
David C. Wyld et al. (Eds): NLAI, IBCOM, MLDS, GridCom, SCAI, ICCSEA, SPPR – 2024 

pp. 145-164, 2024. - CS & IT - CSCP 2024                                                   DOI: 10.5121/csit.2024.142209 

 
JCHAOSINDEX: MEASURING AND 

BENCHMARKING DISPERSION IN 

RANDOMIZED DATA 
 

Jui Keskar 
 

Metropolitan School, Frankfurt, Germany 

 

ABSTRACT 
 
Randomization of data is an ongoing need for various business reasons like design of 

clinical trials, or training an AI model, to name a few. To control the level of 

randomization, it is important to measure the level of randomness, i.e. unpredictability and 

dispersion, in the “randomized” data vis-à-vis the original data. While Permutation 

entropy measures unpredictability, there is no technique that measures dispersion of 

randomized data. To measure dispersion in randomized data, “Neighbour-displacement-

delta” (NDD) based technique is proposed. JChaosIndex, measure of dispersion, considers 

displacement of each data element as well as relative displacements of the neighbours of 
each data element. Higher the JChaosIndex, more disersed is the randomized data. 

JChaosIndex measurement technique can be easily included in a programming language 

library or database methods or any algorithm. Importantly, this technique is domain-

agnostic as it works purely on the indexes of the data record and not the actual data. 
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1. INTRODUCTION 
 

Randomness has been studied for long in the context of algorithms, probability, and complexity 

[1][5]. There also exists “Runs test” to test the randomness of samples [6]. It is based on 
statistical techniques [7]. There also is a need to measure randomness in the context of data 

processing and data storage. Such randomization of data can be business critical at times. This 

could be either for the reasons of privacy, or for removing time bias in the data (to avoid recency 
effect [8]) or just for fairness (say for the purpose of gaming [9]). Randomization is usually done 

in programs by using the random number generators [10]. 

 

However, it is important to be able to measure level of randomness in the randomized data (as 
compared to the original data). This will not only help in knowing if the randomized 

configuration is indeed the most optimal one, but will also help in designing a randomization 

technique that will provide the best configuration. 

This paper describes in detail the technique for calculating JChaosIndex - a measure of dispersion 

generated by any data randomization process. The combination of permutation entropy and 

JChaosIndex can be useful in comparing various randomized configurations to pick the most 

suitable one. 

https://airccse.org/
https://airccse.org/csit/V14N22.html
https://doi.org/10.5121/csit.2024.142209
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2. METHODS 
 
The method involves measuring the movements in the randomized data vis-à-vis the original 

data. 

 

2.1. Measuring Dispersion in Randomized Data Using Jchaosindex 
 

In this technique, to be able to measure dispersion of the “randomized” data, one needs to 
measure the distance of the absolute new position of a particular data element (record) from its 

absolute original position before randomization. One also needs to check the relative position 

change of the neighbours of the data element vis-a`-vis neighbours’ old relative position (old 

relative position of neighbour minus new relative position of that neighbour). 
 

This is because a record may have moved very far from its original position, but if its neighbours 

are still the same in the new configuration, then the dispersion level is low. Total dispersion of 
data elements and their neighbours also needs to be normalized by the size of data for ease of 

comparison across datasets of varying sizes. 

 

 
 

Figure 1: Calculating the neighbour-displacement delta (NDD) 

 
Figure 1 depicts the nuances involved in measuring dispersion. Few points to be noted about Fig. 

1 are as follows: ID1 is the index of original data in the original record collection. 

 

ID2 is the new index of data in the new randomized data collection. Also, one can see that 
ID1 is now randomized in the new randomized data collection. As an example, for the left 

(original) data collection, the blue and orange arrows highlight the original relative positions of a 

few neighbours (1 and 2) relative to a specific data element (3). Whereas, for the right 
(randomized) data collection, the green and blue arrows highlight the new ‘displaced’ positions of 

these neighbours (1 and 2) relative to new position (ID2=2) of the original data element (ID1=3). 

While implementing the measurements (JChaosIndex), one needs to temporarily create 
ID1, ID2 fields and have them pre-populated before and after randomization respectively. 

 

Also, methods old() and new() are needed. Function old() will take ID2 value as an argument and 

return the corresponding value in the ID1 field of the specific data element [i.e. ID1 = old(ID2) 
e.g. 3 = old(2)] . Function new() will take ID1 value as an argument and return the corresponding 
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value in the ID2 field [i.e. ID2 = new(ID1) e.g. 2 = new(3)] . Please note, both ID1 and ID2 have 
all unique values without repetition. 

 

Comparing the values in column ID1 and ID2 can provide information about absolute position 

change of each record. Ex. Data in ID1=3 in the original data is now at position ID2=2 in the 
Randomized data. Hence, it has moved by 1 position [|3 − 2|]. One also needs to check the 

relative position of neighbours of each of the data element and check how their distance from the 

data element has changed in the new “randomized” data. E.g. In the Original data, one of the 
neighbours of ID1=3 was ID1=1. The relative position of 1 vis-a-vis 3 was -2 (i.e.1-3). For 

convenience of calculations, positions lesser than the given data element is considered negative 

and higher ones are considered positive. In the new configuration, when the data element (ID1=3) 
has moved to ID2=2 and the “neighbour” ID1=1 is now moved to ID2=5. Thus, a neighbour 

which was -2 records away from that data element is now 5-2 = 3 records away. The change of 

this neighbour’s position relative to the data element (ID1=3) is |3 − (−2)| = 5 record. 

 
In this way, relative dispersion of each data elements and that of their neighbours can be 

calculated and positive value (mod) of all such relative displacements are added together and 

normalized (divided) using the square of total record count (n2). 
 

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =  
1

𝑛2
∑ [ |𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]  ]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

 

 

Normalization using ’n2’ provides a near-straight-line relationship between maximum 

JChaosIndex and number of records, hence is most suited for normalization. 

 

2.2. Getting most Dispersed Configuration 
 
Most dispersed configuration can be achieved if the dispersion levels of all possible permutations 

of data can be measured numerically. The configuration that corresponds to the max dispersion 

level can then be picked up for further processing. Figure 2 depicts this approach. Please note, 

calculating JChaosIndex requires both the new “randomized” configuration as well original 
configuration before randomizing the data. 

 

 
 

Figure 2: How to get most dispersed configuration 

 

Following is one way to get to the most dispersed configuration: 

................................................................................................. 

JChaosIndexmax = 0 
BestDataConfigurationIndexArray = [] 

Iterate through all possible data configurations: 
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NewDataConfigurationIndexArray = [< originalindexinthenewseq >] Calculate 
Randomization Index for this configuration: 

 

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =  
1

𝑛2
∑ [ |𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]  ]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

 

 

Compare the index with the earlier max index: If JChaosIndex > JChaosIndexmax: 

 
JChaosIndexmax = JChaosIndex 

 

BestDataConfigurationIndexArray = NewDataConfigurationIndexArray 
. ................................................................................................ 

Annexure 8.1 contains a sample Python program for calculating the most dispersed configuration 

of an 8-element-long array. 

 
Following are the details of Program (Annexure 8.1): 

Original List is [11, 12, 13, 14, 15, 16, 17, 18] 

Most dispersed configuration is [18, 17, 16, 15, 14, 13, 12, 11] 
Total displacement = 368 

Max JChaosIndex = 5.75 

 
This however can be expensive on CPU due to the sheer number of permutations possible. E.g. 

for just 8 data points, the possible permutations are 40,320 (i.e. 8!). Calculating the level of 

displacement for each permutation can be time consuming. Also, the above configuration with 

maximum JChaosIndex is predictable making it undesirable. Hence, a more pragmatic technique 
is to use random number generators to come up with a few random configurations and to measure 

the permutation entropy and dispersion level of each of the configurations and pick the one with 

optimal randomness level. Another approach is to check permutation entropy of each 
permutation, pick the ones with maximum permutation entropy and then get the most dispersed 

ones from them. 

 

2.2.1. Challenges with Perfectly Dispersed Configuration 
 

A most dispersed configuration selected using the above technique will have the highest 

JChaosIndex. For this selected configuration, each record and its neighbours have the maximum 
displacement vis-`a-vis their original position. But the configuration with maximum dispersion is 

always the configuration which is the exact reverse sequence of the original sequence of records. 

This makes it too predictable. One can always predict the original sequence from the randomized 
sequence if one knows that the new configuration has the highest JChaosIndex! Hence, the key is 

to get the most unpredictable and dispersed configuration (rather than the most displaced one 

only) through the judicious use of permutation entropy and JChaosIndex. 

 

2.2.2. How is Permutation Entropy Useful? 

 

Permutation entropy is a measure of the complexity of a time series based on the ordinal patterns 
(permutations) of its values over time [4]. It is particularly suited for analysing time series data, 

where the order of data points is crucial. However, it can still use permutation entropy by treating 

the data series as a time series with an implicit order. [11]. 
 

For a given embedding dimension (m) and time delay (τ = 1) 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐻) =  −
[∑ 𝑃(𝜋) log(𝑃(𝜋)]]

log(𝑚!)
 (Added over all possible 

permutation patterns of length m) [4].P(π) in the equation is the probability of a permutation 
pattern π. 

 

2.2.3. How to Get the Most Random Configuration? 
 

For most random configuration, the randomization process needs to be conducted in two steps. 

Firstly, identify all possible unpredictable configurations using permutation entropy and then look 

for most displaced ones among them. Figure 3 depicts the technique to get most random 
configuration. 

 

 
 

Figure 3: How to get most random configuration 

 
Following is one way to get to the most optimal configuration: 

.......................................................................................................................................................... 

JChaosIndexopt = 0 //Optimal displacement 
OptDataConfigurationIndexArray = [] //Optimal configuration 

Embedding Dimension = m //Embedding dimension 

period = τ //period of data series 

 
Calculate maximum permutation entropy (m p e) for given data size, embedding dimension 

and period 

Iterate through all possible data configurations: 
 

For each NewDataConfigurationIndexArray: 

 

Calculate Permutation Entropy (p e) for each configuration: 
If m p e == p e: 

 

Calculate Randomization Index for this configuration: 
 

𝐽𝐶ℎ𝑎𝑜𝑠𝐼𝑛𝑑𝑒𝑥 =  
1

𝑛2
∑ [ |𝑝 − 𝑜𝑙𝑑(𝑝)| + ∑ [|𝑛𝑒𝑤(𝑜𝑙𝑑(𝑝) + 𝑖|]  ]

𝑖=1−𝑜𝑙𝑑(𝑝)

𝑖= −𝑜𝑙𝑑(𝑝)

𝑝=𝑛−1

𝑝=0

 

 

If JChaosIndex >JChaosIndexopt: 

JChaosIndexopt = JChaosIndex 

OptDataConfigurationIndexArray = NewDataConfigurationIndexArray 
. ........................................................................................................................................................ 

 

Annexure 8.2 contains a sample Python program for calculating permutation entropy of any data 
series. Annexure 8.3 contains sample program for calculating most unpredictable and dispersed 
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configuration of an 8-element-long array using permutation entropy and Neighbour-
displacement-delta (NDD). Optimal configuration selected is the one with maximum permutation 

entropy score of 2.585 and optimal JChaosIndex of 5.3125 within the enforced constraints 

regarding unpredictability. 

 
For an 8-element-long array, out of all the possible 40,320 permutations there are about 2396 

permutations that have highest permutation entropy of 2.585. JChaosIndex helps in identifying 

the most dispersed configurations from these most unpredictable ones. 
 

Following are the details of the two most unpredictable and most dispersed configurations: 

 
1) 

Original List is [11, 12, 13, 14, 15, 16, 17, 18] 

Constraints = Maximum permutation entropy AND optimal dispersion of data elements 

Best Randomization is [17, 15, 18, 16, 12, 13, 14, 11] 
Total displacement = 340 

Optimal JChaosIndex = 5.3125 

 
2) 

Original List is [11, 12, 13, 14, 15, 16, 17, 18] 

Constraints = Maximum permutation entropy AND optimal dispersion of data elements 
Best Randomization is [18, 15, 16, 17, 13, 11, 14, 12] 

Total displacement = 340 

Optimal JChaosIndex = 5.3125 

 
While these are not the one with most displacement, they will surely provide the most optimal 

random configurations while making them harder to predict than the most dispersed one. Figure 4 

highlights graphical views of these configurations. 
 

3. RESULTS 
 

Analysis involved measuring the overall dispersion level for each of the combination – optimal or 

otherwise.  
 

3.1. Analysing Random Configurations Based Various Constraints 
 
Analysing the most dispersed (maximum JChaosIndex) array (as shown in Fig. 4) reveals the 

obvious. The data at extreme position is dispersed the most, while the data towards the centre is 

dispersed by least position. The challenge with this distribution is that it is not uniform and it is 
too easily predictable. 
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Figure 4: Positional displacement for most dispersed configuration 

 

Thus, it is important to get more unpredictable randomization across all the data points. This can 
be done by ensuring permutation entropy to be maximum and then looking for the most dispersed 

configurations. Fig 5 [(a) and (b)]includes graphical view of the two most optimal configurations 

for 8-element-long array. Fig. 6 [(a) and (b)] includes two second-most optimal configurations 
achieved for 8-element-long array. For these second-most optimal configurations, the 

unpredictability (PE) is still the highest while dispersion (measured using NDD JChaosIndex) is 

at 5.25 . 

 

 
 

Figure 5: Displacement of positions with max PE and most optimal NDD cases (5.3125) 

 

 
 

Figure 6: Displacement of positions with max PE and 2nd optimal NDD cases (5.25) 
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Figure 7 depicts the distribution of Permutation Entropy and JChaosIndex for various data 
records sizes for all possible permutations. 

 

 
 

Figure 7: Distribution of Permutation Entropy and JChaosIndex for various data records sizes for all 

possible permutations. 

 

From these analyses, clearly, displacements of 0 or 1 for an 8-element-long data array (25% of 
data records count or less) are absent in the optimal configurations. Also, for the most optimal 

ones, the maximum displacement is going all the way up to 7 (which is max possible given the 

array size of 8). 

 

3.2. Large Data Records 
 
So far, the dataset had only 8 records (data elements). However, in the real world, there are much 

larger records that keep growing further. Analysis was done on datasets of varying sizes to find 

out max JChaosIndex for each of these sets. Figure 8 shows the trend of max JChaosIndex as the 

dataset size is increased. 
 

It is interesting to find that max JChaosIndex has a straight-line-like relationship with the 
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Figure 8: Max JChaosIndex for various dataset sizes 

 

number of records (n) for the small-sized datasets. The red dotted-line in the chart is the trend-

line, which connects each of the data points almost perfectly. 
 

As detailed in Annexure 8.4, equation of this line is: 

 

Max JChaosIndex = 0.0007 ∗n3 − 0.0182 ∗n2 + 0.8317 ∗n − 0.1041 

 

This equation has been derived using data upto 10 data records and tested on the data point of 

11 data records with 99.93% accuracy 
 

This can be used to know the max dispersion score (JChaosIndex) for any number of records. For 

example, a dataset with 100 records, the max JChaosIndex possible is about 601. This number 
will be useful while calculating the optimal randomness. As seen for the case of 8 record dataset, 

optimal randomness for any dataset can be found for cases when unpredictability of the 

combination is highest (permutation entropy is 2.585 for 8-element-long array) and JChaosIndex 
is also high (5.3125) for them. In general, minimum dispersion of more than 25% of the dataset 

size can fetch better configurations provided the dispersion distribution across data elements 

remain unpredictable. 

 

3.3. Benchmarking Various Random Number Generators 
 
Computers usually have two types of random number generators; viz. True Random Number 

Generators (TRNG) and Pseudo-Random Number Generators (PRNG)[10]. Randomization of 

dataset is often performed using the Pseudo-Random Number Generators (PRNG) of various 

programming language libraries. The easiest step is to generate a non-repeated random number 
and allocate that position to a data point that needs to be randomized. Permutation entropy and 

JChaosIndex can be calculated for configurations thus generated using above technique. As part 

of this research, the average and maximum Permutation entropy and JChaosIndex for such 
randomization was calculated for four popular programming languages. Annexure 8.5 contains 

the detailed programs used for measuring randomization performed in each of these languages. 

Following are the summarized findings: 
 

As seen from Table 1, C-Sharp’s library function for random number generation is providing 

themost unpredictability as compared to Python, Java and C libraries. Interestingly, none of these 

languages could provide the most unpredictable configuration (permutation entropy of 2.85)! 
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Table 1: Benchmarking of random numbers generated by various language libraries 

 
Language Library/method Permutationentropy (PE) 

andJChaosIndex (JC) in 5 

attempts 

Mean 

PE, JC 

Max 

PE,JC 

Python random.random()[12] PE: 2.25, 2,25, 1,58, 1.79, 1.79 

JC: 3.78, 4.18, 4.53, 4.09, 3.75 

1.93, 

4.07 

2.25, 

4.53 

Java Random.nextInt()[13] PE: 2.25, 2.25, 1.58, 1.79, 1.79 

JC: 3.25, 3.81, 3.25, 2.26, 3.97 

2.02, 

3.31 

2.25, 

3.97 

C rand()[14] PE: 1.91, 1.79, 1.91, 2.25, 2.25 

JC: 3.88, 3.25, 2.75, 2.4, 3.31 

2.02, 

3.12 

2.25, 

3.88 

C Sharp Random().next()[15] PE: 1.91, 2.25, 2.25, 2.25, 2.25 

JC: 2.75, 4.16, 3.97, 4.09, 3.38 

2.18, 

3.67 

2.25, 

4.16 

 

4. DISCUSSION 
 
JChaosIndex is an objective measure of dispersion generated in any data through randomization. 

It is independent of the actual data and hence domain-agnostic. It uses the indexes of the original 

data and the ones in the randomized data. JChaosIndex is the total dispersion of all data elements 
and their neighbours due to randomization, normalized using the square of the number of records 

in the dataset. 

 

As seen in Fig. 8 earlier, as the number of records increases, the max JChaosIndex also increases. 
This may be happening since an increased number of records opens up opportunity for more 

bigger dispersion. This is an important finding which highlights consistency of the JChaosIndex 

measure. 
 

The challenge with most dispersed configuration is that it is unfair on the central records, where it 

does not do much displacement. Predictability of most dispersed configuration is the biggest 
disadvantage. 

 

As seen in Fig 4, most random configurations can be found through finding most unpredictable 

combinations using permutation entropy measurement technique followed by most dispersed 
configurations using JChaosIndex measurement technique on them. For an 8-element-long array 

having 40,320 possible permutations about 2396 permutations have highest permutation entropy 

(2.585). Out of these highest entropy permutations, two most dispersed configurations could be 
found to have JChaosIndex of 5.3125. In these configurations, each of the individual data 

element’s displacements was greater than 2 (25% of the data record size) Sometimes, the data 

may need more randomization of data added recently (or during a specific period). In such cases, 

the constraints can include a nonlinear function like a Sine function or a logarithmic function. 
Such provisions can be easily made in programs of controlled randomization included in 

Annexure 8.3. 

 

5. CONCLUSION 
 

JChaosIndex is a consistent, objective and easily measurable score for dispersion generated by 

any randomization technique. It is data-agnostic, domain-agnostic as it works only on the indexes 

before and after randomization. It can be used for measuring dispersion of any size of data that 
has undergone randomization. Dispersion includes displacement of each data element as well as 

that of its neighbours vis-`a-vis the data element. 
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By comparing JChaosIndex, one can arrive at the most dispersed configurations. However, such 
most dispersed configurations may be exactly the reverse of original sequences, hence are 

predictable. Hence, while doing randomization, one should look for optimal configurations that 

are dispersed yet unpredictable. This is possible through combining permutation entropy and 

NDD techniques, where permutation entropy can help in shortlisting most unpredictable 
configurations and NDD (measured as JChaosIndex) can identify most displaced configurations 

among the most unpredictable ones. 

 
Finally, using the permutation entropy, random number generator functions of various 

programming language libraries were benchmarked. C-Sharp’s random number generator library 

is providing more unpredictable numbers as compared to the other such libraries of Python, Java 
and C. Python on the other hand provides most dispersed random data. 

 

6. FUTURE WORK 
 

Future work can focus on analysing various configurations of higher order datasets using super 
computing infrastructure. Future work may also involve defining an unified measure combining 

unpredictability and JChaosIndex and inclusion of the this measure in the programming language 

libraries (random number generator libraries). It can also be included as part of database utilities 
for randomization of data while committing any new data insertion. 
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ANNEXURES 
 

Program for most displaced randomization 
 

#!/usr/bin/env python 

# coding: utf-8 

#Author: Jui Keskar (Copyright) 
import random 

from joblib import Parallel, delayed 

origList = [11, 12, 13, 14, 15, 16, 17, 18] 

OrigIndexMapList = [0, 1, 2, 3, 4, 5, 6, 7] 

finalList = [-1, -1, -1, -1, -1, -1, -1, -1] 

 

def findindex(newpos, currentPerm): 

    for k in range(len(currentPerm)): 

        if newpos == currentPerm[k]: 

            return k 

    return -1 
 

def calculate_distance(currentPermutation): 

    distance = 0 

    for j in range(len(currentPermutation)): 

locdist = abs(j - findindex(OrigIndexMapList[j], currentPermutation)) 

 

        distance += locdist 

        for n in range(j): 

locdist = abs((j - n) - (findindex(OrigIndexMapList[j], currentPermutation)  

            - findindex(OrigIndexMapList[n], currentPermutation))) 

            distance += locdist 
        for n in range(len(currentPermutation) - j): 

            if j + n <len(currentPermutation): 

locdist = abs(n - (findindex(OrigIndexMapList[j + n], currentPermutation)  

                - findindex(OrigIndexMapList[j], currentPermutation))) 

                distance += locdist 

    return distance, currentPermutation 

 

def generate_combinations(): 

    pool = tuple(OrigIndexMapList) 

    n = len(pool) 

    indices = list(range(n)) 

    cycles = list(range(n, 0, -1)) 
    yield tuple(pool[i] for i in indices) 

    while n: 

        for i in reversed(range(n)): 

            cycles[i] -= 1 

            if cycles[i] == 0: 

                indices[i:] = indices[i+1:] + indices[i:i+1] 

                cycles[i] = n - i 

            else: 

                j = cycles[i] 

                indices[i], indices[-j] = indices[-j], indices[i] 

                yield tuple(pool[i] for i in indices) 
                break 

        else: 

            return 

 

combinations = generate_combinations() 
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results = Parallel(n_jobs=-1)( 

    delayed(calculate_distance)(perm) 

    for perm in combinations 

) 
finalDistance, bestPermutation = max(results, key=lambda x: x[0]) 

for k in range(len(origList)): 

finalList[k] = origList[bestPermutation[k]] 

print("Original List is", origList) 

print("Best Randomization is", finalList) 

print("Total displacement =", finalDistance) 

print("JChaosIndex =", finalDistance / len(origList) / len(origList))     

……………………………………. 

Output upon execution: 
Original List is [11, 12, 13, 14, 15, 16, 17, 18] 

Best Randomization is [18, 17, 16, 15, 14, 13, 12, 11] 

Total displacement = 368 Max JChaosIndex = 5.75 

Output for bigger data arrays: 
9-element array: 

Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19] 

Best Randomization is [19, 18, 17, 16, 15, 14, 13, 12, 11] 

Total displacement = 520 

Max JChaosIndex = 6.419753086419753 

10-element array: 

Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 

Best Randomization is [20, 19, 18, 17, 16, 15, 14, 13, 12, 11] 

Total displacement = 710 Max JChaosIndex = 7.1 

11-element array: 
Original List is [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] 

Best Randomization is [21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11] 

Total displacement = 940 

Max JChaosIndex = 7.768595041322314 

Note: Parallel processing on high configuration machine was used as bigger arrays had millions of 

permutations 

 

Program for calculating permutation entropy 
 
#!/usr/bin/env python 

# coding: utf-8 

#Shreeram 

#Author: Jui Keskar (Copyright) 

import numpy as np 

from itertools import permutations 

from collections import Counter 

import itertools 

import random 

import csv 

origList = [11,12,13,14,15,16,17,18] 

OrigIndexMapList = [0,1,2,3,4,5,6,7] 
indexMapList=[] 

finalList = [16, 18, 11, 12, 15, 13, 17, 14] 

 

def findindex(newpos, currentPerm): 

    for k in range(len(currentPerm)): 

        if newpos == currentPerm[k]: 

            return k 

    return -1 
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def permutation_entropy(time_series, m, tau): 

    n = len(time_series) 

ordinal_patterns = [] 

    # Extract ordinal patterns 
    for i in range(n - (m - 1) * tau): 

sub_seq = time_series[i:(i + m * tau):tau] 

ordinal_pattern = tuple(np.argsort(sub_seq)) 

ordinal_patterns.append(ordinal_pattern) 

    # Count patterns 

pattern_counts = Counter(ordinal_patterns) 

total_patterns = len(ordinal_patterns) 

    # Calculate relative frequencies 

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns 

    # Compute permutation entropy 

    entropy = -np.sum(pattern_frequencies * np.log2(pattern_frequencies +  

np.finfo(float).eps)) 
    return entropy 

 

print("Original List is", origList)         

print("Permutation_entropy is:",permutation_entropy(finalList, 3,1)) 

 

Program for all random configuration with permutation entropy as well as JChaosIndex 
 

import numpy as np 

from itertools import permutations 
from collections import Counter 

import itertools 

import random 

import csv 

origList = [11,12,13,14,15,16,17] 

OrigIndexMapList=[0,1,2,3,4,5,6] 

finalList = [-1,-1,-1,-1,-1,-1,-1] 

listOfPermutations = list(itertools.permutations(OrigIndexMapList, len(origList))) 

finalDistance = 0 

bestPermutation = 0 

def permutation_entropy(time_series, m, tau): 
    n = len(time_series) 

ordinal_patterns = [] 

    # Extract ordinal patterns 

    for i in range(n - (m - 1) * tau): 

sub_seq = time_series[i:(i + m * tau):tau] 

ordinal_pattern = tuple(np.argsort(sub_seq)) 

ordinal_patterns.append(ordinal_pattern) 

    # Count patterns 

pattern_counts = Counter(ordinal_patterns) 

total_patterns = len(ordinal_patterns) 

    # Calculate relative frequencies 

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns 
    # Compute permutation entropy 

    entropy = -np.sum(pattern_frequencies * np.log2(pattern_frequencies 

    + np.finfo(float).eps)) 

    return entropy 

 

def findindex(newpos, currentPerm): 

    for k in range(len(currentPerm)): 

        if newpos == currentPerm[k]: 
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            return k 

    return -1 

# Prepare to write to CSV 

csv_file = "C:\\Jui\\papers\\Randomization\\code\\data\\permutations_and_distances_new7.csv" 

with open(csv_file, mode='w', newline='') as file: 
    writer = csv.writer(file) 

writer.writerow(["Permutation", "JChaosIndex", "Entropy"])  # Write header 

    for i in range(len(listOfPermutations)): 

currentPermutation = listOfPermutations[i] 

        distance = 0 

        for j in range(len(currentPermutation)): 

            distance = distance + abs(j - (findindex(OrigIndexMapList[j],  

            currentPermutation))) 

            for n in range(j): 

                if j - n > 0: 

                    distance = distance + abs((j - n)  

                    - (findindex(OrigIndexMapList[j], currentPermutation)  
                    - findindex(OrigIndexMapList[n], currentPermutation))) 

            for n in range(len(currentPermutation) - j): 

                if j + n <len(currentPermutation) and n > 0: 

                    distance = distance + abs((+n)  

                    - (findindex(OrigIndexMapList[j + n], currentPermutation)  

                    - findindex(OrigIndexMapList[j], currentPermutation))) 

            if finalDistance< distance: 

finalDistance = distance 

bestPermutation = currentPermutation 

        # Write permutation and distance to CSV 

writer.writerow([currentPermutation,  
        distance / (len(OrigIndexMapList)) / (len(OrigIndexMapList)),  

permutation_entropy(currentPermutation, 2,1)]) 

listOfPermutationsPE = list(itertools.permutations(OrigIndexMapList, len(origList))) 

print(f"Data written to {csv_file}") 

 

Note: Parallel processing on high configuration machine was used as bigger arrays had millions of 

permutations 

 

Appendix III Mathematical model for JChaosIndexmax given the size of data records 
 

# coding: utf-8 

#Author: Jui Keskar (Copyright) 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

# Given data points\newline 

x_data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2]) 

y_data = np.array([7.1, 6.419753086, 5.75, 5.06122449, 4.388888889, 3.68,  

3, 2.222222222, 1.5]) 

# Define a polynomial function (e.g., quadratic, cubic) 

def polynomial(x, a, b, c, d): 
    return a * x**3 + b * x**2 + c * x + d 

# Perform curve fitting 

params, _ = curve_fit(polynomial, x_data, y_data) 

# Extract the coefficients 

a, b, c, d = params 

# Print the polynomial equation\newline 

print(f"The ;polynomial ;equation ;is: y = {a:.4f}x^3 + {b:.4f}x^2 + {c:.4f}x + {d:.4f}") 

# Plot the data points and the fitted curve 
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plt.scatter(x_data, y_data, label='Data points') 

x_fit = np.linspace(min(x_data), max(x_data), 100) 

y_fit = polynomial(x_fit, *params) 

plt.plot(x_fit, y_fit, label='Fitted curve', color='red') 

plt.xlabel('No. of records [n]') 
plt.ylabel('JChaosIndex [max]') 

plt.title('JChaosIndex [Max] vs. Dataset size') 

plt.legend() 

plt.show() 

……………………………………….. 

Output upon execution: The polynomial equation is: 

y = 0.0007 ∗x3 − 0.0182 ∗x2 + 0.8317 ∗x − 0.1041 

 

Programs for bench-marking various random number generators 

 

Sample Python program for randomization of data 
 
#!/usr/bin/env python 

# coding: utf-8 

#Shreeram 
#Author: Jui Keskar (Copyright) 

import numpy as np 

from itertools import permutations 

from collections import Counter 

import itertools 

import random 

import csv 

origList = [11,12,13,14,15,16,17,18] 

OrigIndexMapList = [0,1,2,3,4,5,6,7] 

indexMapList=[] 

finalList = [-1,-1,-1,-1,-1,-1,-1,-1] 
def findindex(newpos, currentPerm): 

    for k in range(len(currentPerm)): 

        if newpos == currentPerm[k]: 

            return k 

    return -1 

 

def permutation_entropy(time_series, m, tau): 

    n = len(time_series) 

ordinal_patterns = [] 

    # Extract ordinal patterns 

    for i in range(n - (m - 1) * tau): 

sub_seq = time_series[i:(i + m * tau):tau] 
ordinal_pattern = tuple(np.argsort(sub_seq)) 

ordinal_patterns.append(ordinal_pattern) 

    # Count patterns 

pattern_counts = Counter(ordinal_patterns) 

total_patterns = len(ordinal_patterns) 

    # Calculate relative frequencies 

pattern_frequencies = np.array(list(pattern_counts.values())) / total_patterns 

    # Compute permutation entropy 

    entropy = -np.sum(pattern_frequencies *  

    np.log2(pattern_frequencies + np.finfo(float).eps)) 

    return entropy 
 

for i in range(len(origList)): 

num = -1 
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    j = -1 

while(True): 

num = int(random.random()*8) 

        if num not in indexMapList: 

            break 
finalList[num] = origList[i] 

indexMapList.append(num) 

distance = 0 

for j in range(len(origList)): 

    distance = distance + abs(j-(findindex(OrigIndexMapList[j], indexMapList))) 

    for n in range(j): 

        if j-n > 0: #and n > 0: 

            distance = distance + abs((j-n) 

            -(findindex(OrigIndexMapList[j],  

indexMapList)-findindex(OrigIndexMapList[n], indexMapList))) 

    for n in range(len(indexMapList)-j): 

        if j+n<len(indexMapList) and n>0: 
            distance = distance + abs((+n) 

            -(findindex(OrigIndexMapList[j+n],  

indexMapList)-findindex(OrigIndexMapList[j], indexMapList))) 

print("Original List is", origList)         

print("Permutation_entropy is:",permutation_entropy(finalList, 3,1)) 

print("Randomized Configuration is:",finalList) 

print("JChaosIndex =", distance / len(origList)/ len(origList))     

……………………………………………… 

 

Sample Java program for randomization of data 
 

// Author: Jui Keskar (Copyright) 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.List; 

import java.util.Random; 

public class ListRandomizer { 

    public static void main(String[] args) { 
        List<Integer>origList = Arrays.asList(11, 12, 13, 14, 15, 16, 17, 18); 

        List<Integer>origIndexMapList = Arrays.asList(0, 1, 2, 3, 4, 5, 6, 7); 

        List<Integer>indexMapList = new ArrayList<>(); 

        List<Integer>finalList =  

        new ArrayList<>(Arrays.asList(-1, -1, -1, -1, -1, -1, -1, -1)); 

        Random random = new Random(); 

        for (int i = 0; i<origList.size(); i++) { 

            int num; 

            do { 

num = random.nextInt(8); 

            } while (indexMapList.contains(num)); 
finalList.set(num, origList.get(i)); 

indexMapList.add(num); 

        } 

        double distance = 0; 

        for (int j = 0; j <origList.size(); j++) { 

            distance += Math.abs(j - findIndex(origIndexMapList.get(j), indexMapList)); 

            for (int n = 1; n <= j; n++) { 

                distance += Math.abs((j - n)  

                - (findIndex(origIndexMapList.get(j),  

indexMapList) - findIndex(origIndexMapList.get(j - n),  

indexMapList))); 
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            } 

            for (int n = 1; j + n <indexMapList.size(); n++) { 

                distance += Math.abs(n  

                - (findIndex(origIndexMapList.get(j + n),  

indexMapList) - findIndex(origIndexMapList.get(j),  
indexMapList))); 

            } 

        } 

System.out.println("Original List is " + origList); 

System.out.println("Best Randomization is: " + finalList); 

System.out.println("JChaosIndex = " + (distance / origList.size() / origList.size())); 

    } 

 

    private static int findIndex(int newpos, List<Integer>currentPerm) { 

        for (int k = 0; k <currentPerm.size(); k++) { 

            if (newpos == currentPerm.get(k)) { 

                return k; 
            } 

        } 

        return -1; 

    } 

} 

……………………………………………. 

 

Sample C program for randomization of data 
 
// Online C compiler to run C program online 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#define SIZE 8 

int findIndex(int newpos, int currentPerm[], int size) { 

    for (int i = 0; i< size; i++) { 

    if (newpos == currentPerm[i]) 

        return i; 

    } 

    return -1; 
} 

 

int main() 

{ 

    int origList[SIZE] = {11, 12, 13, 14, 15, 16, 17, 18}; 

    int origIndexMapList[SIZE] = {0, 1, 2, 3, 4, 5, 6, 7}; 

    int indexMapList[SIZE]; 

    int finalList[SIZE]; 

    int usedIndices[SIZE] = {0}; // To keep track of used indices 

    double distance = 0.0; 

srand(time(NULL)); // Seed the random number generator 

// Initialize finalList to -1 
    for (int i = 0; i< SIZE; i++) { 

finalList[i] = -1; 

    } 

// Generate random positions and update finalList and indexMapList 

    for (int i = 0; i< SIZE; i++) { 

        int num; 

        do { 

num = rand() % SIZE;     
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        } while (usedIndices[num] == 1); 

 

finalList[num] = origList[i]; 

indexMapList[i] = num; 

usedIndices[num] = 1; // Mark this index as used 
    } 

// Calculate distances 

    for (int j = 0; j < SIZE; j++) { 

        distance += abs(j - findIndex(origIndexMapList[j], indexMapList, SIZE)); 

        for (int n = 1; n <= j; n++) { 

            distance += abs((j - n) - (findIndex(origIndexMapList[j],  

indexMapList, SIZE) - findIndex(origIndexMapList[n], indexMapList, SIZE))); 

        } 

        for (int n = 1; j + n < SIZE; n++) { 

            distance += abs(n - (findIndex(origIndexMapList[j + n],  

indexMapList, SIZE) - findIndex(origIndexMapList[j], indexMapList, SIZE))); 

        } 
    } 

 

// Print the results 

printf("Original List is: "); 

    for (int i = 0; i< SIZE; i++) { 

printf("\%d ", origList[i]); 

    } 

printf("\textbackslash n"); 

printf("Best Randomization is: "); 

    for (int i = 0; i< SIZE; i++) { 

printf("%d ", finalList[i]); 
    } 

printf("\textbackslash n"); 

printf("JChaosIndex = %f\n", distance / SIZE/SIZE); 

    return 0; 

………………………………………… 

 

Sample C Sharp program for randomization of data 
 
using System;  

using System.Collections.Generic; 

class Program 

{ 

    static void Main() 

    { 

        List<int>origList = new List<int> {11, 12, 13, 14, 15, 16, 17, 18}; 

        List<int>origIndexMapList = new List<int> {0, 1, 2, 3, 4, 5, 6, 7}; 

        List<int>indexMapList = new List<int>(); 

        List<int>finalList = new List<int>(new int[8]); 
        Random random = new Random(); 

// Initialize finalList with -1 

        for (int i = 0; i<finalList.Count; i++) 

        { 

finalList[i] = -1; 

        } 

// Generate random positions and update finalList and indexMapList 

        for (int i = 0; i<origList.Count; i++) 

        { 

            int num; 

            do 
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            { 

num = random.Next(8); // Generates a random number between 0 and 7 

            } while (finalList[num] != -1); 

 

finalList[num] = origList[i]; 
indexMapList.Add(num); 

        } 

        double distance = 0; 

// Calculate distances 

        for (int j = 0; j <origList.Count; j++) 

        { 

            distance += Math.Abs(j - FindIndex(origIndexMapList[j], indexMapList)); 

            for (int n = 1; n <= j; n++) 

            { 

                distance += Math.Abs((j - n) - (FindIndex(origIndexMapList[j],  

indexMapList) - FindIndex(origIndexMapList[n], indexMapList))); 

            } 
            for (int n = 1; j + n <indexMapList.Count; n++) 

            { 

                distance += Math.Abs(n - (FindIndex(origIndexMapList[j + n],  

indexMapList) - FindIndex(origIndexMapList[j], indexMapList))); 

            } 

        } 

Console.WriteLine("Original List is: " + string.Join(", ", origList)); 

Console.WriteLine("Best Randomization is: " + string.Join(", ", finalList)); 

Console.WriteLine("JChaosIndex = " + (distance / origList.Count/ origList.Count)); 

    } 

 
    static int FindIndex(int newpos, List<int>currentPerm) 

    { 

        return currentPerm.IndexOf(newpos); 

    } 

} 

……………………………………………… 
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