space model contains a minimum number of
variables that fully describe a system state and make predictions of what their
next could be, depending on some input. The S4 [4] is built based on the linear
time-invariant system. The principle is that simple continuous state space Models
(SSMs) are defined by two equations—one capturing the change over time to a
hidden state x(t) and another capturing the relationship between the hidden state,
an input u(t) and an output y(t).

x′(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+ Du(t) (1)

Here, A is called the state matrix, and B, C, and D are system parameters.
For the long sequence models, the idea is to consider an SSM as a function-to-
function map parameterized by parameters A,B,C,D which are simply learned by
gradient descent.

Finding the hidden state representation, x(t) of a continuous signal is chal-
lenging, and in the digital domain, the signals are discrete (like an image, textual
sequences). To accommodate discrete-time sequences sampled with a step size
∆, a learnable parameter (based on Zero-order hold technique), the equation (1)
is modified as

x′k = Axk +Buk

yk = Cxk + Duk (2)
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The SSMs can be computed with the recurrence as

xk = Āxk−1+ B̄xk

yk = C̄xk + D̄xk (3)

Here Ā, B̄,C̄, D̄ are the parameters of the recurrent model which have simple
closed formulas in terms of the base parameters A,B,C,D.

Ā = (I−
∆

2
· A)−1(I+

∆

2
· A) (4)

B̄ = (I−
∆

2
· A)−1∆B

The linear recurrences can be explicitly computed in parallel as a convolution
with an SSM kernel K̄ to reveal a closed formula for the output y in terms of the
input u.

K̄ =
(
C̄ĀiB̄

)
i∈[L] =

(
C̄B̄,C̄ĀB̄, ...,C̄ĀL−1B̄

)
, y = K̄ ∗u (5)

This means that the entire output of the SSM is simply the (non-circular) convo-
lution of the input u with the convolution filter K̄.

S4 S4 is a particular instantiation of SSM that parameterizes Ā as a diagonal plus
low-rank (DPLR) matrix, Ā = Λ+ pq∗. This parameterization has two key proper-
ties. First, this is a structured representation that allows faster computation—S4
uses a special algorithm to compute the convolution kernel K (5) very quickly.
Second, this parameterization includes special matrices called HiPPO matri-
ces [3], which theoretically and empirically allow the SSM to overcome vanish-
ing/exploding gradients problems and allow the state x to memorize the history of
the input u. In particular, HiPPO specifies a special equation x′(t) = Ax(t)+Bu(t)
with closed formulas for A and B. The HiPPo matrix A ∈ RN×N is given by

(HiPPO Matrix) Ank =


(2n+1)1/2(2k+1)1/2, n > k
n+1, n = k
0, n < k

(6)

The input to the S4 model is the synthetic Doppler signal generated from a video,
and the output is the real Doppler signal from the radar during training. This
forces the S4 to learn to remove noise from the synthetic Doppler signal. The
structure of the S4 encoder-decoder-based denoiser model is shown in Fig 5.
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Fig. 5: S4 encoder-decoder-based synthetic Doppler denoiser model.

3 Doppler Estimation from FMCW Radar

Frequency Modulated Continuous Wave (FMCW) [5] radar is a type of radar
system that utilizes a continuous wave signal with a linearly varying frequency
to measure the range and velocity of targets .

3.1 Frequency Modulation

A key feature of FMCW radar is the frequency modulation applied to the trans-
mitted signal. In this approach, the radar transmits a continuous wave signal
with a frequency that increases linearly over time. This frequency modulation is
achieved by applying a saw-tooth or triangular waveform to the frequency of the
transmitted signal.

The rate of change of the frequency, known as the frequency sweep rate,
is determined by the frequency bandwidth B and the sweep period T . The
transmitted signal in FMCW radar can be expressed mathematically as:

f (t) = f0+
B
T

t (7)

where f (t) is the instantaneous frequency of the transmitted signal, and f0 is the
starting frequency. The frequency sweep bandwidth B and the sweep period T
are key design parameters that influence the performance characteristics of the
FMCW radar system.

3.2 Range and Doppler

The fundamental principle behind FMCW radar is the measurement of the
frequency difference between the transmitted and received signals. When the
transmitted signal reaches a target and is reflected back, the returned signal
experiences a time delay that is directly related to the distance separating the
radar and the target. This time delay ultimately gives rise to a frequency difference
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between the transmitted and received signals, a difference referred to as the beat
frequency.

FMCW radar systems possess the ability to simultaneously assess the range
and velocity of a target by analyzing the beat frequency. The range is calculated
as a function of the time delay τ between the transmitted and received signals,
and the target’s radial velocity vr is inferred from the Doppler shift fd observed
in the received signal. The range R to a target is determined using the following
equation:

R =
cτ
2

(8)

where c is the speed of light. The Doppler shift fd experienced by the reflected
signal due to the relative motion of the target is given by:

fd =
2vr

λ
(9)

where λ is the wavelength of the transmitted signal. The radial velocity vr can
then be calculated from the Doppler shift fd using the following equation:

vr =
fdλ
2

(10)

By combining the range and Doppler information, FMCW radar systems can
provide a comprehensive understanding of the target’s position and motion,
enabling a wide range of applications in areas such as transportation, security,
and environmental monitoring.

4 Results and Discussion

In this section, we will first evaluate the performance of the denoising S4 model
with real radar Doppler signal.

4.1 Comparison of Synthetic Doppler with Real Doppler

The initial synthetic Doppler generated by the pipeline is very noisy due to errors
in mesh vertex estimation and changes in the mesh vertices over time that may
not follow the real pattern. These errors can induce artificial Doppler artifacts in
the output. For training, we will use 1.5 hours of video data containing gestures
to generate the synthetic Doppler and use the real Doppler signal from the radar
as an output. The real Doppler is extracted from the FMCW radar operating at
60GHz, with 64 chirps per frame and 32 samples per chirp. The video and the
radar data were captured synchronously in a set up.
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Fig. 6: Comparison of denoised synthetic Doppler generated from different
models and the real Doppler from the FMCW radar.

Each subject was asked to perform all four gestures in random order, with
radar data being collected in parallel with the video. The coarse synthetic Doppler
were serialized and fed into a linear block to generate an embedding of 128,
followed by 4 layers of S4 filter, followed by a decoding layer to generate the
denoised synthetic Doppler. The model was trained at a batch size of 64 for 500
epochs using root mean squared error as the error metric. The generated denoised
outputs were also compared with other models, including U-Net, the training
method mentioned in [1], and using the Swin transformer [2]. Comparing the
outputs of each model, the S4 model shows the better denoising performance, and
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they are compared using the metrics mean absolute error (MAE) and standard
deviation (σ). The model performances are shown in 1.

Model MAE (m/s) σ (m/s)

S4 [4] 1.0126 1.6329

Swin Transformer [2] 1.1640 1.8734

U-Net [1] 1.5835 2.6549

Table 1: Comparison of denoiser models’ performances in terms of MAE and σ.

5 Activity Classification

We developed an AI model to classify between horizontal-swipe and vertical-
swipe using Doppler signature. We develop a classifier model with 3 classes,
horizontal-swipe, vertical-swipe, and background. The Doppler bin with a maxi-
mum intensity in a frame is extracted as an input feature.

(a) Horizontal Swipe

(b) Vertical Swipe

Fig. 7: Doppler spectrum plots for horizontal and vertical swipe gestures.
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5.1 Model Architecture

The model consists of a sequential architecture with two LSTM (Long Short-
Term Memory) layers, followed by layer normalization, a dense layer, dropout
regularization, and a final dense layer with a softmax activation function for
multi-class classification. The LSTM layers are designed to be stateful with 16
states, allowing the model to maintain its internal state between batches, which
can help it capture temporal dependencies in the input data.

5.2 Model Performance

The model was initially trained using real-radar samples. Each class has ≈ 30K
samples from real Doppler while each class has ≈ 12K samples from synthetic
Doppler.

Predicted
True Horizontal Swipe Vertical Swipe Background

Horizontal Swipe 87.3% 5.3% 7.4%

Vertical Swipe 6.8% 89.1% 4.1%

Background 3.8% 4.1% 92.1%

Table 2: Confusion matrix for the gesture recognition model (data trained with
real Doppler).

Predicted
True Horizontal Swipe Vertical Swipe Background

Horizontal Swipe 91.6% 4.0% 4.5%

Vertical Swipe 4.1% 92.2% 3.7%

Background 2.5% 3.2% 94.3%

Table 3: Confusion matrix for the gesture recognition model after training with
synthetic Doppler plus real Doppler.

The gesture recognition model was evaluated using two different training
approaches. The first confusion matrix, shown in Table 2, presents the model’s
performance when trained solely on real Doppler data. The diagonal entries in
the confusion matrix indicate the classification accuracy for each gesture class,
with the horizontal swipe achieving 87.3%, the vertical swipe 89.1%, and the
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background class 92.1%. The off-diagonal entries represent the misclassification
rates between the different classes.

To improve the model’s performance, a second approach was explored, which
incorporated both real and synthetic Doppler data during training. The confusion
matrix in Table 3 shows the results of this approach. The classification accuracy
for the horizontal swipe, vertical swipe, and background classes increased to
91.6%, 92.2%, and 94.3%, respectively, indicating that the addition of synthetic
Doppler data helped the model generalize better and achieve higher overall
performance.

These confusion matrices provide a comprehensive evaluation of the gesture
recognition model’s classification capabilities, highlighting the improvement in
the model’s performance with the synthetic data.

6 Conclusion

In this work, we have presented a novel pipeline for generating synthetic wire-
less signal data, specifically focusing on the generation of synthetic Doppler
signatures from videos. The motivation behind this approach is the growing
demand for large and diverse datasets in the field of wireless sensing and AI/ML
applications, which are often hindered by the challenges of collecting real-world
data.

The proposed pipeline consists of several key components. First, it generates
a 3D mesh representation of the human subject in the input video, tracking the
movement of the mesh vertices over time. This mesh information is then used to
calculate the initial synthetic Doppler signatures, which, as expected, are quite
noisy due to the uncertainties in the mesh generation process.

To address this issue, we employ a state-of-the-art Structured State Space
for Sequence Modeling (S4) model to denoise the initial synthetic Doppler data
and make it closely resemble the real Doppler signatures obtained from a 60GHz
FMCW radar. Our experiments show that the S4-based denoiser model outper-
forms other approaches, such as U-Net and Swin Transformer, by a significant
margin, achieving up to 36% lower mean absolute error and standard deviation.

Furthermore, we demonstrate the utility of the denoised synthetic Doppler
data by incorporating it into a gesture recognition model. The results show that
the inclusion of synthetic data, in addition to the real Doppler samples, can
improve the classification performance from 89.5% to 92.7%, highlighting the
value of the synthetic data in enhancing the generalization capabilities of the
model.

Going forward, we plan to expand the pipeline to generate synthetic data for
other wireless modalities, such as IMU and WiFi, and explore the integration
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of this approach with various wireless sensing applications, including presence
detection, activity recognition, and localization. By continuously advancing
the capabilities of synthetic data generation, we aim to empower the research
community to develop more robust and versatile AI/ML models for wireless
sensing, ultimately driving the progress of this important field.
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