
Distributed blockchain-based firmware update

architecture for IoT environments
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Abstract. The Internet of Things (IoT) is one of the most rapidly expanding fields of technology.
IoT devices often have limited capabilities when it comes to security, and have been shown to have
vulnerabilities that are often exploited by malicious agents. To fix those vulnerabilities, firmware
updates are often needed. The process, however, can also be vulnerable. A secure update mechanism
is needed to create a more secure IoT environment. This paper proposes a secure distributed IOT
firmware update solution using Hyperledger Fabric Blockchain and IPFS based on the RFC 9019
and previously proposed frameworks, contributing with a strong manifest format and defining
authentication and verification procedures. More importantly, we provide a public implementation
on which performance tests were made, demonstrating the promising feasibility of using distributed
ledger technologies for this problem.
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1 Introduction

The Internet of Things (IoT) is one of the most rapidly expanding sectors of tech-
nology. The market size for IoT grew from 165 billion dollars in 2021 to 201 billion
dollars in 2022. Additionally, it’s expected to experience a significant surge [1], and
the global market for IoT is expected to grow to about 1.39 trillion dollars by 2024
[2].

Despite advancements in IoT security, including the integration of STM32 mi-
crocontroller families [3] known for their robust security features such as secure
firmware installation due to embedded secure root services, challenges persist[4].
These IoT devices often struggle with implementing strong security protocols, leav-
ing them vulnerable to cyber threats. The frequency of cyber attacks targeting IoT
has been increasing substantially. The number of attacks has been rapidly increas-
ing year by year and has nearly doubled in 2022.
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In recent years, there have been some important security threats concerning IoT
devices. One of the most well-known ones was the Mirai Botnet [5], where thousands
of devices were used to perform DDoS attacks. When a vulnerability is found, it is
necessary to update a device’s firmware in order to patch it. This process, however,
is also vulnerable. Attackers can use the process to obtain firmware images and
perform reverse engineering or to install images of their own [6]. A famous case of
firmware update exploitation is the ”Jeep Hack,” where IBM researchers were able
to exploit the firmware update mechanism of a microcontroller used in a Jeep car
and obtained access to the vehicle’s control system [7].

The increasing use of IoT devices in daily life has made them essential for
critical functions across many sectors, including healthcare, transportation, and
home automation. As we rely more on these devices, it’s crucial to ensure their
proper functioning through regular and secure firmware updates. Unfortunately,
the traditional methods used for these updates often rely on centralized systems,
which introduce several risks like single points of failure and are prone to sophisti-
cated cyber-attacks. These vulnerabilities can cause significant disruptions across
extensive networks of connected devices. As IoT technology continues to advance
rapidly, it often outpaces the corresponding security measures, leaving devices ex-
posed to current threats and poorly equipped to handle new challenges. Recent
major security breaches highlight the urgent need to reconsider traditional security
models and shift towards more robust and scalable solutions. A decentralized ap-
proach, which utilizes the inherent security features of blockchain technology, offers
a compelling alternative. This method can significantly improve the reliability and
security of firmware distribution processes. This paper proposes a new framework
based on distributed blockchain technology, specifically designed to tackle the sig-
nificant security challenges found in conventional firmware update mechanisms for
IoT systems. By integrating the Hyperledger Fabric Blockchain and the InterPlan-
etary File System (IPFS), we aim to create a scalable and secure environment. This
framework not only reduces the risks associated with central points of failure but,
more importantly, ensures the integrity and authenticity of firmware updates across
a wide range of IoT devices. Our approach greatly enhances the security protocols
for IoT firmware updates, offering a solid safeguard against potential vulnerabilities
and ensuring continued efficiency and safety in device operations.

The firmware update process presents other problems beyond the direct ex-
ploitation of vulnerabilities. For example, there are cases where the firmware au-
thor disappears from the market, leaving devices that did not download the latest
updates permanently unable to obtain them [8].

Therefore, there is a need for secure and reliable firmware update methods.
The Software Updates for Internet of Things (SUIT) working group of the IETF
proposed a standard for IoT firmware updates in the RFC 9019 [9], which also
proposes a manifest format for firmware update based on RFC 9124 ([10]) and
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enables Hardware Security Modules (HSM) integration contained in RFC 4108
[11]. This proposal, however, is based on a centralized architecture, which could
have some of the following problems. Centralized architectures offer a single point
of failure, making them more vulnerable to DDoS attacks. They could also be
vulnerable to overloads since all the dependent devices must access the updates
through a single server. In the case of data loss or vendor disappearance from the
market, all the devices that are dependent on the server could permanently lose
access to the updates.

There are previous proposals that try to mitigate those problems using decen-
tralized architectures based on blockchain which are described in section 2. How-
ever, these proposals are centered on the design of a framework, and leave certain
proceedings to be decided in the implementation, while not offering the proposal of
one. For example, they do not specify the details of the update verification or au-
thor authentication processes. Our proposal introduces the following contributions
on top of previous work:

– Publicly Accessible Implementation: Our framework introduces a publicly ac-
cessible blockchain-based architecture for IoT firmware updates. By making our
implementation openly available, we invite surveys, testing, and contributions
from the broader research community. This openness not only enhances trans-
parency but also encourages collaborative improvements and validation of our
security protocols across diverse IoT platforms and scenarios, thereby enhancing
the robustness of our solution.

– Testing and feasibility evaluation using the proposed implementation: We con-
ducted comprehensive testing and feasibility evaluations of our proposed im-
plementation to ensure its effectiveness and practicality in real-world scenar-
ios. These evaluations included simulated environments where various IoT net-
work conditions and attack scenarios were recreated to assess the resilience
and performance of our framework precisely. The results demonstrate that our
blockchain-based solution efficiently handles firmware updates, maintaining high
security and integrity of the data, which is crucial for dependable IoT opera-
tions.

– On-chain verification of both payloads and manifests: An essential feature of our
architecture is the on-chain verification of both payloads and manifests, lever-
aging blockchain’s decentralization and immutability. This verification process
ensures that all firmware updates are authenticated and remain unaltered before
deployment, thereby providing a robust safeguard against common cybersecu-
rity threats, such as spoofing and man-in-the-middle attacks.

– Proposal of JWT as an authentication method for authors: The adoption of
JSON Web Tokens (JWT) for author authentication in our system offers a se-
cure, efficient means to verify the identities of entities involved in the firmware
update process. The use of JWTs, known for their compactness and ease of
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transmission, makes them particularly suitable for constrained IoT environ-
ments, ensuring that updates are executed only by authenticated and authorized
sources.

– Proposal of a manifest format inspired by the RFC 9124 [10]: Inspired by RFC
9124, our proposed manifest format is designed to enhance the security measures
in the firmware distribution process. It specifies the firmware metadata in detail,
facilitating the verification process and ensuring compatibility with the receiving
IoT devices. This structured and standardized format simplifies parsing and
validation, significantly reducing the risks associated with deploying corrupt or
incompatible firmware.

2 Background

The background of our study intertwines the foundational principles set forth by
Request for Comments (RFCs) with the innovative architectures of the InterPlan-
etary File System (IPFS) and Hyperledger Fabric blockchain, illustrating a conver-
gence of standardization, decentralized storage, and secure, permissioned blockchain
frameworks.

2.1 RFC

This section provides an overview of the concept of Request for Comments (RFCs)
and details the specific RFCs referenced in our proposal:

RFC 9019 RFC 9019[9], titled ”A Firmware Update Architecture for Internet of
Things,” provides guidelines and best practices for securely updating software on
IoT devices. It addresses the challenges and requirements for a robust update mech-
anism, emphasizing the importance of security and reliability in the IoT context.

RFC 9124 RFC 9124[10], titled ”A Manifest Information Model for Firmware
Updates in Internet of Things (IoT) Devices,” specifies the information elements
required in a manifest to secure firmware updates of IoT devices. It defines the
syntax and semantics of the manifest, as well as the processing rules for the target
devices. It also explains how the manifest can be used with different payload formats
and firmware update scenarios.

RFC 7228 RFC 7228[12], titled ”Terminology for Constrained-Node Networks,”
defines key terms and concepts relevant to networks where nodes have limited pro-
cessing power, memory, and energy resources, such as Internet of Things (IoT)
devices. This standardized terminology facilitates communication and understand-
ing among developers working on technologies and protocols specifically designed
for these constrained environments.
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RFC 4108 RFC 4108[11], titled ”Using Cryptographic Message Syntax (CMS)
to Protect Firmware Packages,” describes a method for securing firmware updates
through digital signatures and encryption. This approach helps ensure the updates’
integrity and authenticity, verifying that they haven’t been tampered with during
transmission. While not the only method, it offers a valuable tool for securing
firmware updates in various scenarios.

These RFCs collectively offer a thorough guide for managing IoT devices, ensur-
ing their security, and updating their firmware. By adhering to the standards and
best practices outlined in these documents, developers and researchers can enhance
the security, reliability, and functionality of IoT systems.

2.2 InterPlanetary File System (IPFS)

InterPlanetary File System (IPFS)[13] - The limited storage capacity of blockchain
technology at the time of this project’s development poses a significant challenge
for storing complete updates on the network. While it’s possible, the considerable
length of the images could substantially slow down the network’s transaction and
consensus speed. Therefore, an alternative storage technology is used for storing the
images. To avoid the inclusion of a single point of failure, using centralized storage
for the images contradicts the decentralized design philosophy of the blockchain.
Hence, a distributed P2P storage technology is considered appropriate. IPFS is one
of the most prominent distributed storage technologies. It is a P2P system that uses
content addressing to search among network nodes instead of a set address. When
content is added to the IPFS network, it is assigned a Content IDentifier (CID).
Nodes search for a file through its CID, and upon acquiring the content, the node
stores a copy to share with its peers. The stored contents are immutable, which
adds a layer of security, as images cannot be altered. Each new version of a file gets
its own CID. There are two types of nodes: bootstrap nodes, which guide other
connecting nodes to the network, and client nodes, which exchange information.
A private network can be created by configuring bootstrap nodes. This requires
generating a swarm key and adding it to all participating nodes’ configurations.
Nodes in a private network only interact with other nodes in the same network.

2.3 Hyperledger Fabric Blockchain (HFB)

Hyperledger Fabric [14] is a permissioned blockchain platform that offers a robust
framework for developing applications or solutions for enterprises, particularly in
the context of the Internet of Things (IoT). It provides a modular architecture that
ensures flexibility, scalability, and confidentiality, enabling organizations to create
private, permissioned networks. In these networks, participants are authenticated
before joining, enhancing the overall security and privacy of the IoT ecosystem.

Key aspects of securing IoT using Hyperledger Fabric Blockchain are outlined
in our proposal, including:
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– Security and Privacy: Hyperledger Fabric enhances the security and pri-
vacy of IoT networks by providing a tamper-proof and transparent platform
for recording data from IoT devices. This feature ensures data traceability and
safeguards against unauthorized access or manipulation.

– Authentication and Authorization: It implements a lightweight mutual au-
thentication and authorization model, ensuring that only authenticated devices
can access the blockchain network. This protects sensitive data and fosters trust
among interconnected devices.

– On-Chain Process: Refers to the practice of storing data directly on the
blockchain ledger, including checksums, data pointers, and ownership informa-
tion. This method secures the data against tampering and provides a reliable
truth source for IoT applications.

3 Proposed Solution

The architecture proposed in this manuscript incorporates elements from RFC
9019 and builds upon previous decentralized solutions, positioning itself within
the broader context of blockchain-based frameworks for IoT security. Specifically,
the Hyperledger Fabric Blockchain (HFB) is utilized for its blockchain technology,
chosen for its ability to facilitate the creation of fast, private, and permissioned net-
works. This choice is predicated on HFB’s efficiency and scalability, which prevent
the need for computationally intensive consensus algorithms like Proof of Work,
thus improving upon HFB and presenting a compelling alternative to Ethereum for
our use case. For storing firmware images, which are typically larger data files, the
InterPlanetary File System (IPFS) is employed, leveraging its distributed nature
to manage and disseminate these images across the network efficiently.

The solution divides firmware updates into manifests, which contain the firmware
and update metadata, as well as the firmware image. Updates also contain two sig-
natures made with the author’s private key, one for the digest of the manifest and
one for the digest of the payload, and the author’s public key. In our architec-
ture, on-chain processes ensure transparency and immutability. These processes,
directly recorded on the blockchain, are essential for secure transactions and data
veracity, essential in IoT environments where security cannot be compromised [15].
Off-chain mechanisms, on the other hand, enhance scalability and efficiency by
managing large data, such as firmware images, outside the blockchain [16]. Uti-
lizing IPFS for off-chain storage optimizes data handling without burdening the
blockchain, allowing for quicker access and distribution of firmware updates. This
bifurcated approach ensures our system remains robust yet agile, a necessity for
the evolving demands of IoT security.

Additionally, our approach minimizes unnecessary storage operations, enhanc-
ing efficiency. While this increases the solution’s workload, the Hyperledger Fab-
ric Blockchain’s (HFB) private and permissioned nature ensures that operations
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remain both rapid and cost-effective, unlike public platforms such as Ethereum.
This trade-off significantly boosts security without substantially impacting com-
putational time. Verification on the blockchain, rather than off-chain, ensures the
authenticity and verifiability of firmware updates prior to their delivery. Subse-
quently, the update, payload excluded, is securely stored, and a notification is dis-
patched to the register agent, maintaining the system’s integrity, traceability and
responsiveness.

Since firmware images can be heavy, storing them directly in the ledger can lead
to longer processing times as the size of the ledger increases. For this reason, the
payloads are instead stored into a private IPFS network, which provides a fast and
tamper-proof distributed storage system.

Fig. 1. Overview of the proposed architecture.

3.1 Architecture

The architecture presented in Figure 1 delineates the interaction flow between vari-
ous entities involved in the firmware update process. The ’Authors’, typically manu-
facturers or developers, originate the updates. Through the logical connections rep-
resented by dotted lines (Figure 1), they interact with ’Author Agents’, which act
as secure intermediaries, ensuring the updates are pushed to the ’Register Agent’.
The ’Register Agent’ then validates and stores these updates within the blockchain
and the IPFS.

On the receiving end, ’Devices’—which are managed or owned by ’Asset Own-
ers’—initiate the update retrieval process. This is done through ’Retrieval Agents’
that fetch the latest verified updates from the blockchain and IPFS, signifying
a logical link, as indicated by the dotted lines (Figure 1), which represents the
request-driven communication between the devices and the system. Our architec-
tural system includes below participants:

– Author: Developers or manufacturers, referred to as authors, are pivotal as
the creators and distributors of firmware updates. They leverage the platform
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to upload these updates, ensuring secure distribution in alignment with the
guidelines established in RFC 9019 [9]. Devices across the network consume
these updates, embodying the solution’s end-users.

– Author agents: Author agents connect with a key storage, also known as
keystore, that contains the author’s public key and the associated registration
key. They receive updates from the author and send them to the register agent.

– Register agents: Register agents communicate with the blockchain through
chaincode and with IPFS. They receive updates from the author agent and store
them after they are verified in the chaincode.

– Retrieval agents: Retrieval agent receives requests from devices and retrieves
the corresponding last available update from the blockchain and IPFS.

– Asset Owner: This denotes the individual or organization that has ownership
and responsibility over the ’Device’, ensuring that the firmware updates are
securely and efficiently managed to maintain device integrity.

The blockchain network nodes are divided into three categories:

– Register nodes attend to register petitions, both for authors and updates.
– General nodes perform the maintenance tasks of the network or store a copy of

the ledger, but do not execute chaincode.
– Retrieval nodes attend to retrieval petitions and share updates with devices.

The difference between register and retrieval nodes is conceptual. Both execute
the same chaincode, which has the contracts needed for registration and retrieval
processes. The agents that call for the execution of the contracts are the truly
limited ones, but since only they can make calls to the chaincode, the distinction
between register and retrieval nodes is put into practice. The firmware update
process can be divided into two key phases - phase 1, the registration phase, where
the update is submitted and stored, and phase 2, the retrieval phase where IoT
devices obtain and validate the update.

In Phase 1, represented in Figure 2, of the firmware update process, the au-
thor/author agent begins by creating a firmware image and manifest. They then
initiate the process by requesting to register the update, providing their key, the
firmware image, and the manifest to the Register Node. The Register Node takes
several steps to ensure the integrity and authorization of the submission: it first ver-
ifies the author’s identity to confirm they are registered and authorized to submit.
Following this, it verifies the integrity of both the manifest and the firmware image.
Once these steps are completed successfully, a response or error message is issued.
The final step involves securely storing the manifest in the ledger (on-chain) and
the firmware image on the InterPlanetary File System (IPFS) network (off-chain),
ensuring the update process is secure and efficient from start to finish.

In Phase 2, represented in Figure 3, the firmware update retrieval process begins
with IoT devices checking for the latest firmware version by communicating their
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Fig. 2. Phase1: Firmware Update Registration.

details to the Retrieval Node. Upon receiving the latest version number from the
Retrieval Node, if the device’s firmware is outdated, it requests a new update by
sending its key. The Retrieval Node then fetches the firmware image from the
IPFS network using the content identifier (CID). Following this, the Retrieval Node
dispatches both the manifest and the firmware image to the IoT device. The device
then verifies the integrity of the manifest to ensure the update’s authenticity. Once
validated, the device applies the firmware update, completing the secure retrieval
process. This retrieval phase allows IoT devices to securely obtain the latest updates
from the nodes and validate them through the on-chain manifest before installation.
The bifurcated registration and retrieval processes promote an optimized, secure
firmware update mechanism using both blockchain and IPFS.

3.2 Procedure Description

The previous section represents an overview of high-level information flows. Next,
the firmware update procedure is detailed, which can be segmented into the fol-
lowing stages: Author Registration, Firmware Update Registration, and Firmware
Update Retrieval.

Author Registration As depicted in Figure 4, author registration enables cre-
ators to establish their identity on the network as a prerequisite to registering
firmware updates. The process entails an author agent first sending the author’s
public key along with a plain text message signed by the corresponding private key
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Fig. 3. Phase2: Firmware retrieval.

to the register agents as a credentials petition. This submission invokes the regis-
tration smart contract on the chaincode to verify on-chain the author’s identity. If
the contract can utilize the transmitted public key to cryptographically validate the
signature on the message using RSA, affirming the author’s ownership of the asym-
metric key pair, then a temporary JSON web token (JWT) author key is generated
using the same RSA infrastructure backed by on-chain secrets. This authorizes the
account for subsequent update registrations. The token lifetime is 30 minutes be-
fore re-verification is required. With an authenticated key now granted and locally
stored, the author can digitally sign future manifests and payloads to register verifi-
able firmware updates on the network, while the chaincode leverages the registered
public key to validate their origin across transactions. Overall, this identity regis-
tration flow allows the system to confirm software authors before permitting update
submissions using ephemeral JWTs, all enabled via public key infrastructure rooted
on-chain.

Update Firmware Registration An overview of the process can be seen in Fig-
ure 5. The author begins the update registration process by creating a manifest and
firmware image. The author agent then requests to register the update by sending
the author’s public key, the manifest, the firmware image, and the signed digests
of both the manifest and the firmware image to the register agent. This request
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Fig. 4. Overview of the author registration flow.

includes a registration token which the register agent forwards to the chaincode.
The chaincode, upon receiving the information, verifies the registration token and
retrieves the author’s public key. It then uses this key to verify the integrity of the
manifest and the firmware image, ensuring that they have not been altered since
the signing occurred. This verification of both the manifest and the firmware im-
age together on-chain minimizes the risk of tampering and ensures that both parts
are consistent with the author’s original submission. After successful verification,
the register agent uploads the verified firmware image to IPFS, securing a Con-
tent IDentifier (CID) for the image. This CID, along with the update details, is
sent to the chaincode. The chaincode then updates its records to include the CID,
effectively linking the firmware image stored on IPFS with the manifest stored on-
chain. Finally, the register agent sends a success notification back to the author,
confirming the completion of the update registration process.
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Fig. 5. Overview of the update registration flow.

Update firmware Retrieval An overview of the retrieval process can be seen
in Figure 6. The device initiates the update retrieval process by transmitting its
identifier, known as classID, which is provided by the manufacturer or developer
(Author), along with the author’s public key. This information is encapsulated in
an object referred to as DeviceID, which contains the public key. Upon receiving
this information, the retrieval agent forwards the request to the chaincode. The
chaincode then uses the DeviceID to determine the latest updated version avail-
able for that specific device and returns this version information to the device.
Upon receiving the latest version information, the device assesses whether its cur-
rent firmware is outdated by comparing its version against the one retrieved. If the
device determines that an update is necessary, it repeats the process of sending
its DeviceID to the retrieval agent to request the full update. In response to the
update request, the chaincode provides the manifest and signatures for the update,
along with the Content IDentifier (CID) of the firmware image. The retrieval agent
uses this CID to fetch the firmware image from IPFS, constructing an update object
which is then transmitted to the device. With the update object received, the device
employs the public key it stored previously, along with the received manifest and
signatures, to verify the integrity of the firmware update. This verification process
is crucial as it enables the device to ascertain whether the update has been altered
since it was signed. Successfully verifying the update ensures that the device can
detect and reject any malicious modifications, safeguarding against compromised
communications between the retrieval agent and the device. Throughout this pro-
cess, the retrieval agent handles three distinct types of requests: it can return the
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latest version information, the manifest with signatures, or the firmware image
to be updated, depending on the stage of the retrieval process and the device’s
requirements.

3.3 Manifest Format

Manifests play a crucial role in ensuring the integrity and security of firmware up-
dates by providing a structured set of data that devices can rely on to authenticate
and apply updates correctly. The structure we propose for manifests in this paper
is heavily inspired by the framework laid out in RFC 9124[10]. This inspiration
is drawn because RFC 9124 offers a comprehensive approach to secure firmware
update mechanisms, which is critical for maintaining the trustworthiness and reli-
ability of software in embedded systems and IoT devices. By adhering to a format
influenced by RFC 9124, our proposed manifest structure aims to incorporate these
robust security measures and best practices to enhance the update process. The spe-
cific value of aligning with RFC 9124 lies in leveraging a tried and tested framework
that provides:

Fig. 6. Overview of the update retrieval flow.

– Enhanced Security: By detailing a structure that includes versioning, sequence
numbers, and payload integrity checks, the manifest ensures that devices can
verify the authenticity and integrity of an update before installation. This pre-
vents the execution of unauthorized or malicious firmware.

– Broad Compatibility: RFC 9124’s approach to manifest design considers a wide
range of devices and vendors, making our proposed structure versatile across
different hardware and software ecosystems.
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– Future-proofing: By incorporating fields like ‘VendorID‘, ‘ClassID‘, and ‘En-
cryptionWrapper‘, the manifest is prepared to support future developments in
device identification and update encryption, ensuring long-term relevance.

– Streamlined Update Process: The detailed specification of payload format, pro-
cessing instructions, and storage location simplifies the update process for de-
vices, reducing potential errors and incompatibilities.

In summary, our manifest format’s value is rooted in its comprehensive coverage
of firmware update requirements, from security to compatibility, directly contribut-
ing to the goals set forth by RFC 9124. This alignment not only ensures a high
standard of security and efficiency but also facilitates interoperability and future
advancements in firmware update processes.

Moving from the general advantages, the specifics outlined below further detail
the implementation:

– VersionID: Indicates the version of the manifest. Devices should only install
updates with a superior VersionID.

– MonotonicSequenceNumber: An increasing number sequence used to verify that
the manifest has been created in a time posterior to that of previous updates.
We will use a UTC timestamp.

– VendorID: Optional. ID of the vendor of the device. Used to differentiate devices
with identical names but different vendors. It is recommended that it uses UUID
format along with ClassID.

– ClassID: Used to identify the class of devices that the update applies to. It is
recommended that is uses UUID format along with VendorID.

– PayloadFormat: Describes the format of the payload.
– PayloadProcessing: Optional. Describes the steps and/or algorithms necessary

to decrypt the payload.
– StorageLocation: Describes where the payload should be stored inside a given

component or device.
– PayloadIndicator: Optional. Describes where the payload can be obtained from.

Note that in the architecture proposed, the payload must be uploaded to the
register agent alongside the manifest, making it only an option if it is available
on additional storage.

– PayloadDigest: Digest of the payload used to verify its integrity when coupled
with the author’s key.

– Size: Size in bytes of the payload.
– AditionalInstructions: Optional. Describes additional steps to install the up-

date.
– Dependencies: Lists all the other manifests and updates required in order to

install the update.
– EncryptionWrapper: Describes the steps needed to obtain the key needed to

decrypt the payload.
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– Payload: Optional. Used when the payload is small enough to be shared within
the manifest, like keys or configuration data.

4 Implementation Details

The design described in the previous section was implemented. An overview can be
seen in Figure 7. In addition to the elements previously described, a GUI for authors
was implemented. It allows interacting with the author agent more intuitively. A
device-emulating app was also implemented. It allows retrieving updates connecting
to the retrieval agent.

Fig. 7. Overview of the implemented architecture.

The agents and chaincode were implemented using NodeJS. The three agents
serve their APIs using the Express library and use JSON and multipart/form-data
for data sharing. The Axios library was used for HTTP requests. MongoDB is
used to store keys in the author agent. The register and retrieval agents connect
to the blockchain using the HFB gateway libraries and connect to IPFS using
the JavaScript HTTP client. Docker was used to simplify the deployment of the
proposed solution.

The chaincode contains three smart contracts: one for registering authors, one
for update registration, and one for update retrieval. They have been developed
using the HFB contract library for JavaScript.

The selected cryptographic algorithms are RSA-2048 and SHA-384. The JWT
is generated using a RSA-2048 key pair stored in the chaincode containers. The
’crypto’ library from NodeJS was used for digesting and signing. The ’json-stringify-
deterministic’ library was used to ensure that digested JSON objects had the same
meta structure.

A more extensive explanation and installation guide can be found at the code
repository [17].

5 Performance Evaluation

The implementation was tested to evaluate the feasibility of the solution. In this
section, the testing methodology is described and the results are evaluated.
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Fig. 8. Registration test structure.

Fig. 9. Retrieval test structure.

5.1 Evaluation Methods

The register and retrieval processes are evaluated separately. A local script is made
to send at least a hundred sequential petitions to the corresponding agent, contain-
ing a previously created object. For each process, four tests were run, each using a
different payload. The payloads were binary files obtained from the internet. Their
sizes were 552 KB, 9.5 MB, 15.4 MB, and 36.1 MB.

RFC 7228 [12] classifies IoT type 2 devices as possessing around 0.25MB of
memory. The solution, however, is also intended to be used by higher-capacity
devices. Therefore, tests included heavier files.

The agents logged timestamps at critical execution points, which were then
analyzed through the processing of the text files.

For the registration process, in Figure 8, the logs were printed when the following
steps were completed:

1. Author agent has received the petition and parsed the request, but has not
processed its contents.

2. Register agent received a success message after the manifest has been uploaded
to the ledger.
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3. Register agent received CID from IPFS.
4. Register agent received a success message after the CID has been updated in

the ledger.
5. The author agent has completed the process and is about to send the final

response.

For the retrieval agent, in Figure 9, on the other hand, the logs were printed
when the following steps were completed:

1. Retrieval agent has received the petition and parsed it, but has not processed
its contents.

2. Retrieval agent received manifest from the ledger.
3. Retrieval agent received payload from IPFS.
4. Retrieval agent has completed the process and is about to send the final re-

sponse.

The implementation was deployed on a Proxmox virtual machine which had
9.77GB of RAM and 50GB of storage available. It ran Ubuntu 20.4, used SeaBIOS,
used an i440fx machine, and had 2 cores.

Fig. 10. Total registration time.

5.2 Evaluation Results

Figure 10 and Figure 11 show the times for the registration process. Although we
can appreciate a significant increase in time as the expected payload size increases,
the registered times show the feasibility of using the proposed solution and expand-
ing on it. The on-chain verification and sharing of data between multiple parties
(Agents, HFB nodes, IPFS nodes) contribute heavily to the increase in time as can
be seen in Figure 11. Nevertheless, we consider that for these file sizes, the security
value of on-chain verification far weights the costs.
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Fig. 11. Average registration time by step.

Fig. 12. Total retrieval times.

Fig. 13. Average retrieval times by step.

The retrieval process, on the other hand, remains more constant as payload size
increases, as shown in Figure 12 and Figure 13. Since the retrieval process is the
one that will be executed with higher frequency, it further adds to the affirmation
that the solution presents itself as feasible for real-world implementations and/or
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Fig. 14. Comparison between total process times.

Fig. 15. Comparison between process times per MB.

further research. A comparison for both processes is shown in Figure 14. In Figure
15, we can see the time it takes to process a kilobyte in milliseconds, for both
the registering and retrieval process. It is appreciable that the solution becomes
more efficient as file size increases, especially for the retrieval process, which is the
most benefited by it, as the IoT devices have lower capabilities than the author’s
computers. At the largest file size tested, 36.1 MB, we can appreciate efficiency
beginning to decline for the register process, due to the limitations of the default
HFB endorser node running inside the virtual machine. Future research may explore
the performance impact of customized HFB network architectures and different
execution environments for the solution.
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6 Related Work

Previous proposals have tried to solve the problems of the IoT firmware update
mechanisms. One of the most relevant ones is that of RFC 9019 [9], which proposed
the use of manifests and the use of a centralized server that monitors devices.

However, this centralized approach can introduce significant challenges. Cen-
tralized systems are known to create single points of failure, making the network
more vulnerable to targeted attacks that could compromise the server. This vul-
nerability is particularly critical in IoT systems where a single point of failure can
have far-reaching impacts on security, privacy, transparency, and data integrity [18].
Scalability is another concern, as the central server may become overwhelmed with
the increasing number of IoT devices requiring updates, leading to potential bot-
tlenecks. In addition, centralized cloud servers in IoT systems can result in data
exposure, posing a severe threat to data privacy and security [19]. In order to mit-
igate them, some proposals use distributed architectures. B.Lee et al. [20] was the
first to propose the use of a decentralized architecture using a blockchain similar
to Bitcoin, in which nodes are run inside IoT devices and use Proof of Work as a
consensus algorithm. A. Boudguiga et al. [21] proposed the use of external nodes
maintained by trusted institutions, reducing device workload. A. Yohan et al. [22]
proposed an independent architecture that contains full nodes that maintain the
network and light nodes that obtain updates for devices using Ethereum. M.Son et
al. [23] proposed the use of Hyperledger Fabric Blockchain (HFB), enabling faster
transactions. They also introduced InterPlanetary File System (IPFS) as a storage
alternative to reduce block sizes. S. Choi et al. [8] proposed the separation of re-
sponsibilities between registering and retrieving nodes, and described the author’s
disappearing problem.

Narender et al. [24] delve into enhancing the security of firmware updates in
embedded systems through blockchain technology. Their approach introduces a
peer-to-peer firmware distribution network, which significantly reduces reliance on
centralized servers. This decentralized model not only streamlines the distribution
process but also enhances security by utilizing blockchain to verify the authenticity
of firmware updates, ensuring that only legitimate and authorized updates are
distributed across the network [24]. This model marks a substantial advancement
in firmware update security for embedded systems, offering a more efficient and
secure alternative to traditional centralized server-based systems and aligning with
the evolving needs of IoT environments.

Adding to these discussions, Tsaur et al. [25] propose a blockchain-based mecha-
nism to secure IoT firmware updates, focusing on mitigating vulnerabilities through
a distributed database and improving system security and efficiency. This study
emphasizes the significance of blockchain in verifying and authenticating firmware
updates, ensuring devices receive genuine updates, and exploring a manifest format
that enhances IoT device security.
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In addition to the strategies mentioned above, the Firmware-Over-the-Blockchain
(FOTB) framework represents another progressive step in the decentralized man-
agement of IoT firmware updates. FOTB uses blockchain technology to tackle some
of the critical weaknesses in traditional update methods, like central points of fail-
ure, which can be risky in terms of cyber attacks and data leaks. By spreading out
firmware updates over a decentralized network, FOTB increases the overall trans-
parency and security of these systems. The setup works on a peer-to-peer basis,
reducing the reliance on central servers that can become overloaded or targeted
by hackers. FOTB is also versatile in how it handles updates. It supports both
automatic updates (PUSH) and on-request updates (PULL), making it adaptable
to different IoT environments where connection quality may vary. The framework
clearly defines roles for everyone involved, from the device manufacturers to third-
party service providers, ensuring that every firmware update is checked and ap-
proved through blockchain consensus. This not only strengthens security but also
helps the system scale smoothly as the number of IoT devices grows, addressing
some of the traditional challenges with performance and security [26].

In summary, the related works section extensively discusses various approaches
to IoT firmware updates, focusing mainly on the vulnerabilities of centralized mod-
els and the benefits of decentralized solutions. Centralized systems, while common,
are plagued by significant drawbacks such as single points of failure and scalability
issues, which are particularly problematic in critical IoT applications. In response,
recent research has shifted towards decentralized and blockchain-based architec-
tures to mitigate these risks. These studies underscore the use of blockchain to
provide a more secure and transparent mechanism for firmware updates, reducing
reliance on central servers susceptible to attacks. Building on these foundational
ideas, our proposal introduces a novel blockchain-based framework that not only
addresses the inherent security flaws of traditional systems but also improves scal-
ability and efficiency. By integrating the InterPlanetary File System (IPFS) with
the Hyperledger Fabric Blockchain, we enhance the robustness of firmware dis-
tribution across a diverse array of IoT devices and environments. This not only
streamlines the update process but also ensures the integrity and authenticity of
the data exchanged, making it a formidable solution against the backdrop of es-
calating security demands in the IoT landscape. While many existing proposals
contribute to a framework for secure updates, they often lack detailed implemen-
tation or performance metrics. Table 1 showcases how our proposal leverages these
insights to address verification, authentication, and scalability within IoT firmware
updates, demonstrating a comprehensive and practical approach to enhancing IoT
security.

Computer Science & Information Technology (CS & IT)                                     121



Table 1. Comparison of blockchain-based proposals for firmware update

Feature Blockchain
Technology

Verification Authentication Manifest
Format

Implementation Feasibility
Test

B.Lee [20] Bitcoin On-chain Proof Of Work - Public -

A.Boudguiga
[21]

Bitcoin External
Institutions

- - Public -

A.Yohan [22] Ethereum - - - Public -

M. Son [23] Hyperledger
Fabric

- FabricCA - Private -

S.Chi [8] - Manifest
On-chain

- - - -

Narender [24] Generic
Blockchain

Smart
contracts &
Consensus

Device and
Transaction
Verification

Cryptographic
hashes and
signatures

Public Real-world
application
and testing

Tsaur [25] Ethereum On-chain - - Public -

FOTB [26] Ethereum Smart
contracts &
Consensus

Smart contracts
& Consensus

Metadata &
Signatures

Public Tested in
simulated

environment

Our Proposal Hyperledger
Fabric

Full update
On-chain

JWT, RSA Based on RFC
9124

Private Tested on Im-
plementation

7 Conclusions and Future Work

The data stored within the solution is guaranteed not to be tampered with as it is
verified on-chain and both HFB and IPFS have strong anti-tampering mechanisms.
The use of JWT after verification of keys adds a layer of security while maintaining
ease of use. The use of a strong manifest format allows devices to perform more ex-
haustive verifications but does not significantly increase execution times, which the
test has shown to be feasible for real-world implementations. While the presented
solution and implementation are not flawless, this paper has shown the promising
viability of a distributed architecture for IoT firmware update solutions.

Further research is needed to reach a completely secure real-world mature so-
lution. We have identified the following areas to be among the most relevant:

– Improve CI/CD (Continuous Integration and Continuous Delivery/Continuous
Deployment) practices for embedded systems by associating our approach with
the delivery of firmware updates on devices in production, i.e. in the hands of
asset owners and the automation of firmware delivery from HSM-based solutions
such as the one presented by the STM32 family of microcontrollers.

– Integrate SBOM (Software Bill of Materials) into our approach to improving the
security and integrity of firmware updates on devices through early detection
of vulnerabilities and threats at both the code and infrastructure levels, i.e.,
throughout the software development lifecycle.
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de Catalunya (UPC), focusing on blockchain technology and security, notably ex-
ploring invoice factoring through blockchain. Her passions lie in cybersecurity and
blockchain technology. Currently, her research efforts are directed towards identity
and access management (IAM) and Security in IOT technologies.

Computer Science & Information Technology (CS & IT)                                     125

                                                                      This article is published under the Creative Commons
Attribution (CC BY) license.
©2024 By AIRCC Publishing Corporation.

https://airccse.org/

	Distributed blockchain-based firmware update architecture for IoT environments
	Introduction
	Background
	RFC
	RFC 9019
	RFC 9124
	RFC 7228
	RFC 4108

	InterPlanetary File System (IPFS)
	Hyperledger Fabric Blockchain (HFB)

	Proposed Solution
	Architecture
	Procedure Description
	Author Registration
	Update Firmware Registration
	Update firmware Retrieval

	Manifest Format

	Implementation Details
	Performance Evaluation
	Evaluation Methods
	Evaluation Results

	Related Work
	Conclusions and Future Work




