

David C. Wyld et al. (Eds): IoTE, CNDC, DSA, AIAA, NLPTA, DPPR - 2024

pp. 01-20, 2024. - CS & IT - CSCP 2024 DOI: 10.5121/csit.2024.142301

DESIGN AND IMPLEMENTATION OF A REAL-
TIME RATE-BASED TASK SCHEDULER FOR

REAL-TIME OPERATING SYSTEMS: A CASE

STUDY WITH VXWORKS

Tom Springer1and Peiyi Zhao2

1Fowler School of Engineering, Chapman University, Orange, CA., USA
2Fowler School of Engineering, Chapman University, CA., USA

ABSTRACT

This paper details the implementation of a rate-based task scheduler into the VxWorks real-

time operating system, intendedto enhance resource allocation for distributed real-time

systems, such as IoT and embedded devices. Rate-based scheduling dynamically adjusts

task execution rates based on system demand, providing a flexible and efficient approach to

meeting real-time constraints. The scheduler was integrated into VxWorks and evaluated

using the Cheddar scheduling analysis tool and the VxWorks VxSim simulator. Initial

results demonstrate improved deadline adherence and resource management under varying

loads compared to traditional schedulers. Future work includes porting the scheduler to

single-board computers to assess its performance on resource-constrained IoT hardware

and extending it to support resource sharing between tasks to address real-time

coordination challenges. This research emphasizes the potential of rate-based scheduling
for IoT applications, offering a scalable solution for managing the complexity of

distributed, real-time environments in future embedded systems.

KEYWORDS

Real-Time systems, Networked Embedded Systems, Real-Time Operating Systems, Internet

of Things Applications.

1. INTRODUCTION

Many applications used in aerospace, automotive systems, industrial control, and embedded

devices rely on a real-time operating system (RTOS) to manage the strict deadlines that can mean
the difference between success and failure. Task scheduling is a critical component of the RTOS

as it ensures that tasks are executed within specific time constraints, providing system

determinism. Static priority scheduling is a common approach used in real-time embedded
operating systems to manage tasks and meet timing constraints. In static priority scheduling, each

task is assigned a priority level, and tasks with higher priority levels are given preference in

execution over tasks with lower priority levels. Static priority scheduling in real-time systems
offers several advantages, making it a popular choice for real-time applications.

One of the primary benefits of static priority scheduling is its predictability. The execution order

of tasks is known in advance, allowing for better analysis and guaranteeing that tasks with a
higher priority will be scheduled before those with a lower priority. This predictability is crucial

for meeting strict timing constraints in real-time systems. Static priority scheduling also provides

https://airccse.org/
https://airccse.org/csit/V14N23.html
mailto:https://doi.org/10.5121/csit.2024.142301

2 Computer Science & Information Technology (CS & IT)

deterministic behavior, meaning that the system's response time and task execution order are
known and repeatable. Deterministic behavior is another benefit that is essential in real-time

systems, where meeting deadlines is often critical for the system's correct operation.

Additionally, static priority scheduling is simple to implement, tends to have lower overhead

costs, and simplifies system behavior analysis. For these and other reasons, virtually all
commercial real-time operating systems support static priority scheduling.

While static priority scheduling has advantages, it is not ideally suited for some real-time
systems. For instance, distributed real-time systems and signal processing applications have

shown that they do not adequately fit into the traditional static priority model due in part to the

amount of jitter in the invocation time of the real-time task [1]. The issue is that the priority value
does not always map directly to significant task constraints; another issue is addressing the

problem of dealing with unknown or varied task execution times. Additional shortcomings

include graceful performance degradation during processor overload and ensuring full resource

utilization in tightly constrained embedded systems. For example, critical embedded systems are
considered unsafe if resource utilization exceeds 50%, requiring system designers not to exceed

this threshold. This utilization threshold mandates that processing elements meet the required

computing demands, causing an increase in the system's overall size, weight, and power (SWaP).
Therefore, the standard design goal in resource-constrained devices is to reduce the SWaP

footprint to reduce costs and ensure that the systems can be integrated into compact, portable, and

power-constrained environments.

To solve these and other limitations, we are investigating the implementation of rate-based

resource allocation methods into an RTOS for use in distributed real-time systems. According to

authors [2-5], the rate-based allocation method more naturally models the actual implementation
of distributed real-time embedded systems. In a rate-based system, a task specifies its requested

progress rate related to the number of computed events within a specified time interval. Examples

of rate specifications in a distributed system could include processing n packets per second or m
video frames per second. According to the rate-based approach, a task is guaranteed to progress

at its specified rate when adequate resources are available. On the other hand, if adequate

resources are unavailable for a task to make the desired progress, the scheduler will either

negotiate with the RTOS for a reduced rate of progress or require the task to wait for sufficient
resources to become available. This reduction in resource allocation is done by either the user

explicitly specifying a reduced rate of progress or the RTOS reducing the task resource

requirements when the system identifies that the process is using fewer resources than initially
requested.

For this work, we implemented a rate-based scheduling mechanism into VxWorks, a widely used
RTOS known for its robustness and reliability. It is used extensively in various industries,

including aerospace, automotive, and telecommunications. VxWorks is highly customizable and

has multiple development tools, making implementing and managing a complex scheduling

algorithm easier. This customization is highly beneficial for implementing a new scheduling
algorithm as it allows for fine-tuning task priorities and scheduling policies.

This paper describes the motivation for using a rate-based scheduling mechanism in a real-time
system, the implementation in the VxWorks RTOS and key performance outcomes. The outline

of the paper is as follows: Section 2 covers the related work including gaps in current solutions,

Section 3 describes the design and integration of the rate-based scheduler, Section 4 details the
implementation into VxWorks, Section 5 provides details on the experimental setup and testing

of the scheduling mechanism, Lastly, Section 6 summarizes the paper including a short

discussion on future work.

Computer Science & Information Technology (CS & IT) 3

2. BACKGROUND AND RELATED WORK

Traditional static priority scheduling techniques in an RTOS are based on the concept of a

discrete periodic or sporadic task. The task is scheduled such that it completes execution before a

predefined deadline. Most real-time execution models are based upon the periodic task model [6],

defined by Liu and Layland, or the sporadic task model [7], defined by Mok. In both models, the
execution of the task must be finished before the next instance of the task is scheduled for

execution. The challenge is that a priority value must be assigned to each task so that each

execution instance is completed before their respective deadlines. The most common priority
assignment policies include rate-monotonic (RM) scheduling [6], where tasks that run at a higher

rate have a higher priority over tasks that run at a lower rate, and the deadline monotonic (DM)

policy [8], where tasks are assigned priorities according to their respective deadlines. Using the

DM policy, the task with the shortest deadline is assigned the highest priority.

With RM or DM scheduling policies, mapping deadlines to priorities can be straight-forward for

tasks with explicit timing constraints. However, it becomes challenging for complex tasks such as
a video processing system whose requirement is to receive frames from a remote device at n

frames per second. While the overall task of processing n frames per second has precise timing

requirements, it is uncertain how to prioritize the receiving of each individual packet since a
single frame is made up of multiple network packets. The problem is that prioritizing a task is

based on assigning a value for the network processing. However, since there is no inherent value

for this processing a more conservative (i.e. shorter response time) priority value is often selected

resulting in reserving more computing resources than may be necessary.

Another issue with static priority-based resource allocation is that assumptions about the

environment where the tasks are executed must be made. Specifically, the resources required for
task execution, such as processor time, must be known apriori. Issues arise if the actual task

execution time exceeds the amount that was initially estimated. The problem is that

these“misbehaving” tasks can block all lower-priority tasks indefinitely. Static priority
scheduling lacks the mechanisms to isolate the misbehaved tasks from disrupting the execution of

lower priority well-behaved tasks.

An extension of the task isolation problem mentioned previously is the issue of ensuring graceful
performance degradation during periods of overload where a set of misbehaving tasks causes

increased compute processing and missed deadlines. In these task overload situations, managing

graceful task performance degradation is essential. Unfortunately, under overload conditions,
static priority scheduling only allows one form of degradation where higher priority tasks are

usually executed. In comparison, lower-priority tasks are executed at a reduced rate or not at all.

2.1. Rate-Based Resource Allocation Models

The concept of rate-based resource allocation is nothing new and was initially designed to
support multimedia computing along with other soft real-time applications. Researchers [9] have

identified three broad classes of rate-based allocation models: server-based allocation, fluid-flow

allocation, and rate-based generalization of the periodic model.

2.1.1. Server-Based Allocation

The sever-based allocation model was derived to manage the problem of scheduling aperiodic
tasks in a real-time system. The idea of server-based allocation is based on the creation of a

server process invoked periodically to service any aperiodic requests that may have arrived.

4 Computer Science & Information Technology (CS & IT)

Associated with the server is the server’s execution time capacity, which gets depleted as the
aperiodic task is executed. The aperiodic task is suspended once the capacity has been exhausted

until the next server innovation time. The effect is that aperiodic tasks can be modelled as

periodic tasks, ensuring aperiodic processing progresses at a well-defined and uniform rate.

Server-based algorithms are considered to be rate-based allocations because the execution of the
server is not directly connected to the arrival of an aperiodic task. Several server algorithms are

described in the literature [10,11,12], with the most familiar being the constant bandwidth server

(CBS), which has been included in the Linux kernel since version 3.14. It is called the
SCHED_DEADLINE scheduler.

2.1.2. Fluid-Flow Allocation

Fluid-flow allocation models, rooted in bandwidth allocation schemes used by the networking

community, are concerned with allocating the processor in a fair manner, with each process

receiving its fair share of the processor. Algorithms such as the generalized processor share
(GPS) [13] have been instrumental in this area, leading to the development of numerous fair

fluid-based allocation algorithms [14,15,16] that form the foundation for building real-time

services.

2.1.3. Rate-Based Allocation

A rate-based generalization of Liu and Layland’s periodic task model have been developed to

allow more flexibility in how a scheduler responds to events that arrive at a uniform average rate.

Examples include the (m,k) allocation model that requires only m out of every k events be

processed [17] in real-time; the window-based allocation (DWYQ) method, which ensures a
minimum number of events are processed in real-time within the context of a sliding window

[18]; and the rate-based execution (RBE) model [1], which adjusts the priorities of events that

arrive at higher than expected rates. For this work we leverage the RBE model which defines the
rate specification of a task as (x, y, d) where each task is ensured to process at least x events every

y time unit and each event j will be processed before the deadline d. The specific deadline for

processing the jthevent for task𝑡𝑖 is determined by the following recurrence:

 𝐷𝑖(𝑗) = {
𝑡𝑖,𝑗 + 𝑑𝑖𝑖𝑓 1 ≤ 𝑖 ≤ 𝑥𝑖

max(𝑡𝑖,𝑗 + 𝑑𝑖𝐷𝑖(𝑗 − 𝑥𝑖) + 𝑦𝑖) 𝑖𝑓𝑗 > 𝑥𝑖
 (1)

Under this function, task requests that arrive at a faster rate than x arrivals every y time unit will

have their deadlines postponed until the time they would have been assigned had they arrived at
the rate of exactly x arrivals every y time units [1].

2.2. Alternative Real-Time Scheduling Approach

Rate-based allocation models, like RBE, has received significant attention in the research

community but has yet to see adoption into commercially available RTOSs. While time-based
scheduling algorithms, like round-robin or pre-emptive priority scheduling, are well-established

the actual implementation of rate-based schedulers remains confined to experimental kernels and

are not incorporated into commercial RTOS deployments. Research prototypes typically focus on
multimedia or network traffic management applications but often lack the robustness needed for

widespread adoption.Commercial RTOS platforms like VxWorks scheduling models are well-

understood, easy to understand and effective for many real-time applications. However, at this

time there is no rate-based scheduler that has been fully integrated into the RTOS kernel. Some
specialized systems that focus on media applications (e.g. video pro-cessing or

Computer Science & Information Technology (CS & IT) 5

telecommunications) have adopted versions of rate-based scheduling concepts to manage the
real-time demands of the application. Though, these systems are custom-built for specific

applications and not designed for platforms like VxWorks. Additionally, certain Linux-based

real-time multimedia systems use rate-based scheduling, but these systems are not equivalent to

the timing guarantees provided in hard real-time systems.

Although rate-based scheduling has not been incorporated into commercial RTOS platforms,

there is a growing interest for dynamic and adaptive scheduling mechanisms related to the
increase in complex applications such as the Internet-of-Things (IoT) or autonomous systems.

These applications often require schedulers that respond dynamically to task execution changes,

which could provide the motivation for the widespread adoption of rate-based models. Some
operating systems are starting to investigate mixing scheduling models that combine traditional

fixed-priority mechanisms with rate-based scheduling. This hybrid approach could serve as a

bridge toward integrating more flexible scheduling schemes into commercial RTOS systems. Our

work contributes to bridging this gap by in incorporating a rate-based scheduler into a traditional
RTOS environment and providing a practical demonstration of how rate-based scheduling can

coexist with more traditional methods, potentially encouraging further exploration in this

direction. This work stands out because it provides a real-world prototype that could be extended
and optimized for broader adoption in various embedded and IoT applications.

3. RATE-BASED TASK SCHEDULER DESIGN

In rate-based scheduling, the focus is not strictly on task priority but rather on ensuring that tasks
are scheduled at regular intervals, according to their rates. This aligns closely with concepts of

time-triggered scheduling, where the timing behavior of the system is predetermined and

controlled according to periodic task executions. Rate-based scheduling combines the theoretical
principles of periodic scheduling with practical real-time constraints, ensuring tasks are executed

according to their temporal requirements in embedded and time-critical applications.

3.1. Rate-Based Allocation Model

The rate-based allocation model is based on the concepts defined in real-time scheduling theory,
specifically RM and DM scheduling policies, but with some modifications to focus more on the

rate and frequency of a task as opposed to the priority. In the rate-based model a real-time system

is defined as a set of tasks{𝜏1, 𝜏2, … 𝜏𝑛}where each task consists of infinite or finite instances of

jobs or requests which must be completed by the deadline (depending upon the criticality of the
task). Each real-time task is defined as either hard real-time (HRT) or soft real-time (SRT). Each

task 𝜏𝑖 is characterized by its worst-case execution time 𝐶𝑖, relative deadline 𝐷𝑖, period 𝑃𝑖, and

the resource rate of the task 𝑈𝑖 = 𝐶𝑖 𝑃𝑖⁄ . How tasks are allocated is defined by the task type,
HRT or SRT, and constrained by the overall system utilization where:

 𝑈 = ∑ 𝐶𝑖 𝑃𝑖⁄𝑛
𝑖=1 (2)

A third aperiodic non-real-time task (NRT) type can also be defined for resource allocation based
on reserving a minimum amount of utilization for the NRT tasks. Allocation for HRT tasks are

guaranteed rates that are equal to the task’s required rate. SRT task allocation is based on the

system load. If the system is underloaded (U ≤ 1) then the SRT task is assigned to its requested

rate. If the system is overloaded (U > 1) then an SRT task may be assigned resources that is less
than what is requested. Allocation of SRT tasks involves employing a weighted-proportional

resource allocation approach that is used to assign SRT tasks to available resources. For NRT

6 Computer Science & Information Technology (CS & IT)

tasks a minimum resource utilization is calculated which is proportional to the number of NRT
tasks. The formula [1] to calculate NRT utilization is provided below:

 𝛽 =
𝑁𝑅𝑇𝑛

𝑁𝑅𝑇𝑛 +𝑆𝑅𝑇𝑛 × 𝑆 × (1+𝑈𝑠𝑟𝑡)2 𝑥 (1 − 𝑈𝑠𝑟𝑡) (3)

Where 𝑁𝑅𝑇𝑛defines the number of NRT tasks, 𝑆𝑅𝑇𝑛 represents the number of SRT tasks, S
indicates the scale factor (based on the relative importance of the SRT and NRT tasks in the

system), 𝑈𝑆𝑅𝑇 is the resource rate (utilization) of all SRT tasks in the system and 𝑈𝐻𝑅𝑇is the

resource rate of all HRT tasks in the system. For SRT tasks the actual utilization is defined as (4)
and the actual NRT utilization is defined as (5).

 𝑈𝑆𝑅𝑇
′ = 𝑚𝑖𝑛{𝑈𝑆𝑅𝑇, 1 − 𝑈𝐻𝑅𝑇 − 𝛽} (4)

 𝑈𝑁𝑅𝑇
′ = 1 − 𝑈𝐻𝑅𝑇 − 𝑈𝑆𝑅𝑇

′ (5)

It is important to note that SRT task starvation is possible if the system is overloaded. To reduce

the potential for SRT task starvation a proportional allocation policy [19] can be adopted where

each SRT task would receive a percentage of available resources that is proportional to its desired
resource rate. In this way the actual resource rate of each SRT task would be lowered so that total

system utilization is U ≤ 1. However, this approach does not guarantee that any SRT task will

actually meet their initial deadlines since none will receive their requested rates. For this work all
the SRT tasks have the same priority to their required resources so resources are allocated using a

proportional allocation policy where each SRT task receives a utilization amount proportional to

their desired rate. The proportional allocation formula [1] is provided below:

 𝑤𝑈𝑆𝑅𝑇𝑖
=

𝑈𝑆𝑅𝑇𝑖

∑ (𝑈𝑆𝑅𝑇𝑖
)

𝑆𝑅𝑇𝑛
𝑖=1

 × 𝑈𝑆𝑅𝑇
′ (6)

The resource allocation policy would be invoked when a new HRT or SRT is scheduled or when

an HRT or SRT task completes execution. Changes to NRT task utilization β will also invoke
changes to the SRT resource rate.

3.2. Rate-Based Scheduling

The rate-based task set is scheduled by using the earliest deadline first (EDF) algorithm with

additional support for dynamically adjusting the task’s rate or period, known as a mode change.
While EDF is based on proven real-time scheduling policies where task utilization and period are

fixed it has been shown that under certain conditions EDF can still guarantee deadlines even

when there are dynamic mode changes. The EDF algorithm defines a feasible schedule as 𝑈 ≤ 1
which can support arbitrary period changes considering the utilization of a departing task can be

thought of as 1 − 𝑢𝑖 when the task deadline is reached. Therefore, a modified task with

utilization factor ≤ (1 − 𝑢𝑖) can also be considered schedulable.

More specifically a task that has gone through as mode change has either increased its rate and/or

period or decreased its rate and/or period. The question is how a feasible EDF schedule can still

be maintained while dynamically adjusting the task constraints? Researchers who developed
similar models have provided proofs to the correctness of the EDF when adjusting task

constraints. Readers are encouraged to review the detailed proofs [20, 21] for additional

information

Computer Science & Information Technology (CS & IT) 7

3.2.1. Rate-Based Mode Change

When the system becomes overloaded this invokes a mode change by reducing the resource rate

of SRT tasks so that total utilization is 𝑈 ≤ 1. The rate-based scheduling mechanism adjusts the

relative deadline of all SRT tasks based upon the weighted resource allocation policy. The goal is
to extend the relative deadline of each SRT task while leaving WCET unchanged. There is a case

when a task WCET will need to change based upon a user’s inaccurate estimation of the WCET.

By progressively extending the deadline and adjusting the WCET of a task such that 𝑈 ≤ 1 by
definition a feasible schedule can be obtained. The effect of increasing or decreasing the rate of a

task is shown in Figure 1. At time t, the utilization of a task increase from u to u’ and

subsequently the effect of decreasing the rate of a taskis shown at time t'. The value of d

represents the initial deadline while d’ represents the extended deadline and d’n defines a
calculated compressed deadline for the next deadline while d’’ defines the subsequent deadline

for the next period. Additionally, p represents the initial task period where p’or p’nrepresent the

calculated and next period similar to how the deadlines are calculated.

Figure 1: Task Rate Utilization

Mode changes triggers the weighted proportional allocation method mentioned above to ensure
no deadlines are missed after the mode change. To facilitate a mode change, the rate-based

scheduler extends the previous task rate. The extended period is calculated as follows:

 𝑃𝑆𝑅𝑇𝑖

′ =
𝐶𝑆𝑅𝑇𝑖

𝑤𝑈𝑆𝑅𝑇𝑖

 (7)

here 𝑃𝑆𝑅𝑇𝑖

′ defines the new period, 𝐶𝑆𝑅𝑇 defines the wcet for a SRT task and 𝑤𝑈𝑆𝑅𝑇the new task

rate for the SRT task. Extending the task period also requires extending the next deadline of the
SRT task. The extended SRT deadline is calculated below:

 𝐷𝑆𝑅𝑇𝑖

′ = 𝐷𝑆𝑅𝑇𝑖
+ 𝑃𝑆𝑅𝑇𝑖

′ (8)

8 Computer Science & Information Technology (CS & IT)

where 𝐷𝑆𝑅𝑇𝑖

′ defines the new calculated period. To account for tasks that still need to be scheduled

in the current period they also need to consider the period changes during subsequent deadlines.
In the case where idle time is generated for an SRT task that is still using the previous deadline at

its release time (which is before the current release time), the following mechanism is applied:

 𝐷𝑆𝑅𝑇𝑖

′ = max {𝑡 + 𝐶𝑆𝑅𝑇𝑖
, 𝐷𝑆𝑅𝑇𝑖

+ 𝑃𝑆𝑅𝑇𝑡

′ } (9)

 𝑃𝑆𝑅𝑇𝑖
= 𝐷𝑆𝑅𝑇𝑖

− 𝑃𝑆𝑅𝑇𝑖

′ (10)

In the case when there is no idle time, but tasks experience deadline jitter; the previous period,

then a temporary one is factored in before the newly extended period is calculated. The following

formula calculates the period starting from the current time but not the release time.

 𝐷𝑆𝑅𝑇𝑖

′ = max {𝑡 +
𝐶𝑆𝑅𝑇𝑖

𝑤𝑈𝑆𝑅𝑇𝑖

, 𝐷𝑆𝑅𝑇𝑖
+ 𝑃𝑆𝑅𝑇𝑡

} (11)

 𝑃𝑆𝑅𝑇𝑖

′ = 𝐷𝑆𝑅𝑇𝑖

′ − 𝑡 (12)

3.2.2. Rate-Based Scheduling for Non-Real-Time Tasks

While HRT and SRT have deadlines NRT tasks are not considered to have any deadlines

associated with them. In order to schedule an NRT task with EDF the idea is to assign an

artificial deadline for each NRT task (Note: Other aperiodic event-driven tasks, may have hard or
soft, real-time requirements and would be assigned artificial deadlines as well for their respective

task type (i.e. HRT | SRT)). All NRT tasks share the percent utilization reserved for them at

system startup. Like SRT tasks, NRT tasks are allocated resources based on a proportional
average which is computed as follows:

 𝑤𝑁𝑅𝑇𝑖 =
max {𝛽,1− 𝑈𝐻𝑅𝑇− 𝑈𝑆𝑅𝑇}

𝑁𝑅𝑇𝑛
 (13)

where 𝑤𝑁𝑅𝑇𝑖 represents the new utilization average, 𝑈𝐻𝑅𝑇 is the total utilization for all HRT

tasks and 𝑈𝑆𝑅𝑇 defines the total utilization of SRT tasks, 𝑁𝑅𝑇𝑛 represents the number of NRT

tasks while β defines the bandwidth reservation for all NRT tasks. The artificial period for an

NRT task is done by assigning an artificial WCET to each NRT task.

 𝑃𝑁𝑅𝑇𝑖
=

𝐶𝑁𝑅𝑇𝑖

𝑤𝑈𝑁𝑅𝑇𝑖

 (14)

The period of an NRT task remains fixed at run time while the task WCET may be adjusted to

achieve optimal response times for each NRT task. The period remains fixed to reduce the
overhead of continued weighted resource allocation computations because of the transitory nature

of NRT tasks.

To illustrate how tasks are scheduled during a rate-based mode change consider the following

example. Tables 1 and 2 represent a nominally loaded and overloaded taskset where overloaded

means that 𝑈 > 1.

Computer Science & Information Technology (CS & IT) 9

Table 1: Rate Based Task Set (nominal)

Task Type WCET PERIOD DEADLINE

HRT 2 10 10

HRT 3 15 15

SRT 3 20 20

SRT 5 50 50

NRT 4 (pseudo) - 80 (pseudo)

Table 2: Rate-Based Task Set (overloaded)

Task Type WCET PERIOD DEADLINE

HRT 2 10 10

HRT 3 15 15

SRT 3 20 20

SRT 5 50 50

NRT 4 (pseudo) - 80 (pseudo)

Figure 2a and 2b shows the scheduling of rate-based tasks. Figure 2a details how each task type
is scheduled without needing mode changes since the system is underloaded. The NRT task is

treated as a sporadic task with a pseudo wcet of 8 as well as a pseudo period of 80. The pseudo

values are calculated using a fixed rate 0.1 for the NRT task. Note that the NRT task(s) could
receive more than the pseudo wcet if there is slack in the schedule. Figure 2b illustrates what

happens to the allocation of the SRT tasks when the system is overloaded. The HRT tasks are still

allocated their target resource rate. If any HRT task cannot be allocated its requested target rate, it

will not be admitted. The NRT task(s) are always allocated their reserved bandwidth, but multiple
NRT tasks would have to share that bandwidth. As indicated in Table 2, the task set is overloaded

so that the SRT tasks will require proportional allocation per equation 6. For this example, the

first SRT period is extended from 20 to 25, and the second SRT task’s period is extended from 50
to 65, as shown by the arrows in Figure 2b.

Figure 2: Rate-Based Scheduling Example

10 Computer Science & Information Technology (CS & IT)

3.2.3. Rate-Based Design Considerations

A rate-based scheduler dynamically allocates CPU time based on task execution rates requiring

frequent calculations and adjustments which introduces additional overhead. In contrast, fixed-

priority schedulers have minimal overhead since the task priorities are static and do not require
additional calculations. To minimize CPU overhead HRT tasks are considered static and do not

require additional calculations. Additionally, a pseudo wcet is calculated, using eq. (14), to be a

fixed value at run time. This avoids the significant additional overhead of resource allocation that
is triggered by the weighted resource allocation process defined by eq. (6) when an NRT process

enter or leave the system. Other design considerations involves the scalability of multiple tasks

with varying execution times and system loads. As the number of tasks increases, the complexity
of maintaining rate guarantees also increases, which may cause performance degradations due to

the increased overhead in managing the task list. However, unlike typical Linux based platforms

which could host hundreds of tasks, most embedded processing involves a much smaller task

load. While there is no specific limit on the number of tasks admitted, the assumption is that the
task load will be on a much smaller scale as opposed to a Linux based system.

Balancing the fairness of CPU allocation of tasks is also an important consideration. While rate-
based scheduling offers better fairness compared to priority-based approaches there is a tradeoff

when implementing fairness. If the system is overloaded with HRT tasks, then SRT or NRT tasks

could suffer from starvation. Fairness is adjusted by using the weight-based model (i.e. eq. 6) so
higher weight tasks may not be starved.

3.2.4. Rate-Based Scheduler RTOS Design

In VxWorks, the design of a rate-based scheduler fits into the overall RTOS architecture by

interfacing with some core kernel components, including task management, interrupt handling,

and time management. The rate-based scheduler is integrated into the task management system,
which handles task creation, deletion, and creation. For each new task, additional attributes are

added to the task control block (TCB), including the task rate set during task creation.The tick

timer is used in VxWorks to generate periodic interrupts, measure time, and schedule tasks. The

rate-based scheduler uses the tick timer to manage task execution times and schedule tasks
according to their rates. For example, if a task were to run every 20 milliseconds, the timer would

interrupt the scheduler to invoke the task after that interval. In VxWorks, the system clock is used

for the timer interrupts and, by default, is set to 60 ticks per second, which translates to
approximately 16.67 milliseconds. If a higher resolution tick count is needed, VxWorks will

provide a function to change the default tick rate. For this work, we typically set the tick rate to

100 ticks or 10 milliseconds. VxWorks allows higher resolution tick rates if needed, but the
higher the rate, the higher the overhead in that every clock tick represents a potential context

switch.

Like all RTOSs, a task is placed in a task queue based on priority. The rate-based scheduler
modifies this queue by maintaining a list of tasks sorted by their execution rates, dynamically

reordering the queue based on the execution rates. In this way, tasks would be selected for

execution based on their rate, which requires modifications to the TCB to track the following
execution times. Fortunately, VxWorks provides built-in mechanisms for extending the TCB.

The algorithm for creating a rate-based task into the RTOS is illustrated by the pseudo code

provided below:

Computer Science & Information Technology (CS & IT) 11

Algorithm1 Task RB Create

Procedure taskRBCreate(struct tcb tcb) now

← tickGet()
If taskInQueue(tcb) then return
End if
if type = TASK TYPE NON REALTIME then
 if tcb.weight = 0 then

tcb.weight←1
else

tcb.weight←nrtTaskWeights
end if
usrSchedBlk.u nrt ← usrSchedBlk.u nrt + tcb.weight usrSchedBlk.n nrt

← usrSchedBlk.n nrt + 1

tcb.deadline ← tcb.period ← usrSchedBlk.current.nnrt - sysClkGet()

tcb.releasetime ← now
qReadySort()

else if type = TASK TYPE SOFT REALTIME then usrSchedBlk.u srt

← usrSchedBlk.u srt + srtActUtil(tcb) usrSchedBlk.n srt ←

usrSchedBlk.n srt + 1
else if type = TASK TYPE HARD REALTIME then usrSchedBlk.u

hrt ← usrSchedBlk.u hrt + hrtTgtUtil(tcb) usrSchedBlk.n hrt ←

usrSchedBlk.n hrt + 1
else

return
end if
if usrSchedBlk.u hrt + usrSchedBlk.u srt + BETA >1.0 then resourceAllocation(tcb)

end if
if tcb.release time <now then

kernelPanic(”Releasedinthepast!”)
endif
dcb.etime←0
qReadyInsert(dcb)

end procedure

The taskRBCreate algorithm is designed to manage the scheduling of tasks in a real-time
operating system. It starts by obtaining the current system tick count and checking if the task is

already in the ready schedule queue. If the task is not in the queue, it updates various counters

and parameters based on the task type (non-real-time, soft real-time, or hard real-time). It adjusts
the task’s weight for non-real-time tasks and updates the scheduler’s non-real-time utilization and

task count. It updates the respective utilization, and task counts for soft and hard real-time tasks.

The algorithm ensures the scheduler is not overloaded by checking the total utilization against a
threshold. If the task’s release time is past, it triggers a kernel panic. Finally, it resets the task’s

execution time and inserts it into the ready queue. Additionally, during task creation, the resource

allocation algorithm determines the utilization for each task type to ensure that tasks are

appropriately scheduled, and their resource requirements are managed efficiently.

Algorithm2 resource Allocation

Function resource Allocation(struct tcb tcb)
Int util
if type = TASKTYPEHARDREALTIME then

util ← utilHRT(tcb)
else if type= TASKTYPESOFTREALTIME then

util ← utilSRT(tcb)
else if type =TASK TYPEBEST EFFORT then

util ← max(()BETA,(usrSchedBlk.uhrt-usrSchedBlk.usrt)*

12 Computer Science & Information Technology (CS & IT)

tcb.weight)usrSchedBlk.unrt
tcb.period ← usrSchedBlk.nnrt*sysClkGet()
tcb.deadline←tcb.period

else
return-

1 end if
return util

end function

The resource allocation algorithm is designed to determine the utilization of a task based on its

type and update its scheduling parameters accordingly. It first checks the type of the task: if it is a

hard real-time task, it calculates the utilization using the utilHRT function; if it is a soft real-time
task, it uses the utilSRTfunction. For best-effort tasks, it calculates the utilization using a formula

that considers the maximum of a constant BETA and the difference between hard and soft real-

time utilizations, scaled by the task’s weight and normalized by the non-real-time utilization. It

then sets the task’s period and deadline based on the number of non-real-time tasks and the
system clock. Finally, the calculated utilization is returned.

4. VXWORKS IMPLEMENTATION

For this work, we adopted a hybrid rate-based scheduling policy where rate-based tasks are

allocated separately, but the traditional kernel scheduler is used for intra-kernel resource

allocation. Rate-based scheduling manipulates the ready queue by changing task priorities and

activating or suspending tasks. This hybrid approach was taken for a couple of reasons. One is
that researchers noticed mixed results [2] when applying a single rate-based resource allocation

policy to the problems of kernel and application processing. The second reason is that

implementing a unified custom scheduler is a relatively complex task compared with
manipulating the ready queue. While a custom scheduler framework is provided, VxWorks

cautions that the operating system is not guaranteed to function as expected if a custom scheduler

is used. In addition, there are no guarantees about the compatibility of a custom scheduler across
different VxWorks releases, as the scheduler interface may be changed.

Figure 3 illustrates the implementation of rate-based tasks into VxWorks. The Rate-Based Ready

queue is managed by the function responsible for scheduling the tasks. Monitoring the execution
time of a task is performed as follows: whenever a task starts executing, it sets an absolute time

(in ticks) for when the task’s wcet is met. This time is added to a task event queue, which triggers

an event when a task is met. If another rate-base task pre-empts a rate-based task, the remaining
execution time is updated by subtracting the time that has passed since the last release.

Computer Science & Information Technology (CS & IT) 13

Figure 3 Rate-Based Task Implementation in VxWorks

The rate-based scheduler is implemented as an extension to the traditional scheduler that uses the

tickAnnounceHookAdd() function to register a hook function that is called at each tick interrupt.

The hook function is responsible for manipulating the ready queue as well as changing their
priorities according to the rate-based scheduling policy. The following code example illustrates

the hook use:

/* task interrupted by tick */

void usrTickHook TASK_ID tid)

{

/* statistic information */

/* call kernelRateBasedHook() */

if (_func_kernelRateBasedHook != NULL)

_func_kernelRateBasedHook(tid);

/* other work */ ... }

Tasks are characterized by the following attributes: {type, wcet, period, deadline}. The

arguments specific the task type (HRT, SRT, NRT), the worse-case execution time, the period

and the relative deadline. The resource rate is defined as 𝑤𝑐𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑⁄ . HRT tasks are

guaranteed to receive an actual resource rate (𝑢𝑎𝑐𝑡) equal to the target rate (𝑢𝑡𝑔𝑡) if sufficient

CPU resources is available; otherwise, the process will not be admitted as a real-time process. A

SRT task receives (𝑢𝑎𝑐𝑡) less than or equal to (𝑢𝑡𝑔𝑡) depending on available resources. NRT

tasks receive a predefined utilization percentage (β) in proportion to their weights as described in

section 3.4. To support rate-based tasks a new kernel function call is provided to allocate and

initialize a task without activation.

TASK_ID taskRBCreate

 (

 char *name, /* name of new task */

 RB_TASK_TYPE type /* type of task (HRT,SRT, NRT) */

 Int wcet; /* execution time (in ticks) */

 int period; /* task period */

 int deadline,/* relative deadline */

14 Computer Science & Information Technology (CS & IT)

 int options, /* task option word */

 size_t stackSize, /* stack size needed */

 FUNCPTR entryPt, /* entry point of task */

 _Vx_usr_arg_t arg1, /* task argument one */

 _Vx_usr_arg_t arg2, /* task argument two */

 _Vx_usr_arg_t arg3, /* task argument three */

 _Vx_usr_arg_t arg4, /* task argument four */

 _Vx_usr_arg_t arg5, /* task argument five */

 _Vx_usr_arg_t arg6, /* task argument six */

 _Vx_usr_arg_t arg7, /* task argument seven */

 _Vx_usr_arg_t arg8, /* task argument eight */

 _Vx_usr_arg_t arg9, /* task argument nine */

 _Vx_usr_arg_t arg10 /* task argument ten */

)

The rate-based scheduler for VxWorks is designed after the prototype rate-based earliest deadline

scheduler presented by authors in [21] with modifications.

5. EXPERIMENTAL SETUP AND TESTING

We integrated our rate-based scheduler prototype into the Cheddar [22] open-source GNU GPL

real-time scheduling simulator/analyzer for the initial testing. By leveraging Cheddar, we could
model and analyze our scheduler's timing behavior in a controlled environment. This approach

allowed us to identify potential issues and optimize performance early in development. In our

Experimental Setup, we created various task scenarios and workloads to simulate real-world
conditions. Cheddar provided detailed insights into the scheduler's performance, helping us fine-

tune parameters and ensure it met all real-time constraints. This pre-implementation testing phase

was instrumental in validating our design, ultimately saving development time and reducing the
risk of costly errors when deploying the scheduler in VxWorks.

For our testing, we created a task set consisting of five tasks. This task set was designed to

represent a typical workload in a real-time system. We included two HRT tasks, two SRT tasks,
and one NRT task to simulate an event-based sporadic task. The initial task workload was

configured with a total system utilization of 70%. We then randomly modified the execution

times of each task, except for the NRT task which remained constant, to increase the workload up
to 110% in increments of 5%. The purpose of these modifications was to test the scheduler's

performance under varying workloads. The periods of each task were not modified, except by the

SRT tasks in the rate-based scheduler to compensate for utilization overload. We used three
scheduling algorithms: Rate-Monotonic (RM), Deadline Monotonic (RM), and Earliest Deadline

First (EDF) for comparative analysis of the Rate-Based (RB) scheduler. To simulate the non-real-

time task, we implemented it as a periodic task in RM and a sporadic task in DM and EDF. The

task wcet and period were calculated using an overall system utilization of 10%, which represents
the β factor used by the RB scheduler.

Computer Science & Information Technology (CS & IT) 15

Figure 3a: RM Scheduling

Figure 3b: Deadline Monotonic Scheduling

Figure 3c: Earliest Deadline First Scheduling

16 Computer Science & Information Technology (CS & IT)

Figure3d: Rate-Based Scheduling

Figure 3a illustrates the RM scheduling, which represents how the different task types perform

under rate-monotonic scheduling. Notice that the hard real-time tasks are unaffected, while
around 85% of the NRT real-time response times grow increasingly worse. This is expected as

the utilization increases since the NRT tasks are assigned a lower priority than the other task

types. Additionally, the SRT tasks experience rapidly increasing response times around 100%

utilization. This is also expected because as utilization increases, the HRT tasks will be allocated
their targeted resource rate, delaying resources to the SRT and NRT tasks. The DM scheduler

depicted in Figure 3b performs better because it assigns priorities based on the task’s deadline,

not the period. Also, notice that with DM, the SRT and NRT task response times increase at a
slower rate than those using RM scheduling. Compared to RM and DM, the EDF scheduler

performs better if the total utilization is less than or equal to 100%. Notice that as soon as the

utilization exceeds 100%, all task types experience significant increases in response times. This,
too, is to be expected because of the cascade effect in Earliest Deadline First (EDF) scheduling,

which occurs when a single task missing its deadline causes subsequent tasks to miss their

deadlines. This leads to a cascade effect where delayed tasks push back the execution of

subsequent tasks, causing a chain reaction of missed deadlines and increased response time.
Clearly, the RB algorithm is superior for a rate-based task set. While the average response time is

higher for NRT tasks and slightly higher SRT, no HRT tasks miss their deadlines, and both SRT

and NRT task types maintain relatively uniform response times even after the systems become
overloaded. Figure 4 depicts the number of deadline misses suffered by the RM, DM, and EDF

algorithms.

Computer Science & Information Technology (CS & IT) 17

Figure 4: Task Deadline Miss Rate

For implementation into an actual RTOS platform we used VxWorks 7 along with the VxSim

simulator to implement and integrate the rate-based scheduler. VxSim simulates the VxWorks
environment on a host machine, providing a virtual platform for testing and evaluating

applications without the need for physical hardware. It supports full network capability and can

simulate multiple instances, making it ideal for comprehensive testing of distributed applications.
We executed tasks in VxWorks using the fixed priority pre-emptive scheduler and our integrated

rate-based scheduler for our tests. We used a sample task set to compare the schedulers indicative

of real-time and non-real time processing likely to be performed on an IoT device. The sample

real-time task workloads consisted of the following tasks:

1. HRT: Sensor Data Processing: The task that involve reading data from sensors at regular

intervals, such as temperature monitoring systems or motion detectors.
2. SRT: Multimedia Streaming: Handling audio or video streams where data packets need to

be processed and delivered at a consistent rate to ensure smooth playback.

3. HRT: Control Systems: Tasks in industrial automation where control signals must be sent
to machinery at precise intervals to maintain proper operation.

4. SRT: Network Packet Processing: Managing network traffic where packets need to be

processed at a certain rate to maintain network performance and avoid congestion.

5. NRT: Periodic Data Logging/Aggregation: Recording data from various sources when
available.

Except for the NRT process, each task performed an infinite loop consisting of a read()or write()
operation on a UDP socket or virtual device using VxBus followed by a computation phase with

a known execution time. In addition, we configured message generators to send and receive data

with the desired size and rate to the corresponding sending/receiving task. The goal was to

evaluate how rate-based allocation performed compared to VxWorks's traditional priority-based
method. Similar to how it was evaluated with the Cheddar simulator, we modified the

computation phase of each task to simulate overall system utilization.

Tables 3 and 4 provide the overall minimum, average, and maximum response times for the fiver

real-time tasks described above. The response time is measured in ticks, each tick can be from 1-

1.99 milliseconds depending upon when the tick value was acquired.

18 Computer Science & Information Technology (CS & IT)

Table 3: Fixed Priority Scheduler (VxSim)

 Task Utilization~ 0.65 Task Utilization ~1.0 Task Utilization ~1.1

Task Type Min Avg Max Miss Min Avg Max Miss Min Avg Max Miss

Sensor

Data

Processing

6.0 6.0 6.0 0%. 16.0 16.0 16.0 0% 50.0 59.0 24.0 0%

Multimedia

Streaming

6.0 7.2 12.0 0% 8.0 11.4 24.0 20% 5.0 6.5 29.0 5%

Control

Actuation

1.0 1.0 1.0 0% 3.0 3.0 3.0 0% 3.0 3.0 3.0 0%

Network
Packet

Processing

15.0 16.2 20.0 0% 29.0 39.4 50.0 40% 13.0 21.3 58.0 2.5%

Data

Logging

35.0 36.2 37.5 0%. 37.0 42.5 45 0% 166.0 180.0 400.0 25%

Table 4: Rate-Based Scheduler (VxSim)

 Task Utilization ~0.65 Task Utilization ~1.0 Task Utilization ~1.1

Task Type Min Avg Max Miss Min Avg Max Miss Min Avg Max Miss

Sensor

Data

Processing

12.0 16.0 20.0 0%. 54.0 64.0 74.0 0% 50.0 59.0 74.0 0%

Multimedia

Streaming

6.0 6.0 6.0 0% 8.0 8.4 8.0 0% 5.0 6.5 8.0 5%

Control

Actuation

1.0 1.0 1.0 0% 3.0 3.0 3.0 0% 3.0 3.0 3.0 0%

Network

Packet

Processing

15.0 15.0 15.0 0% 29.0 29.0 29.0 0% 13.0 21.3 27.0 0%

Data
Logging

37.0 37.0 37.0 0%. 200.0 200.0 200.0 0% 166.0 180.0 187.0 0%

The results are mixed when the overall system utilization is nominal the traditional fixed priority

scheduler performs better regarding Vresponse times though the response times for HRT tasks in
the rate-based scheduler are comparable to the fixed-priority scheduler. While the SRT tasks

response times are increased in the rate-based scheduler both SRT and NRT response times are

more uniform as compared the fixed-priority scheduler.Additionally, rate-based scheduling
experienced no task deadlines misses with there was a heavy or overloaded task load.

6. CONCLUSIONS AND FUTURE WORK

Rate-based resource allocation mechanisms provide a dynamic approach to managing
computational resources, that stand out for their ability to adjust task execution rates based on

system demands. Their unique advantage lies in their suitability for real-time systems, where

meeting strict deadlines and ensuring resource efficiency are paramount. This is especially true in
environments with fluctuating workloads like distributed IoT networks. The implemented

scheduler was thoroughly evaluated using the Cheddar scheduling analysis tool, enabling

theoretical verification of schedulability and timing performance. Additionally, the VxWorks

VxSim simulator was used to verify the scheduler's practical performance in a controlled
environment, mimicking real-world execution. Initial results indicate that the rate-based

Computer Science & Information Technology (CS & IT) 19

scheduler successfully manages task execution under varying system loads, improving deadline
adherence compared to traditional fixed-priority and round-robin scheduling techniques. This

work underscores the potential for a rate-based scheduling approach as an efficient solution for

ensuring predictable and reliable performance in real-time distributed systems, offering an

alternative to existing scheduling mechanisms in real-time operating systems like VxWorks.

For future work, we have a clear plan to extend the implementation of the rate-based scheduler to

run on a single-board computer (SBC), such as the Raspberry Pi orSTM32L4 IoT node. This step
will allow us to assess the scheduler's performance and adaptability on resource-constrained

devices commonly used in IoT and embedded applications. By transitioning from a simulated

environment to actual hardware, we aim to identify any hardware-specific challenges and
optimize the scheduler to better handle the constraints of SBCs, such as limited memory,

processing power, and energy efficiency. The detailed plan for future work provides a roadmap

for the research, helping the reader understand the next steps and the potential impact of the

research. Another key area for future work involves expanding the scheduler's capabilities to
support resource sharing among cooperating tasks. In real-time systems, tasks often need to share

resources such as memory, communication channels, or sensors, which introduces the potential

for contention and blocking, leading to missed deadlines. We plan to incorporate resource-
sharing mechanisms that maintain the predictability and efficiency of the rate-based scheduler

while preventing priority inversion and reducing the likelihood of deadlocks. This will involve

integrating priority inheritance or priority ceiling protocols and dynamically developing
techniques for managing shared resources based on the rate-based task execution model. Such

enhancements will make the scheduler more robust and adaptable for real-world applications that

require coordination between multiple interdependent tasks.

ACKNOWLEDGEMENTS

This work was funded in part by a grant from by the Wind River Corporation grant #US1133982

REFERENCES

[1] K. Jeffay and S. Goddard, "A theory of rate-based execution," Proceedings 20th IEEE Real-Time

Systems Symposium (Cat. No.99CB37054), Phoenix, AZ, USA, 1999, pp. 304-314, doi:

10.1109/REAL.1999.818858.

[2] Jeffay, Kevin, and Steve Goddard. "Rate-based resource allocation models for embedded systems."

International Workshop on Embedded Software. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001.

[3] Goddard, S., Jeffay, K., Analyzing the Real-Time Properties of a Data flow Execution Para-digm

using a Synthetic Aperture Radar Application, Proc. 3rd IEEE Real-Time Technology &

Applications Symp., Montreal, Canada, June 1997, pp. 60-71.

[4] Goddard, S., Jeffay, K., Managing Memory Requirements in the Synthesis of Real-Time Systems

from Processing Graphs, Proc. of 4th IEEE Real-Time Technology and Applica-tions Symp.,

Denver, CO, June 1998, pp. 59-70.

[5] K. Jeffay, G. Lamastra, A Comparative Study of the Realization of Rate-Based Computing Services

in General Purpose Operating Systems, Proceedings of the Seventh IEEE Interna-tional Conference

on Real-Time Computing Systems and Applications, Cheju Island, South Korea, December 2000,

pages 81-90.
[6] C. L. Liu and J. W. Layland, Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment, Journal of the ACM, Vol. 20, No. 1, January 1973, pp. 46-61.

[7] A.K.-L., Mok, Fundamental Design Problems of Distributed Systems for the Hard Real-

 Time Environment, Ph.D. Thesis, MIT, Dept. of EE and CS, MIT/LCS/TR-297, May 1983.

[8] J. Leung, and J. Whitehead, On the complexity of fixed-priority scheduling of periodic, real-time

tasks, Performance Evaluation, 2, 1982, pp. 237-50.

20 Computer Science & Information Technology (CS & IT)

[9] K. Jeffay, D. Bennett, Rate-Based Execution Abstraction for Multimedia Computing, Proc. of the

Fifth Intl. Workshop on Network & Operating System Support for Digital Audio & Video, Durham,

NH, April 1995, Lecture Notes in Computer Science, Vol. 1018, pp. 64-75, Springer-Verlag,

Heidelberg.

[10] L. Abeni, G. Buttazzo, Integrating Multimedia Applications in Hard Real-Time Systems, Proc. of
the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998, pp. 4-13.

[11] M. Spuri, G. Buttazzo, Efficient Aperiodic Service Under the Earliest Deadline Scheduling, Proc.

15th IEEE Real-Time Systems Symp., Dec. 1994, pp. 2-11.

[12] M. Spuri, G. Buttazzo, F. Sensini, Robust Aperiodic Scheduling Under Dynamic Priority Systems,

Proc. 16th IEEE Real-Time Systems Symp., Dec. 1995, pp. 288-299

[13] A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing Approach To Flow Control in

Integrated Services Networks-The Single Node Case, ACM/IEEE Transactions on Networking, Vol.

1, No. 3, 1992, pp. 344-357

[14] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, C. Plaxton, A Proportional Share

Resource Allocation Algorithm for Real-Time, Time-Shared Systems, Proc. 17th IEEE Real-Time

Systems Symposium, Dec. 1996, pp. 288-299.

[15] I. Stoica, H. Abdel-Wahab, K. Jeffay, On the Duality between Resource Reservation and
Proportional Share Resource Allocation, Multimedia Computing & Networking ‘97, SPIE

Proceedings Series, Vol. 3020, Feb. 1997, pp. 207-214.

[16] C.A. Waldspurger, W.E. Weihl, Lottery Scheduling: Flexible Proportional-Share Resource

Management, Proc. of the First Symp. on Operating System Design and Implementation, Nov.

1994, pp. 1-12.

[17] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with (m,k)-

firm deadlines, IEEE Transactions on Computers, April 1995.

[18] R. West, K. Schwan, and C. Poellabauer, Scalable scheduling support for loss and delay constrained

media streams, Proceedings of the 5th IEEE Real-Time Technology and Appli-cations Symposium,

Vancouver, Canada, June 1999.

[19] Kevin Jeffay, F. Donelson Smith, Arun Moorthy, and James Anderson. Proportional share
scheduling of operating system services for real-time applications. In Proceedings of the 19th IEEE

Real-Time Systems Symposium (RTSS98), pages 480–491. IEEE, December 1998.

[20] Jeffay, Kevin, and Steve Goddard. "The rate-based execution model." CSE Technical reports

(1999):

[21] Brandt, Scott A., et al. "Dynamic integrated scheduling of hard real-time, soft real-time, and non-

real-time processes." RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003. IEEE, 2003.

[22] Cheddar - open-source GNU GPL real-time scheduling simulator/analyzer. https://beru.univ-

brest.fr/cheddar/

©2024 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Keywords
	Real-Time systems, Networked Embedded Systems, Real-Time Operating Systems, Internet of Things Applications.

	If taskInQueue(tcb) then return
	else
	end if
	qReadySort()
	else (1)
	end if (1)
	endif

