
David C. Wyld et al. (Eds): NLAI, IBCOM, MLDS, GridCom, SCAI, ICCSEA, SPPR – 2024

pp. 145-164, 2024. - CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.142209

JCHAOSINDEX: MEASURING AND

BENCHMARKING DISPERSION IN

RANDOMIZED DATA

Jui Keskar

Metropolitan School, Frankfurt, Germany

ABSTRACT

Randomization of data is an ongoing need for various business reasons like design of

clinical trials, or training an AI model, to name a few. To control the level of

randomization, it is important to measure the level of randomness, i.e. unpredictability and

dispersion, in the “randomized” data vis-à-vis the original data. While Permutation

entropy measures unpredictability, there is no technique that measures dispersion of

randomized data. To measure dispersion in randomized data, “Neighbour-displacement-

delta” (NDD) based technique is proposed. JChaosIndex, measure of dispersion, considers

displacement of each data element as well as relative displacements of the neighbours of
each data element. Higher the JChaosIndex, more disersed is the randomized data.

JChaosIndex measurement technique can be easily included in a programming language

library or database methods or any algorithm. Importantly, this technique is domain-

agnostic as it works purely on the indexes of the data record and not the actual data.

KEYWORDS

Measure of Randomness, Data Dispersion, JChaosIndex, Permutation Entropy, Neighbour

Displacement Delta

1. INTRODUCTION

Randomness has been studied for long in the context of algorithms, probability, and complexity

[1][5]. There also exists “Runs test” to test the randomness of samples [6]. It is based on
statistical techniques [7]. There also is a need to measure randomness in the context of data

processing and data storage. Such randomization of data can be business critical at times. This

could be either for the reasons of privacy, or for removing time bias in the data (to avoid recency
effect [8]) or just for fairness (say for the purpose of gaming [9]). Randomization is usually done

in programs by using the random number generators [10].

However, it is important to be able to measure level of randomness in the randomized data (as
compared to the original data). This will not only help in knowing if the randomized

configuration is indeed the most optimal one, but will also help in designing a randomization

technique that will provide the best configuration.

This paper describes in detail the technique for calculating JChaosIndex - a measure of dispersion

generated by any data randomization process. The combination of permutation entropy and

JChaosIndex can be useful in comparing various randomized configurations to pick the most

suitable one.

https://airccse.org/
https://airccse.org/csit/V14N22.html
https://doi.org/10.5121/csit.2024.142209

146 Computer Science & Information Technology (CS & IT)

2. METHODS

The method involves measuring the movements in the randomized data vis-à-vis the original

data.

2.1. Measuring Dispersion in Randomized Data Using Jchaosindex

In this technique, to be able to measure dispersion of the “randomized” data, one needs to
measure the distance of the absolute new position of a particular data element (record) from its

absolute original position before randomization. One also needs to check the relative position

change of the neighbours of the data element vis-a`-vis neighbours’ old relative position (old

relative position of neighbour minus new relative position of that neighbour).

This is because a record may have moved very far from its original position, but if its neighbours

are still the same in the new configuration, then the dispersion level is low. Total dispersion of
data elements and their neighbours also needs to be normalized by the size of data for ease of

comparison across datasets of varying sizes.

Figure 1: Calculating the neighbour-displacement delta (NDD)

Figure 1 depicts the nuances involved in measuring dispersion. Few points to be noted about Fig.

1 are as follows: ID1 is the index of original data in the original record collection.

ID2 is the new index of data in the new randomized data collection. Also, one can see that
ID1 is now randomized in the new randomized data collection. As an example, for the left

(original) data collection, the blue and orange arrows highlight the original relative positions of a

few neighbours (1 and 2) relative to a specific data element (3). Whereas, for the right
(randomized) data collection, the green and blue arrows highlight the new ‘displaced’ positions of

these neighbours (1 and 2) relative to new position (ID2=2) of the original data element (ID1=3).

While implementing the measurements (JChaosIndex), one needs to temporarily create
ID1, ID2 fields and have them pre-populated before and after randomization respectively.

Also, methods old() and new() are needed. Function old() will take ID2 value as an argument and

return the corresponding value in the ID1 field of the specific data element [i.e. ID1 = old(ID2)
e.g. 3 = old(2)] . Function new() will take ID1 value as an argument and return the corresponding

Computer Science & Information Technology (CS & IT) 147

value in the ID2 field [i.e. ID2 = new(ID1) e.g. 2 = new(3)] . Please note, both ID1 and ID2 have
all unique values without repetition.

Comparing the values in column ID1 and ID2 can provide information about absolute position

change of each record. Ex. Data in ID1=3 in the original data is now at position ID2=2 in the
Randomized data. Hence, it has moved by 1 position [|3 − 2|]. One also needs to check the

relative position of neighbours of each of the data element and check how their distance from the

data element has changed in the new “randomized” data. E.g. In the Original data, one of the
neighbours of ID1=3 was ID1=1. The relative position of 1 vis-a-vis 3 was -2 (i.e.1-3). For

convenience of calculations, positions lesser than the given data element is considered negative

and higher ones are considered positive. In the new configuration, when the data element (ID1=3)
has moved to ID2=2 and the “neighbour” ID1=1 is now moved to ID2=5. Thus, a neighbour

which was -2 records away from that data element is now 5-2 = 3 records away. The change of

this neighbour’s position relative to the data element (ID1=3) is |3 − (−2)| = 5 record.

In this way, relative dispersion of each data elements and that of their neighbours can be

calculated and positive value (mod) of all such relative displacements are added together and

normalized (divided) using the square of total record count (n2).

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =
1

𝑛2
∑ [|𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

Normalization using ’n2’ provides a near-straight-line relationship between maximum

JChaosIndex and number of records, hence is most suited for normalization.

2.2. Getting most Dispersed Configuration

Most dispersed configuration can be achieved if the dispersion levels of all possible permutations

of data can be measured numerically. The configuration that corresponds to the max dispersion

level can then be picked up for further processing. Figure 2 depicts this approach. Please note,

calculating JChaosIndex requires both the new “randomized” configuration as well original
configuration before randomizing the data.

Figure 2: How to get most dispersed configuration

Following is one way to get to the most dispersed configuration:

...

JChaosIndexmax = 0
BestDataConfigurationIndexArray = []

Iterate through all possible data configurations:

148 Computer Science & Information Technology (CS & IT)

NewDataConfigurationIndexArray = [< originalindexinthenewseq >] Calculate
Randomization Index for this configuration:

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =
1

𝑛2
∑ [|𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

Compare the index with the earlier max index: If JChaosIndex > JChaosIndexmax:

JChaosIndexmax = JChaosIndex

BestDataConfigurationIndexArray = NewDataConfigurationIndexArray
. ..

Annexure 8.1 contains a sample Python program for calculating the most dispersed configuration

of an 8-element-long array.

Following are the details of Program (Annexure 8.1):

Original List is [11, 12, 13, 14, 15, 16, 17, 18]

Most dispersed configuration is [18, 17, 16, 15, 14, 13, 12, 11]
Total displacement = 368

Max JChaosIndex = 5.75

This however can be expensive on CPU due to the sheer number of permutations possible. E.g.

for just 8 data points, the possible permutations are 40,320 (i.e. 8!). Calculating the level of

displacement for each permutation can be time consuming. Also, the above configuration with

maximum JChaosIndex is predictable making it undesirable. Hence, a more pragmatic technique
is to use random number generators to come up with a few random configurations and to measure

the permutation entropy and dispersion level of each of the configurations and pick the one with

optimal randomness level. Another approach is to check permutation entropy of each
permutation, pick the ones with maximum permutation entropy and then get the most dispersed

ones from them.

2.2.1. Challenges with Perfectly Dispersed Configuration

A most dispersed configuration selected using the above technique will have the highest

JChaosIndex. For this selected configuration, each record and its neighbours have the maximum
displacement vis-`a-vis their original position. But the configuration with maximum dispersion is

always the configuration which is the exact reverse sequence of the original sequence of records.

This makes it too predictable. One can always predict the original sequence from the randomized
sequence if one knows that the new configuration has the highest JChaosIndex! Hence, the key is

to get the most unpredictable and dispersed configuration (rather than the most displaced one

only) through the judicious use of permutation entropy and JChaosIndex.

2.2.2. How is Permutation Entropy Useful?

Permutation entropy is a measure of the complexity of a time series based on the ordinal patterns
(permutations) of its values over time [4]. It is particularly suited for analysing time series data,

where the order of data points is crucial. However, it can still use permutation entropy by treating

the data series as a time series with an implicit order. [11].

For a given embedding dimension (m) and time delay (τ = 1)

Computer Science & Information Technology (CS & IT) 149

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐻) = −
[∑ 𝑃(𝜋) log(𝑃(𝜋)]]

log(𝑚!)
 (Added over all possible

permutation patterns of length m) [4].P(π) in the equation is the probability of a permutation
pattern π.

2.2.3. How to Get the Most Random Configuration?

For most random configuration, the randomization process needs to be conducted in two steps.

Firstly, identify all possible unpredictable configurations using permutation entropy and then look

for most displaced ones among them. Figure 3 depicts the technique to get most random
configuration.

Figure 3: How to get most random configuration

Following is one way to get to the most optimal configuration:

..

JChaosIndexopt = 0 //Optimal displacement
OptDataConfigurationIndexArray = [] //Optimal configuration

Embedding Dimension = m //Embedding dimension

period = τ //period of data series

Calculate maximum permutation entropy (m p e) for given data size, embedding dimension

and period

Iterate through all possible data configurations:

For each NewDataConfigurationIndexArray:

Calculate Permutation Entropy (p e) for each configuration:
If m p e == p e:

Calculate Randomization Index for this configuration:

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =
1

𝑛2
∑ [|𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

If JChaosIndex >JChaosIndexopt:

JChaosIndexopt = JChaosIndex

OptDataConfigurationIndexArray = NewDataConfigurationIndexArray
. ..

Annexure 8.2 contains a sample Python program for calculating permutation entropy of any data
series. Annexure 8.3 contains sample program for calculating most unpredictable and dispersed

150 Computer Science & Information Technology (CS & IT)

configuration of an 8-element-long array using permutation entropy and Neighbour-
displacement-delta (NDD). Optimal configuration selected is the one with maximum permutation

entropy score of 2.585 and optimal JChaosIndex of 5.3125 within the enforced constraints

regarding unpredictability.

For an 8-element-long array, out of all the possible 40,320 permutations there are about 2396

permutations that have highest permutation entropy of 2.585. JChaosIndex helps in identifying

the most dispersed configurations from these most unpredictable ones.

Following are the details of the two most unpredictable and most dispersed configurations:

1)

Original List is [11, 12, 13, 14, 15, 16, 17, 18]

Constraints = Maximum permutation entropy AND optimal dispersion of data elements

Best Randomization is [17, 15, 18, 16, 12, 13, 14, 11]
Total displacement = 340

Optimal JChaosIndex = 5.3125

2)

Original List is [11, 12, 13, 14, 15, 16, 17, 18]

Constraints = Maximum permutation entropy AND optimal dispersion of data elements
Best Randomization is [18, 15, 16, 17, 13, 11, 14, 12]

Total displacement = 340

Optimal JChaosIndex = 5.3125

While these are not the one with most displacement, they will surely provide the most optimal

random configurations while making them harder to predict than the most dispersed one. Figure 4

highlights graphical views of these configurations.

3. RESULTS

Analysis involved measuring the overall dispersion level for each of the combination – optimal or

otherwise.

3.1. Analysing Random Configurations Based Various Constraints

Analysing the most dispersed (maximum JChaosIndex) array (as shown in Fig. 4) reveals the

obvious. The data at extreme position is dispersed the most, while the data towards the centre is

dispersed by least position. The challenge with this distribution is that it is not uniform and it is
too easily predictable.

Computer Science & Information Technology (CS & IT) 151

Figure 4: Positional displacement for most dispersed configuration

Thus, it is important to get more unpredictable randomization across all the data points. This can
be done by ensuring permutation entropy to be maximum and then looking for the most dispersed

configurations. Fig 5 [(a) and (b)]includes graphical view of the two most optimal configurations

for 8-element-long array. Fig. 6 [(a) and (b)] includes two second-most optimal configurations
achieved for 8-element-long array. For these second-most optimal configurations, the

unpredictability (PE) is still the highest while dispersion (measured using NDD JChaosIndex) is

at 5.25 .

Figure 5: Displacement of positions with max PE and most optimal NDD cases (5.3125)

Figure 6: Displacement of positions with max PE and 2nd optimal NDD cases (5.25)

152 Computer Science & Information Technology (CS & IT)

Figure 7 depicts the distribution of Permutation Entropy and JChaosIndex for various data
records sizes for all possible permutations.

Figure 7: Distribution of Permutation Entropy and JChaosIndex for various data records sizes for all

possible permutations.

From these analyses, clearly, displacements of 0 or 1 for an 8-element-long data array (25% of
data records count or less) are absent in the optimal configurations. Also, for the most optimal

ones, the maximum displacement is going all the way up to 7 (which is max possible given the

array size of 8).

3.2. Large Data Records

So far, the dataset had only 8 records (data elements). However, in the real world, there are much

larger records that keep growing further. Analysis was done on datasets of varying sizes to find

out max JChaosIndex for each of these sets. Figure 8 shows the trend of max JChaosIndex as the

dataset size is increased.

It is interesting to find that max JChaosIndex has a straight-line-like relationship with the

Computer Science & Information Technology (CS & IT) 153

Figure 8: Max JChaosIndex for various dataset sizes

number of records (n) for the small-sized datasets. The red dotted-line in the chart is the trend-

line, which connects each of the data points almost perfectly.

As detailed in Annexure 8.4, equation of this line is:

Max JChaosIndex = 0.0007 ∗n3 − 0.0182 ∗n2 + 0.8317 ∗n − 0.1041

This equation has been derived using data upto 10 data records and tested on the data point of

11 data records with 99.93% accuracy

This can be used to know the max dispersion score (JChaosIndex) for any number of records. For

example, a dataset with 100 records, the max JChaosIndex possible is about 601. This number
will be useful while calculating the optimal randomness. As seen for the case of 8 record dataset,

optimal randomness for any dataset can be found for cases when unpredictability of the

combination is highest (permutation entropy is 2.585 for 8-element-long array) and JChaosIndex
is also high (5.3125) for them. In general, minimum dispersion of more than 25% of the dataset

size can fetch better configurations provided the dispersion distribution across data elements

remain unpredictable.

3.3. Benchmarking Various Random Number Generators

Computers usually have two types of random number generators; viz. True Random Number

Generators (TRNG) and Pseudo-Random Number Generators (PRNG)[10]. Randomization of

dataset is often performed using the Pseudo-Random Number Generators (PRNG) of various

programming language libraries. The easiest step is to generate a non-repeated random number
and allocate that position to a data point that needs to be randomized. Permutation entropy and

JChaosIndex can be calculated for configurations thus generated using above technique. As part

of this research, the average and maximum Permutation entropy and JChaosIndex for such
randomization was calculated for four popular programming languages. Annexure 8.5 contains

the detailed programs used for measuring randomization performed in each of these languages.

Following are the summarized findings:

As seen from Table 1, C-Sharp’s library function for random number generation is providing

themost unpredictability as compared to Python, Java and C libraries. Interestingly, none of these

languages could provide the most unpredictable configuration (permutation entropy of 2.85)!

154 Computer Science & Information Technology (CS & IT)

Table 1: Benchmarking of random numbers generated by various language libraries

Language Library/method Permutationentropy (PE)

andJChaosIndex (JC) in 5

attempts

Mean

PE, JC

Max

PE,JC

Python random.random()[12] PE: 2.25, 2,25, 1,58, 1.79, 1.79

JC: 3.78, 4.18, 4.53, 4.09, 3.75

1.93,

4.07

2.25,

4.53

Java Random.nextInt()[13] PE: 2.25, 2.25, 1.58, 1.79, 1.79

JC: 3.25, 3.81, 3.25, 2.26, 3.97

2.02,

3.31

2.25,

3.97

C rand()[14] PE: 1.91, 1.79, 1.91, 2.25, 2.25

JC: 3.88, 3.25, 2.75, 2.4, 3.31

2.02,

3.12

2.25,

3.88

C Sharp Random().next()[15] PE: 1.91, 2.25, 2.25, 2.25, 2.25

JC: 2.75, 4.16, 3.97, 4.09, 3.38

2.18,

3.67

2.25,

4.16

4. DISCUSSION

JChaosIndex is an objective measure of dispersion generated in any data through randomization.

It is independent of the actual data and hence domain-agnostic. It uses the indexes of the original

data and the ones in the randomized data. JChaosIndex is the total dispersion of all data elements
and their neighbours due to randomization, normalized using the square of the number of records

in the dataset.

As seen in Fig. 8 earlier, as the number of records increases, the max JChaosIndex also increases.
This may be happening since an increased number of records opens up opportunity for more

bigger dispersion. This is an important finding which highlights consistency of the JChaosIndex

measure.

The challenge with most dispersed configuration is that it is unfair on the central records, where it

does not do much displacement. Predictability of most dispersed configuration is the biggest
disadvantage.

As seen in Fig 4, most random configurations can be found through finding most unpredictable

combinations using permutation entropy measurement technique followed by most dispersed
configurations using JChaosIndex measurement technique on them. For an 8-element-long array

having 40,320 possible permutations about 2396 permutations have highest permutation entropy

(2.585). Out of these highest entropy permutations, two most dispersed configurations could be
found to have JChaosIndex of 5.3125. In these configurations, each of the individual data

element’s displacements was greater than 2 (25% of the data record size) Sometimes, the data

may need more randomization of data added recently (or during a specific period). In such cases,

the constraints can include a nonlinear function like a Sine function or a logarithmic function.
Such provisions can be easily made in programs of controlled randomization included in

Annexure 8.3.

5. CONCLUSION

JChaosIndex is a consistent, objective and easily measurable score for dispersion generated by

any randomization technique. It is data-agnostic, domain-agnostic as it works only on the indexes

before and after randomization. It can be used for measuring dispersion of any size of data that
has undergone randomization. Dispersion includes displacement of each data element as well as

that of its neighbours vis-`a-vis the data element.

Computer Science & Information Technology (CS & IT) 155

By comparing JChaosIndex, one can arrive at the most dispersed configurations. However, such
most dispersed configurations may be exactly the reverse of original sequences, hence are

predictable. Hence, while doing randomization, one should look for optimal configurations that

are dispersed yet unpredictable. This is possible through combining permutation entropy and

NDD techniques, where permutation entropy can help in shortlisting most unpredictable
configurations and NDD (measured as JChaosIndex) can identify most displaced configurations

among the most unpredictable ones.

Finally, using the permutation entropy, random number generator functions of various

programming language libraries were benchmarked. C-Sharp’s random number generator library

is providing more unpredictable numbers as compared to the other such libraries of Python, Java
and C. Python on the other hand provides most dispersed random data.

6. FUTURE WORK

Future work can focus on analysing various configurations of higher order datasets using super
computing infrastructure. Future work may also involve defining an unified measure combining

unpredictability and JChaosIndex and inclusion of the this measure in the programming language

libraries (random number generator libraries). It can also be included as part of database utilities
for randomization of data while committing any new data insertion.

ACKNOWLEDGEMENTS

I would like to thank my parents, my mentors and my teachers for their encouragement. I would
also like to thank my school for allowing me to use the computers.

REFERENCES

[1] W. A. Mathematics and computation - a theory revolutionizing technology and science. 2019.

[2] C. K. e. a. Berger V., Bour L. (2021) A roadmap to using randomization in clinical trials. BMC

Medical Research Methodology, 21(168).

[3] J. Lin, A. Zhang, M. Lecuyer, J. Li, A. Panda, and S. Sen. (2022) Measuring the effect of training

data on deep learning predictions via randomized experiments.

[4] B. C. and P. B. (2002) Permutation entropy: A natural complexity measure for time series. Physical

Review Letters, 88(17).

[5] M. R. and R. P. (1995) Preface. page ix–xiv.

[6] Test for randomness. (2012).

[7] B. M. and S. F. (2018) An application of the runs test to test for randomness of observations

obtained from a clinical survey in an ordered population. Malays Journal of Medical Science,
25(4):146–151.

[8] C. A. Morrison A. and C. J. (2014) Primacy and recency effects as indices of the focus of attention.

Frontiers in Human Neuroscience, 8.

[9] e. Montiel I. (2022) Loot box engagement: A scoping review of primary studies on prevalence and

association with problematic gaming and gambling. PLOS ONE.

[10] P. W. (2007) Numerical recipes - the art of scientific computing.

[11] Z. L. and et.al. (2009) Forbidden patterns, permutation entropy and stock market inefficiency.

Physica A: Statistical Mechanics and its Applications, 388(14):2854–2864.

[12] Random - generating pseudo-random numbers (2024).

[13] Class random from oracle documentation (2024).

[14] Cpp reference - rand from cppreference.com (2022).
[15] .net - random class from Microsoft (2024).

156 Computer Science & Information Technology (CS & IT)

ANNEXURES

Program for most displaced randomization

#!/usr/bin/env python

coding: utf-8

#Author: Jui Keskar (Copyright)
import random

from joblib import Parallel, delayed

origList = [11, 12, 13, 14, 15, 16, 17, 18]

OrigIndexMapList = [0, 1, 2, 3, 4, 5, 6, 7]

finalList = [-1, -1, -1, -1, -1, -1, -1, -1]

def findindex(newpos, currentPerm):

 for k in range(len(currentPerm)):

 if newpos == currentPerm[k]:

 return k

 return -1

def calculate_distance(currentPermutation):

 distance = 0

 for j in range(len(currentPermutation)):

locdist = abs(j - findindex(OrigIndexMapList[j], currentPermutation))

 distance += locdist

 for n in range(j):

locdist = abs((j - n) - (findindex(OrigIndexMapList[j], currentPermutation)

 - findindex(OrigIndexMapList[n], currentPermutation)))

 distance += locdist
 for n in range(len(currentPermutation) - j):

 if j + n <len(currentPermutation):

locdist = abs(n - (findindex(OrigIndexMapList[j + n], currentPermutation)

 - findindex(OrigIndexMapList[j], currentPermutation)))

 distance += locdist

 return distance, currentPermutation

def generate_combinations():

 pool = tuple(OrigIndexMapList)

 n = len(pool)

 indices = list(range(n))

 cycles = list(range(n, 0, -1))
 yield tuple(pool[i] for i in indices)

 while n:

 for i in reversed(range(n)):

 cycles[i] -= 1

 if cycles[i] == 0:

 indices[i:] = indices[i+1:] + indices[i:i+1]

 cycles[i] = n - i

 else:

 j = cycles[i]

 indices[i], indices[-j] = indices[-j], indices[i]

 yield tuple(pool[i] for i in indices)
 break

 else:

 return

combinations = generate_combinations()

Computer Science & Information Technology (CS & IT) 157

results = Parallel(n_jobs=-1)(

 delayed(calculate_distance)(perm)

 for perm in combinations

)
finalDistance, bestPermutation = max(results, key=lambda x: x[0])

for k in range(len(origList)):

finalList[k] = origList[bestPermutation[k]]

print("Original List is", origList)

print("Best Randomization is", finalList)

print("Total displacement =", finalDistance)

print("JChaosIndex =", finalDistance / len(origList) / len(origList))

…………………………………….

Output upon execution:
Original List is [11, 12, 13, 14, 15, 16, 17, 18]

Best Randomization is [18, 17, 16, 15, 14, 13, 12, 11]

Total displacement = 368 Max JChaosIndex = 5.75

Output for bigger data arrays:
9-element array:

Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19]

Best Randomization is [19, 18, 17, 16, 15, 14, 13, 12, 11]

Total displacement = 520

Max JChaosIndex = 6.419753086419753

10-element array:

Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Best Randomization is [20, 19, 18, 17, 16, 15, 14, 13, 12, 11]

Total displacement = 710 Max JChaosIndex = 7.1

11-element array:
Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

Best Randomization is [21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11]

Total displacement = 940

Max JChaosIndex = 7.768595041322314

Note: Parallel processing on high configuration machine was used as bigger arrays had millions of

permutations

Program for calculating permutation entropy

#!/usr/bin/env python

coding: utf-8

#Shreeram

#Author: Jui Keskar (Copyright)

import numpy as np

from itertools import permutations

from collections import Counter

import itertools

import random

import csv

origList = [11,12,13,14,15,16,17,18]

OrigIndexMapList = [0,1,2,3,4,5,6,7]
indexMapList=[]

finalList = [16, 18, 11, 12, 15, 13, 17, 14]

def findindex(newpos, currentPerm):

 for k in range(len(currentPerm)):

 if newpos == currentPerm[k]:

 return k

 return -1

158 Computer Science & Information Technology (CS & IT)

def permutation_entropy(time_series, m, tau):

 n = len(time_series)

ordinal_patterns = []

 # Extract ordinal patterns
 for i in range(n - (m - 1) * tau):

sub_seq = time_series[i:(i + m * tau):tau]

ordinal_pattern = tuple(np.argsort(sub_seq))

ordinal_patterns.append(ordinal_pattern)

 # Count patterns

pattern_counts = Counter(ordinal_patterns)

total_patterns = len(ordinal_patterns)

 # Calculate relative frequencies

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns

 # Compute permutation entropy

 entropy = -np.sum(pattern_frequencies * np.log2(pattern_frequencies +

np.finfo(float).eps))
 return entropy

print("Original List is", origList)

print("Permutation_entropy is:",permutation_entropy(finalList, 3,1))

Program for all random configuration with permutation entropy as well as JChaosIndex

import numpy as np

from itertools import permutations
from collections import Counter

import itertools

import random

import csv

origList = [11,12,13,14,15,16,17]

OrigIndexMapList=[0,1,2,3,4,5,6]

finalList = [-1,-1,-1,-1,-1,-1,-1]

listOfPermutations = list(itertools.permutations(OrigIndexMapList, len(origList)))

finalDistance = 0

bestPermutation = 0

def permutation_entropy(time_series, m, tau):
 n = len(time_series)

ordinal_patterns = []

 # Extract ordinal patterns

 for i in range(n - (m - 1) * tau):

sub_seq = time_series[i:(i + m * tau):tau]

ordinal_pattern = tuple(np.argsort(sub_seq))

ordinal_patterns.append(ordinal_pattern)

 # Count patterns

pattern_counts = Counter(ordinal_patterns)

total_patterns = len(ordinal_patterns)

 # Calculate relative frequencies

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns
 # Compute permutation entropy

 entropy = -np.sum(pattern_frequencies * np.log2(pattern_frequencies

 + np.finfo(float).eps))

 return entropy

def findindex(newpos, currentPerm):

 for k in range(len(currentPerm)):

 if newpos == currentPerm[k]:

Computer Science & Information Technology (CS & IT) 159

 return k

 return -1

Prepare to write to CSV

csv_file = "C:\\Jui\\papers\\Randomization\\code\\data\\permutations_and_distances_new7.csv"

with open(csv_file, mode='w', newline='') as file:
 writer = csv.writer(file)

writer.writerow(["Permutation", "JChaosIndex", "Entropy"]) # Write header

 for i in range(len(listOfPermutations)):

currentPermutation = listOfPermutations[i]

 distance = 0

 for j in range(len(currentPermutation)):

 distance = distance + abs(j - (findindex(OrigIndexMapList[j],

 currentPermutation)))

 for n in range(j):

 if j - n > 0:

 distance = distance + abs((j - n)

 - (findindex(OrigIndexMapList[j], currentPermutation)
 - findindex(OrigIndexMapList[n], currentPermutation)))

 for n in range(len(currentPermutation) - j):

 if j + n <len(currentPermutation) and n > 0:

 distance = distance + abs((+n)

 - (findindex(OrigIndexMapList[j + n], currentPermutation)

 - findindex(OrigIndexMapList[j], currentPermutation)))

 if finalDistance< distance:

finalDistance = distance

bestPermutation = currentPermutation

 # Write permutation and distance to CSV

writer.writerow([currentPermutation,
 distance / (len(OrigIndexMapList)) / (len(OrigIndexMapList)),

permutation_entropy(currentPermutation, 2,1)])

listOfPermutationsPE = list(itertools.permutations(OrigIndexMapList, len(origList)))

print(f"Data written to {csv_file}")

Note: Parallel processing on high configuration machine was used as bigger arrays had millions of

permutations

Appendix III Mathematical model for JChaosIndexmax given the size of data records

coding: utf-8

#Author: Jui Keskar (Copyright)

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

Given data points\newline

x_data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2])

y_data = np.array([7.1, 6.419753086, 5.75, 5.06122449, 4.388888889, 3.68,

3, 2.222222222, 1.5])

Define a polynomial function (e.g., quadratic, cubic)

def polynomial(x, a, b, c, d):
 return a * x**3 + b * x**2 + c * x + d

Perform curve fitting

params, _ = curve_fit(polynomial, x_data, y_data)

Extract the coefficients

a, b, c, d = params

Print the polynomial equation\newline

print(f"The ;polynomial ;equation ;is: y = {a:.4f}x^3 + {b:.4f}x^2 + {c:.4f}x + {d:.4f}")

Plot the data points and the fitted curve

160 Computer Science & Information Technology (CS & IT)

plt.scatter(x_data, y_data, label='Data points')

x_fit = np.linspace(min(x_data), max(x_data), 100)

y_fit = polynomial(x_fit, *params)

plt.plot(x_fit, y_fit, label='Fitted curve', color='red')

plt.xlabel('No. of records [n]')
plt.ylabel('JChaosIndex [max]')

plt.title('JChaosIndex [Max] vs. Dataset size')

plt.legend()

plt.show()

………………………………………..

Output upon execution: The polynomial equation is:

y = 0.0007 ∗x3 − 0.0182 ∗x2 + 0.8317 ∗x − 0.1041

Programs for bench-marking various random number generators

Sample Python program for randomization of data

#!/usr/bin/env python

coding: utf-8

#Shreeram
#Author: Jui Keskar (Copyright)

import numpy as np

from itertools import permutations

from collections import Counter

import itertools

import random

import csv

origList = [11,12,13,14,15,16,17,18]

OrigIndexMapList = [0,1,2,3,4,5,6,7]

indexMapList=[]

finalList = [-1,-1,-1,-1,-1,-1,-1,-1]
def findindex(newpos, currentPerm):

 for k in range(len(currentPerm)):

 if newpos == currentPerm[k]:

 return k

 return -1

def permutation_entropy(time_series, m, tau):

 n = len(time_series)

ordinal_patterns = []

 # Extract ordinal patterns

 for i in range(n - (m - 1) * tau):

sub_seq = time_series[i:(i + m * tau):tau]
ordinal_pattern = tuple(np.argsort(sub_seq))

ordinal_patterns.append(ordinal_pattern)

 # Count patterns

pattern_counts = Counter(ordinal_patterns)

total_patterns = len(ordinal_patterns)

 # Calculate relative frequencies

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns

 # Compute permutation entropy

 entropy = -np.sum(pattern_frequencies *

 np.log2(pattern_frequencies + np.finfo(float).eps))

 return entropy

for i in range(len(origList)):

num = -1

Computer Science & Information Technology (CS & IT) 161

 j = -1

while(True):

num = int(random.random()*8)

 if num not in indexMapList:

 break
finalList[num] = origList[i]

indexMapList.append(num)

distance = 0

for j in range(len(origList)):

 distance = distance + abs(j-(findindex(OrigIndexMapList[j], indexMapList)))

 for n in range(j):

 if j-n > 0: #and n > 0:

 distance = distance + abs((j-n)

 -(findindex(OrigIndexMapList[j],

indexMapList)-findindex(OrigIndexMapList[n], indexMapList)))

 for n in range(len(indexMapList)-j):

 if j+n<len(indexMapList) and n>0:
 distance = distance + abs((+n)

 -(findindex(OrigIndexMapList[j+n],

indexMapList)-findindex(OrigIndexMapList[j], indexMapList)))

print("Original List is", origList)

print("Permutation_entropy is:",permutation_entropy(finalList, 3,1))

print("Randomized Configuration is:",finalList)

print("JChaosIndex =", distance / len(origList)/ len(origList))

………………………………………………

Sample Java program for randomization of data

// Author: Jui Keskar (Copyright)

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.Random;

public class ListRandomizer {

 public static void main(String[] args) {
 List<Integer>origList = Arrays.asList(11, 12, 13, 14, 15, 16, 17, 18);

 List<Integer>origIndexMapList = Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7);

 List<Integer>indexMapList = new ArrayList<>();

 List<Integer>finalList =

 new ArrayList<>(Arrays.asList(-1, -1, -1, -1, -1, -1, -1, -1));

 Random random = new Random();

 for (int i = 0; i<origList.size(); i++) {

 int num;

 do {

num = random.nextInt(8);

 } while (indexMapList.contains(num));
finalList.set(num, origList.get(i));

indexMapList.add(num);

 }

 double distance = 0;

 for (int j = 0; j <origList.size(); j++) {

 distance += Math.abs(j - findIndex(origIndexMapList.get(j), indexMapList));

 for (int n = 1; n <= j; n++) {

 distance += Math.abs((j - n)

 - (findIndex(origIndexMapList.get(j),

indexMapList) - findIndex(origIndexMapList.get(j - n),

indexMapList)));

162 Computer Science & Information Technology (CS & IT)

 }

 for (int n = 1; j + n <indexMapList.size(); n++) {

 distance += Math.abs(n

 - (findIndex(origIndexMapList.get(j + n),

indexMapList) - findIndex(origIndexMapList.get(j),
indexMapList)));

 }

 }

System.out.println("Original List is " + origList);

System.out.println("Best Randomization is: " + finalList);

System.out.println("JChaosIndex = " + (distance / origList.size() / origList.size()));

 }

 private static int findIndex(int newpos, List<Integer>currentPerm) {

 for (int k = 0; k <currentPerm.size(); k++) {

 if (newpos == currentPerm.get(k)) {

 return k;
 }

 }

 return -1;

 }

}

…………………………………………….

Sample C program for randomization of data

// Online C compiler to run C program online

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define SIZE 8

int findIndex(int newpos, int currentPerm[], int size) {

 for (int i = 0; i< size; i++) {

 if (newpos == currentPerm[i])

 return i;

 }

 return -1;
}

int main()

{

 int origList[SIZE] = {11, 12, 13, 14, 15, 16, 17, 18};

 int origIndexMapList[SIZE] = {0, 1, 2, 3, 4, 5, 6, 7};

 int indexMapList[SIZE];

 int finalList[SIZE];

 int usedIndices[SIZE] = {0}; // To keep track of used indices

 double distance = 0.0;

srand(time(NULL)); // Seed the random number generator

// Initialize finalList to -1
 for (int i = 0; i< SIZE; i++) {

finalList[i] = -1;

 }

// Generate random positions and update finalList and indexMapList

 for (int i = 0; i< SIZE; i++) {

 int num;

 do {

num = rand() % SIZE;

Computer Science & Information Technology (CS & IT) 163

 } while (usedIndices[num] == 1);

finalList[num] = origList[i];

indexMapList[i] = num;

usedIndices[num] = 1; // Mark this index as used
 }

// Calculate distances

 for (int j = 0; j < SIZE; j++) {

 distance += abs(j - findIndex(origIndexMapList[j], indexMapList, SIZE));

 for (int n = 1; n <= j; n++) {

 distance += abs((j - n) - (findIndex(origIndexMapList[j],

indexMapList, SIZE) - findIndex(origIndexMapList[n], indexMapList, SIZE)));

 }

 for (int n = 1; j + n < SIZE; n++) {

 distance += abs(n - (findIndex(origIndexMapList[j + n],

indexMapList, SIZE) - findIndex(origIndexMapList[j], indexMapList, SIZE)));

 }
 }

// Print the results

printf("Original List is: ");

 for (int i = 0; i< SIZE; i++) {

printf("\%d ", origList[i]);

 }

printf("\textbackslash n");

printf("Best Randomization is: ");

 for (int i = 0; i< SIZE; i++) {

printf("%d ", finalList[i]);
 }

printf("\textbackslash n");

printf("JChaosIndex = %f\n", distance / SIZE/SIZE);

 return 0;

…………………………………………

Sample C Sharp program for randomization of data

using System;

using System.Collections.Generic;

class Program

{

 static void Main()

 {

 List<int>origList = new List<int> {11, 12, 13, 14, 15, 16, 17, 18};

 List<int>origIndexMapList = new List<int> {0, 1, 2, 3, 4, 5, 6, 7};

 List<int>indexMapList = new List<int>();

 List<int>finalList = new List<int>(new int[8]);
 Random random = new Random();

// Initialize finalList with -1

 for (int i = 0; i<finalList.Count; i++)

 {

finalList[i] = -1;

 }

// Generate random positions and update finalList and indexMapList

 for (int i = 0; i<origList.Count; i++)

 {

 int num;

 do

164 Computer Science & Information Technology (CS & IT)

 {

num = random.Next(8); // Generates a random number between 0 and 7

 } while (finalList[num] != -1);

finalList[num] = origList[i];
indexMapList.Add(num);

 }

 double distance = 0;

// Calculate distances

 for (int j = 0; j <origList.Count; j++)

 {

 distance += Math.Abs(j - FindIndex(origIndexMapList[j], indexMapList));

 for (int n = 1; n <= j; n++)

 {

 distance += Math.Abs((j - n) - (FindIndex(origIndexMapList[j],

indexMapList) - FindIndex(origIndexMapList[n], indexMapList)));

 }
 for (int n = 1; j + n <indexMapList.Count; n++)

 {

 distance += Math.Abs(n - (FindIndex(origIndexMapList[j + n],

indexMapList) - FindIndex(origIndexMapList[j], indexMapList)));

 }

 }

Console.WriteLine("Original List is: " + string.Join(", ", origList));

Console.WriteLine("Best Randomization is: " + string.Join(", ", finalList));

Console.WriteLine("JChaosIndex = " + (distance / origList.Count/ origList.Count));

 }

 static int FindIndex(int newpos, List<int>currentPerm)

 {

 return currentPerm.IndexOf(newpos);

 }

}

………………………………………………

AUTHOR

Jui Keskar is a dedicated researcher and innovator with a strong focus on the

intersection of computer science and data science, particularly as they apply to

healthcare technology. Jui has developed wearable devices like PDCheck3D and

JTremor3D, which leverage computation and data analytics. Devices may assist to

monitor and assist in the management of Parkinson's Disease. Jui has been

recognized internationally for her contributions to biomedical computation, earning
prestigious awards such as the Prime Minister’s award for Innovation (India’s top

civilian honour for under 18) and being featured in Forbes India’s 30-under-30

Special Mention. She also won two international awards at the International Science

and Engineering Fair, conducted by Society for Science, USA. Jui has a patent pending in the US. With a

solid academic foundation in Physics, Mathematics, and Computer Science from the International

Baccalaureate program, and participation in elite programs like MIT’s Research Science Institute, Jui

continues to march towards her mission of leveraging technology for the betterment of patients.

©2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	1. Introduction
	2. Methods
	2.1. Measuring Dispersion in Randomized Data Using Jchaosindex
	2.2. Getting most Dispersed Configuration

	3. Results
	3.1. Analysing Random Configurations Based Various Constraints
	3.2. Large Data Records
	3.3. Benchmarking Various Random Number Generators

	4. Discussion
	5. Conclusion
	6. Future work
	Acknowledgements
	References
	Annexures
	Program for most displaced randomization
	Program for calculating permutation entropy
	Program for all random configuration with permutation entropy as well as JChaosIndex
	Appendix III Mathematical model for JChaosIndexmax given the size of data records
	Programs for bench-marking various random number generators
	Sample Python program for randomization of data
	Sample Java program for randomization of data
	Sample C program for randomization of data
	Sample C Sharp program for randomization of data

