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ABSTRACT 
 
This project addresses the challenge of simulating rocket landings across different 

planetary environments by using Unity ML-Agents to train AI models [1]. The reusability of 

rockets, critical for space exploration, requires precise control and adaptability to varying 

gravitational conditions. We proposed a solution combining AI-driven controls with 

interactive user input to create a flexible and realistic rocket landing simulator. The 

methodology employed machine learning to develop models capable of handling complex 

control tasks, using reinforcement learning to adapt to the distinct environments of Earth, 

Mars, and the Moon. Experiments centered on evaluating the model's ability to adjust and 

perform within each environment, analyzing how critical rocket parameters, such as mass 

and thrust, influenced performance across varied gravitational and atmospheric conditions. 

This approach provided insights into the model’s adaptability and optimization potential 
for diverse extraterrestrial applications. [2]. The most significant finding was that the AI 

performed well on Earth and the Moon but required further tuning on Mars due to faster 

descent speeds [3]. Our approach provides an engaging and educational platform for 

studying reusable rocket technology, making it a valuable tool for both academic and 

practical applications. 
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1. INTRODUCTION 
 

Reusability in space exploration has become a key focus, especially as companies like SpaceX 

have demonstrated the immense cost and time savings associated with reusing rockets [4]. 
Achieving this, however, involves sophisticated control systems that must accurately account for 

numerous variables such as fuel levels, atmospheric conditions, and thrust magnitude to ensure a 

successful landing. Current simulations, while advanced, often lack the flexibility and scalability 
to replicate these conditions across multiple celestial bodies. Our project addresses this gap by 

utilizing AI and advanced physics simulations to mimic rocket landings in different environments, 

such as Earth, Mars, and the Moon, which present distinct challenges due to their varying 

gravitational forces [5]. This issue is important as advancements in reusable rocket technology 
could drastically reduce mission costs, making space exploration more accessible in the long run 

(Reddy, 2018). Furthermore, students and researchers interested in space and AI need tools that 
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allow them to visualize and simulate these systems effectively (Hanski & Baris, 2021). By 
providing a customizable simulation environment in Unity, we aim to make reusability research 

more accessible, while pushing the boundaries of AI-driven control systems to better mimic real-

world conditions (Xue et al., 2024). Unlike previous work, our project focuses on dynamic multi-

environment simulations, which offer a more realistic platform for both AI learning and testing 
across different planetary conditions. 

 

The first methodology, discussed by Hanski and Baris (2021), used GAIL and Behavioral 
Cloning to tackle sparse reward environments in AI learning. While effective for improving agent 

performance, this method relies heavily on expert demonstrations, limiting the AI's ability to 

surpass human expertise. Our project builds on this by applying these techniques in more 
complex rocket landing scenarios across varying gravity environments. 

 

The second methodology by Xue et al. (2024) used Bayesian hyperparameter optimization and 

particle swarm optimization to fine-tune neural networks for rocket navigation. While effective at 
landing in dynamic conditions like wind interference, this approach didn’t explore multi-

environment simulations. We improved on this by utilizing Unity to simulate rocket landings on 

different celestial bodies, adding more environmental variety. 
 

The third methodology from Berta et al. (2024) employed curriculum learning to guide an AI 

through increasingly complex parking tasks. However, it only addressed static obstacles, limiting 
real-world applicability. In contrast, our project focuses on dynamic environments with complex 

multi-dimensional control, enhancing adaptability. 

 

The proposed solution is to use Unity ML-Agents to train AI models that can simulate rocket 
landings across various environments, combining human-controlled inputs and machine learning 

techniques for complex controls [6]. This method solves the problem by providing an interactive 

platform where both AI and human users can experience and engage with space exploration 
challenges, particularly rocket landings. By simulating different environments, such as Earth, 

Mars, and the Moon, the project provides a variety of real-world scenarios for users to 

experiment with, making the simulation highly flexible and educational. The AI model, trained 

with reinforcement learning, learns the optimal landing strategies for each environment, while the 
option for human control allows users to attempt these maneuvers themselves, encouraging 

learning through experimentation [7]. 

 
This solution is effective because it combines the educational aspect of simulation with the power 

of machine learning. The flexibility of Unity enables dynamic interactions and complex physics 

simulations, making it more engaging than other methods, such as static images or pre-recorded 
videos. Additionally, this method outperforms other solutions that only focus on one environment 

or lack interactive controls by offering a robust platform for both observation and hands-on 

learning. Compared to other studies that use AI models in restricted scenarios like car parking 

(Berta et al., 2024), our approach covers broader terrain with its multi-environment simulations, 
which mimic the dynamic and varying conditions encountered in space exploration, making it a 

more comprehensive tool for fostering interest in this field. 

 
In Experiment A, we tested how well our rocket model, trained in Earth’s gravity, adapted to 

other environments such as Mars and the Moon. We conducted simulations with fixed 

environmental parameters, such as gravity and drag, while keeping the same rocket control 
settings. The most significant finding was that the rocket struggled to adapt on Mars due to 

reduced atmospheric drag, causing faster descent, while on the Moon, it performed more 

efficiently due to lower gravity. Experiment B explored how varying the rocket’s physical 

properties, like mass and thrust efficiency, impacted landing success. By adjusting these variables, 
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we discovered that increased mass led to higher landing velocities, especially on Mars, while 
reduced mass improved landing control. These results highlight the sensitivity of the AI model to 

environmental conditions and rocket parameters, suggesting further training and optimization is 

necessary to enhance performance across different celestial bodies. 

 

2. CHALLENGES 
 
In order to build the project, a few challenges have been identified as follows. 

 

2.1. Reward and Punishment System 
 

One major challenge in designing the agent model for the rocket landing simulation is 

determining an effective reward and punishment system. Issues that need to be addressed include 
ensuring the rocket does not ascend when it should be descending and managing its deceleration 

appropriately. If the rocket gains altitude unnecessarily, it could receive a penalty, and if it 

decelerates toward the landing platform, it could be rewarded. Additional challenges involve 

balancing penalties for fuel inefficiency and incorrect thruster usage. A potential solution could 
involve assigning incremental rewards or penalties based on specific velocity thresholds and 

proximity to the target platform.  

 

2.2. Simulating the Physics 

 
A key component of this project is simulating the physics for different environments, such as 

Earth, Mars, and the Moon. One challenge is adjusting parameters like gravity and air resistance 

to reflect each environment accurately, which can significantly affect the rocket's behavior. For 
instance, too little or too much air resistance could make the simulation unrealistic. Ensuring the 

correct values are applied dynamically based on user input and chosen environment is critical. 

This could be resolved by allowing adjustable sliders for gravity and air resistance, which would 

directly update the physics engine in real time.  
 

2.3. Designing User-Friendly Controls 
 

Designing user-friendly controls for the rocket's movement is essential, especially if the project 

supports player control for imitation learning. The challenge is making the controls intuitive 

while still allowing for complex behaviors such as multi-directional thruster use and gradual 
thrust adjustments. Simplified key mappings (e.g., WASD for horizontal movement, R/F for 

thrust) could make control easier for users while retaining precision. Providing a visual interface 

that displays control inputs and rocket responses in real-time could further aid both player 
interaction and model training by offering immediate feedback and ease of control understanding.   

 

3. SOLUTION 
 

The main structure of our program links together three major components: the AI model, the 
simulation environment, and the UI/UX. The AI model is responsible for controlling the rocket, 

learning from its interactions, and optimizing its landing strategy through rewards and penalties. 

The simulation environment provides a realistic physics-based setting where the rocket's 
dynamics, such as gravity, thrust, and air resistance, are simulated for different planetary 

environments like Earth, Mars, and the Moon. Lastly, the UI/UX serves as the bridge between the 

user and the simulation, allowing users to interact with the program by selecting environments, 
adjusting parameters, and controlling the rocket manually if desired [8]. 
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The program flow begins with the user configuring the environment via an intuitive UI. Users 
can select a planetary setting, input initial rocket parameters (such as position, velocity, and fuel 

levels), and launch the simulation. Once initiated, the AI model takes control, employing 

reinforcement learning to monitor the rocket’s state (e.g., position, velocity) and determine the 

optimal actions for a successful landing. For an interactive experience, if user control is enabled, 
the player can use simplified key mappings to maneuver the rocket, testing their own skills 

alongside the AI’s decisions. This dual functionality allows both automated and user-directed 

testing, enhancing learning and engagement. In our simulation, the UI provides real-time 
feedback, displaying the rocket's status and environment settings. 

 

We used Unity for the physics-based simulation and environment setup, leveraging the Unity 
ML-Agents toolkit to train the AI model [9]. The UI was developed using Unity’s UI toolkit to 

ensure seamless interaction. This program design allows for both user experimentation and AI-

based training in a realistic and adjustable simulation environment. 

 

 
 

Figure 1. Overview of the solution 

 

The AI model's purpose is to control the rocket using reinforcement learning. It was implemented 
using Unity ML-Agents, and the training is based on PPO (Proximal Policy Optimization), a 

neural network algorithm [10]. The model is trained with hyperparameters like hidden units, 

layers, and a buffer size for storing experiences. The neural network learns from rewards and 
penalties to optimize the rocket's actions, aiming to successfully land it in various environments 

by adjusting thrust and rotation based on input states. 

 

 
 

Figure 2.  Screenshot of the model 1 

 

 

 
 



Computer Science & Information Technology (CS & IT)                                                     73 

 

 
 

Figure 3. Screenshot of code 1 

 

A neural network needs to be provided numerical values representing every relevant piece of data 

in the input layer to be able to make the proper decisions. The CollectObservations function in 
Unity ML Agents is a function where we can feed values such as the positions and physics of 

various objects into a VectorSensor so that the AI is given all of those numbers in the observation 

space [14]. In our training and simulations, that vector observation space has 20 data points in 
total describing both the rocket itself and its main objectives. 

 

The simulation environment provides the physics necessary for training the AI model in different 

planetary settings, such as Earth, Mars, and the Moon. It includes parameters like gravity, air 
resistance, and rocket mass based on the Falcon 9 rocket. This environment influences how the 

AI model adapts to varying conditions, allowing it to handle unique challenges in each setting, 

such as weaker gravity on the Moon or higher drag on Earth. Unity's physics engine is used to 
simulate realistic conditions that the AI interacts with during training [15]. 

  

 
 

Figure 4. Screenshot of the model 2 
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Figure 5. Screenshot of code 2 

 

The SetEnvironment method configures the physics settings for Earth, Mars, and the Moon by 

adjusting gravity and air resistance based on the selected environment. Each environment has 

specific parameters, like gravity values and skybox visuals, providing a realistic simulation 

experience. The ResetRocket method resets the rocket’s position, rotation, velocity, and other 
properties like mass and fuel. This setup ensures that each simulation begins under controlled, 

adjustable conditions. By combining environment settings with customizable rocket parameters, 

the simulation dynamically reflects different planetary conditions, impacting how the AI model 
learns and interacts with its surroundings. 

 

The UI/UX component allows users to interact with the simulation and customize parameters like 
the environment, rocket position, and velocity. It was built using Unity's UI tools, providing real-

time control over the simulation. This interface links directly with the AI model and simulation 

environment, enabling users to experiment with different settings, observe the rocket's behavior, 
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and even manually control it. It simplifies complex simulations by offering an intuitive and 
responsive way for users to visualize and modify the simulation.  

 

 
 

Figure 6. Screenshot of the model 3 

 

 
 

Figure 7. Screenshot of code 3 

 

The Heuristic method enables user control over the rocket, providing an alternative to the AI's 
autonomous control. It maps user inputs to discrete and continuous actions, such as WASD for 

directional thrust and R/F for adjusting main thrust. This method allows the player to manually 

control the rocket's movements and apply thrust in real time, emulating the AI’s decision-making 
process for imitation learning. The integration of heuristic controls provides an interactive user 

experience, allowing users to test the rocket's physics manually while receiving real-time 

feedback, bridging the gap between the user interface and the simulation environment. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 
A possible blind spot in our program is how well the rocket model, trained in Earth's gravity and 

atmosphere, adapts to different environments like Mars or the Moon. Ensuring proper adaptation 

is crucial for accurate simulation across varying planetary conditions. 
 

To test the adaptation of the Earth-trained rocket model to other environments, we’ll run 

simulations using the same AI model across Earth, Mars, and the Moon. We’ll keep 
environmental variables like gravity and air resistance fixed per celestial body but vary the same 

control parameters (thrust, fuel consumption, etc.). These parameters are initially sourced from 

the Earth environment model, while Mars and the Moon have distinct gravity and drag settings. 
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This setup allows us to observe how effectively the model adapts to new conditions and whether 
additional training in non-Earth environments is required for performance consistency. 

 

 
 

Figure 8. Table of experiment 1 

 

Upon analyzing the data, the average landing velocity on Earth was 15 m/s, while it increased to 

17 m/s on Mars and dropped to 13 m/s on the Moon. The median values followed similar patterns, 
with a few outliers on Mars where the model miscalculated the thrust due to the lower gravity. 

The lowest recorded velocity was 12 m/s on the Moon, and the highest was 20 m/s on Mars. The 

most surprising result was the rocket’s tendency to overshoot on Mars, possibly due to reduced 
drag, which wasn’t as well accounted for in the Earth-trained model. This suggests that while the 

model adapts to different environments, the performance in lower-gravity settings could benefit 

from additional specific training to improve stability. 

 

4.2. Experiment 2 
 
Another potential blind spot is how the rocket’s physical properties—such as mass, thruster 

efficiency, and shape—affect its landing performance in different environments. 

 

This experiment focuses on testing how changes in the rocket’s mass and thruster efficiency 
impact landing success across the three environments. We’ll vary the mass by ±25% of the base 

rocket’s weight and adjust the thruster’s maximum thrust in both directions by 10%. The control 

for this experiment will be the original Earth-trained model. This setup is designed to examine 
how the rocket's physical properties interact with environmental variables, testing the AI’s ability 

to account for these changes when determining thrust and trajectory in Mars and Moon landings. 
 

 
 

Figure 9. Table of experiment 2 

 

The data shows that increasing the rocket’s mass by 25% led to higher landing velocities, with 

Earth's landing velocity rising from 15 m/s to 16 m/s, and Mars reaching 19 m/s. The fuel 
consumption increased as expected, with the highest value recorded for the mass increase 

scenario. Reducing the mass led to improved control, with the lowest values recorded for the 

"Mass -25%" configuration, especially on the Moon. The highest value came from increasing 
thruster strength on Mars, which caused the rocket to ascend too quickly during final descent. 
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These results indicate that the AI model is sensitive to physical property changes, especially in 
lower-gravity environments.  

 

5. RELATED WORK 
 

In the paper by Hanski and Baris (2021), they evaluate the effectiveness of reinforcement 
learning in sparse reward environments using Unity ML-Agents [11]. They found that combining 

Proximal Policy Optimization (PPO) with assistive methods like Generative Adversarial 

Imitation Learning (GAIL) and Behavior Cloning (BC) significantly improved the agent’s 
performance in environments where rewards were sparse. GAIL allows the agent to imitate 

expert demonstrations, while BC enhances this process by mimicking behavior more precisely. 

However, the reliance on pre-recorded demonstrations limits the agent’s ability to surpass human 

expertise. Our project improves upon this by applying these techniques to a more complex 
domain—rocket landing, which involves multi-dimensional control and varying gravity 

environments—where sparse rewards are even more critical due to the complex nature of space 

physics. 
 

In the study by Xue et al. (2024), rocket navigation is enhanced through the use of neural network 

architecture search (NAS) combined with Bayesian optimization and particle swarm optimization 
to fine-tune hyperparameters for optimal landing performance [12]. This approach allowed the 

system to adapt to various challenges, such as wind field interference, which the authors 

addressed using simulation models. The use of NAS improved the network's generalization 

abilities, and Bayesian optimization helped refine control strategies. However, unlike our project, 
which leverages Unity's flexible game engine for testing rocket landings across different celestial 

bodies with varying gravities, the paper focuses primarily on handling environmental 

uncertainties like wind interference, which is not a major factor in our simulations. 
 

In the study by Berta et al. (2024), curriculum learning (CL) was applied to guide the agent 

through increasingly complex scenarios, such as parking a car in a garage and avoiding static 
obstacles [13]. While CL proved effective, the study's limitation lies in its use of static obstacles, 

suggesting a need for more tests with dynamic elements like pedestrians to better emulate real-

world conditions. In contrast, our project tackles rocket landing challenges across different 

celestial bodies with varying gravity levels, leveraging Unity's simulation flexibility. Although 
we don't test for wind field interference like they do with environmental obstacles, our project 

handles complex, multi-dimensional control in a space environment. 

 

6. CONCLUSIONS 
 

One limitation of our project is the limited scope of environments, as we have only simulated 

rocket landings on Earth, Mars, and the Moon. Expanding to include additional celestial bodies—

such as asteroids, Venus, or Jupiter's moons—would enhance the robustness of our AI models by 
exposing them to a wider range of gravitational and atmospheric conditions. Another area for 

improvement is the incorporation of more complex physics parameters. Introducing factors like 

varying atmospheric densities, wind shear, or surface irregularities would create more 
challenging scenarios for the AI, leading to more sophisticated and adaptable control strategies. 

Additionally, our simulations currently use a limited variety of rockets, thrusters, and fuel types. 

Including different propulsion systems and fuel efficiencies would allow us to test the AI's 

performance across a broader spectrum of technologies. Lastly, implementing multi-agent 
systems could simulate coordinated landings or interactions between multiple spacecraft, adding 

complexity and realism to the simulations. Given more time, we would address these limitations 

to create a more comprehensive and versatile platform. 
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In conclusion, this project integrates AI-driven simulations with interactive human controls, 

creating an immersive platform for learning about rocket landings in diverse planetary 

environments. Leveraging Unity’s versatility and machine learning capabilities, it serves as both 

an engaging and educational tool, fostering interest in space exploration and advancements in 
reusable rocket technology. This unique combination of simulation and interactivity not only 

demonstrates complex AI applications but also inspires users to explore and innovate in 

aerospace technology. 
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