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ABSTRACT 
 
We propose a unified architecture for visual scene understanding, aimed at overcoming the 

limitations of traditional, fragmented approaches in computer vision. Our work focuses on 

creating a system that accurately and coherently interprets visual scenes, with the ultimate 

goal to provide a 3D virtual representation, which is particularly useful for applications in 

virtual and augmented reality. By integrating various visual and semantic processing tasks 
into a single, adaptable framework, our architecture simplifies the design process, ensuring 

a seamless and consistent scene interpretation. This is particularly important in complex 

systems that rely on 3D synthesis, as the need for precise and semantically coherent scene 

descriptions keeps on growing. Our unified approach addresses these challenges, offering 

a flexible and efficient solution. We demonstrate the practical effectiveness of our 

architecture through a proof-of-concept system and explore its potential in various 

application domains, proving its value in advancing the field of computer vision. 
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1. INTRODUCTION 
 

Visual scene understanding is a fundamental task in computer vision that aims to extract rich and 
meaningful information from visual data. It plays a crucial role in numerous real-world 

applications where perception and interpretation of visual information is required to assess and 

complete different tasks.  
 

Nowadays, with the increased attention towards virtual reality, augmented reality and overall 

interest in providing richer forms to visualize data, it becomes clear that there is a need to 

integrate 3D techniques and methods with visual scene understanding. Hence, the task of 
automatic visual scene understanding for 3D scene synthesis can be seen as a new challenge. This 

involves automatic perception, analysis and interpretation of visual data that can be employed 

into a dynamic 3D scene through the usage of multiple sensors and algorithms. This new 
challenge can see application in multiple application scenarios, such as: surveillance, sports, retail 

or entertainment. As an example, in [1] visual data and synthesis are used to create a mixed 

reality system that allows users to explore a 3D environment. 
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Traditional approaches to scene understanding often involve separate and specialized algorithms 
for different tasks, leading to fragmented and disjointed analysis that hinders the system's ability 

to achieve a holistic and coherent understanding of visual scenes. As observed in [2], there is 

evidence of a need for a well-structured and unified framework that is capable of analysing a 

scene, describing and synthesizing it. This could provide several advantages over traditional 
disjointed approaches, such as allowing for a seamless integration of different modules, 

facilitating information exchange and enabling synergy among tasks. Visual scenes are composed 

of diverse objects, spatial relationships, contextual cues, and temporal dynamics, which 
collectively contribute to the overall understanding; thus, it becomes necessary to formulate a 

cohesive framework that enables a comprehensive and contextually aware understanding of the 

visual scene by leveraging different types of information. In such a framework it is important that 
the knowledge extracted from the visual scene is accessible through the entire processing chain, 

as multiple algorithms that are part of the framework may use this information to enhance the 

overall understanding of the scene. Contextual understanding is another crucial aspect that a 

unified framework can address, as scenes are not merely a collection of objects but are 
characterized by spatial layout, temporal dynamics and semantic coherence. 

 

 
 

Figure 1.  Visual-Virtual translation pipeline initially proposed in [2]. 

 

In this article we propose an architecture that enables the creation of a unified framework or 

system that addresses the challenges of visual scene understanding for 3D scene synthesis. To 
achieve this, we start by leveraging the initial basic architecture proposed in [2], depicted in 

Figure 1, and expand the modules, detailing aspects of the framework. Our proposal consists of 

four main components: scene analysis, scene description, scene synthesis and a data orchestrator. 
In the scene analysis module, visual input is processed to extract low and high-level features, 

detect objects, infer semantic segmentation, estimate poses, and capture contextual relationships 

among objects. This information serves as the foundation for subsequent stages, facilitating a 

detailed understanding of the scene. The scene description module takes the output of the scene 
analysis and constructs a high-level representation of the scene that incorporates the spatial 

information, object attributes, semantic labels and contextual information to generate a structured 

scene description. Finally, the scene synthesis module utilizes the scene description to generate a 
realistic and immersive 3D representation of the scene. This generation can blend semantic data, 

spatial arrangement, and time-based elements to create realistic scenes for specific purposes, 

offering adaptable and flexible solutions based on input restrictions and output needs. The data 

orchestrator is responsible to ensure a common ground on all of the processes and concepts 
within the system, effectively guaranteeing consistency of the data flow across the entire 

architecture. It also includes an important sub-module that helps in the creation of an informed 

decisions on the best algorithm combinations to be applied to the input data. 
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The contributions of this work are three-fold: 1) we showcase the new challenge of visual scene 
understanding for 3D scene synthesis; 2) we present an unified and flexible system architecture to 

take on this challenge; and 3) we show a practical application of this architecture by 

implementing a proof of concept system that incorporates our designs and provide examples of 

generated hybrid scenes that can be obtained by our system, illustrating the capability of 
generating synthetic data that could be used to train other models. We also present a series of 

possible applications that could leverage our proposal to target specific problems. 

 
The document is structured as follows: Section 2 explores existing works in the field of visual 

scene understanding and discusses existing methodologies, algorithms, and frameworks used in 

scene analysis and synthesis. Section 3 presents the proposed unified architecture in detail, 
providing an overview of the architecture as a whole and explaining the role of each component 

and their interactions within the system, exploring possible technologies and algorithms that can 

be applied in each component. Section 4 delves into potential use cases and areas of application 

that benefit from employing our proposal. Section 5 presents a proof-of-concept system that 
incorporates the main ideas of our proposal into a system and exemplifies possible outcomes that 

can be obtained. Finally, section 6 summarizes the contributions of the article and discusses 

future research opportunities and directions required to further improve the proposed system 
architecture. 

 

2. RELATED WORK 
 

With the improvement of processing power and neural network design, several areas of scene 
understanding have naturally evolved, with the proposal of new methods and more detailed 

datasets. When looking at image recognition, works such as NFNets [3] show that it is possible to 

achieve high accuracy on large image datasets such as ImageNet [4] with a faster training 
process. RepMLP [5] shows that incorporating prior information into fully connected layers 

enhances image recognition abilities. Video object segmentation has also evolved, with works 

such as: SwiftNet [6] that uses pixel-adaptive memory and pixel-wise memory update and match 
to reduce temporal and spatial redundancy, enabling real time processing; and LCM [7], which 

also uses a memory-based approach into a semi-supervised method that addresses the problem of 

not using the sequential order of the frames and object-level knowledge. Another related topic in 

visual scene understanding is salient object detection; the work presented in [8] studied and 
compared several approaches, ultimately concluding that there are still many under-explored 

problems in achieving efficient and reliable network designs. In a recent work, the algorithm 

IDYOLO [9] is proposed to achieve real-time salient object detection by extending the well-
known YOLOv3 [10] algorithm with the instance segmentation algorithm Poly-YOLO [11]. 

 

Considering an hierarchical perspective over a scene, detection and tracking can be seen as 

starting points of a more complete understanding of the information present. Hence, more high-
level subjective aspects, such as the meaning of the location of the objects, activities or even the 

interactions that occur are important and, therefore, a semantic parsing of visual scenes is 

necessary. A way to amass and convey these details extracted from a visual scene is through the 
usage of a Scene Graph; which is a data structure that is mainly used to describe objects, 

attributes and their relationships. It can represent the semantic details of a scene by explicitly 

modelling objects along with their attributes and relationships. They were originally introduced in 
Johnson et al. [12] and, since then, research on their generation and application to multiple 

scenarios has progressed. Scene graphs have been used for tasks such as image/video captioning 

[13, 14, 15], visual question answering [16, 17, 18], image retrieval [19, 20] or image generation 

[21, 22]. Despite the research interest in scene graphs, most of the existing works are related to 
generating the graphs from single images. In the case of videos, there are approaches that use 

spatio-temporal scene graphs to model the semantic information present in the sequence; 



122                                         Computer Science & Information Technology (CS & IT) 

however, due to the constraints that are introduced due to temporal observations, the process of 
generating the scene graph becomes increasingly difficult. Works such as [23, 24] try to use state-

of-the art video object detection and tracking methods to generate the graphs and the results 

obtained are starting to become more accurate. Figure 2 depicts an example of a scene graph, 

where objects, attributes and relationships represent the semantic information of the image. 
 

 
 

Figure 2.  Simple example of a Scene Graph. In red we have objects, in green attributes and in blue 

relationships. 

 
Human activity detection is also a very challenging and studied topic where the improvements of 

computational capabilities and neural networks enabled considerable advances. In [26], an RNN 

with LSTM was used to learn long-term temporal relationships in order to achieve spatio-
temporal human action recognition in long videos that have overlapping actions. In a different 

field, the work presented in [27] detects street-crossing pedestrians for a safer autonomous 

driving system. Multiple state-of-the-art works are also explored in detail in [28], where action 
recognition algorithms are compared in multiple application scenarios. Pose estimation is also a 

powerful tool to assess human activity and in [29] 2D skeleton-based action recognition methods 

that estimate the pose of humans from RGB images are compared and assessed. Analogous is a 

study for 3D skeleton-based action recognition [30].  
 

When looking at works that specifically mention visual scene understanding, it is noticeable that 

it is viewed mostly as a fixed concept. For instance, in [31] RGB and thermal images are used on 
a multitask-aware network that mixes semantic information with coarse features at various 

abstraction levels to ultimately segment images. In [32] a deep learning framework for future 

video prediction is presented, where the authors incorporate a module for scene understanding 

that serves to reconstruct semantic segmentation and depth images and predict optical flows. A 
bidirectional projection network is proposed in [33] to leverage the complementary information 

of 2D and 3D data to provide, once again semantic segmentation, but for 2D and 3D. Semantic 

scene completion is another related topic, where a 3D scene is reconstructed by leveraging visual 
and semantic data extracted from single-view depth or RGBD images [34, 35]. There is also work 

on end-to-end semantic instance reconstruction from incomplete point clouds [36, 37]. These 

works ultimately show that visual scene understanding has a vast area of application. However, 
there is a tendency to link the concept towards semantic segmentation and not to the more general 

idea of extracting semantic data from visual scenes. 

 

As with other areas, 3D virtualization has also evolved in recent years. In particular, human 
parametric models have been used for multiple scenarios such as 3D human pose and shape 
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estimation [38], controllable 3D human synthesis [39] or virtual try-ons of clothing [40]. There 
has also been research on using graph convolutional neural networks to generate 3D human 

shapes with better resolution [41]. Also, 3D modelling tools and game engines such as Unity 

[42], Unreal Engine [43] or Blender [44] have also evolved, introducing new features and more 

support for new graphic interchange languages such as Universal Scene Description (USD) [45], 
which is a universal format for 3D graphics. However, its usage for 3D reconstruction 

algorithmic pipelines is still extremely uncommon, showing that its inclusion will lead to new 

research opportunities. Nowadays, with the usage of Generative Adversarial Networks (GANs) 
[46, 47, 48] or Neural Radience Fields (NeRF) [49, 50], there has been a significant increase in 

the realism of the generated images and 3D representations. However, there is still a lack of 

usability when integrating a less restrictive and versatile application scenario. 
 

3. UNIFIED ARCHITECTURE 
 

Embracing a broader vision of visual scene understanding than what is generally found on 

literature, we target the paradigm of visual scene understanding for 3D scene synthesis and 
explore the idea of a unified architecture that targets the processes required to transit from visual 

to semantic data, and further to a posterior 3D reconstruction. The proposed architecture, 

depicted in Figure 3, employs four essential modules: scene analysis, scene description, scene 
synthesis and a data orchestrator. One support module is also present. In essence, the scene 

analysis module processes visual data, extracting key information like object detection and spatial 

relationships. The scene description module then constructs a high-level representation of the 

scene, capturing attributes and contextual details. Finally, the scene synthesis module uses this 
information enabling the creation of flexible, customizable and realistic 3D scene, incorporating 

semantic data, spatial layout, and temporal dynamics for an immersive experience. The data 

orchestrator serves as a central hub for defining and sharing data, such as object types, attributes, 
and relationships. This way, the standardization of the knowledge domain promotes consistency 

and interoperability across the system, enabling seamless communication between components. 

The algorithm selector sub-module is a dynamic component that assesses user input and 
considers factors like scene type, complexity, resources, and desired output to then intelligently 

choose which scene analysis algorithms to run and what type of information needs to be included 

in the scene description. 

 

 
 

Figure 3.  Proposed high level architecture for transitioning from visual scene towards 3D synthesis. The 

three main modules are depicted as green boxes and the two supporting components that glues the 

architecture as blue boxes. 

 

By incorporating these components, we allow a system that implements this architecture to be 

able to dynamically adapt to different scenes and requirements, thus optimizing the performance 
and output of the system. In the following subsections we delve into each of these components 
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and detail their internal structure and what type of data flow and algorithms could be used for 
their implementation. 

 

3.1. Algorithm Selector 
 

The Algorithm Selector intends to provide flexibility to the entire system. It receives user input 

information and is responsible for interpreting this information and provide a selection of the 
most appropriate algorithms to be used to process the input video or images. The decision must 

take into consideration the type of scene that is to be analyzed, the type of information that is to 

be described and the desired output to effectively select the most appropriate group of algorithms. 

In the current proposal, the algorithm selector follows a rule-based selection process but can 
evolve into a more sophisticated process. By making use of rule sets provided in the 

configuration, the Algorithm Selector is able to provide a deterministic selection of algorithms 

and associated parameter to process input visual data. This allows for fine-grained control over 
the algorithms so that they can target specific problems that can appear and are accounted for by 

the rule sets. 

 

3.2. Data Orchestrator 
 

Visual scene understanding requires the integration of multiple algorithms, addressing different 
types of information that can be extracted from a scene. This means that for a system to 

incorporate an ensemble of algorithms, it needs to have a common ground where the type of data 

and the flow of information is well structured, thus enabling the adaptation of multiple algorithms 
and enabling future development without requiring structural re-definitions of the entire 

architecture. This can be critical, for instance, to reduce latency in critical applications such as 

self-driving cars or adjusting UAVs depending on their surroundings and sensory information. To 

address these issues, the Data Orchestrator module is proposed, which binds and connects all 
components in the system. For this module we propose the usage of a knowledge base or 

ontology that provides a shared and consistent representation of objects, attributes, and 

relationships, ensuring a common understanding across algorithms. To achieve this, a structured 
representation of the knowledge base/ontology needs to be designed, so that it captures the 

semantics and relationships between different concepts in the scene understanding domain. 

 

The structured representation can be implemented using various technologies and standards such 
as RDF (Resource Description Framework) [51], OWL (Web Ontology Language) [52], or 

JSON-LD (JSON for Linked Data) [53]. This can then be populated by integrating existing 

domain-specific knowledge sources, such as existing datasets like MS COCO [54], Open Image 
[55] or Image Net [4]; or external ontologies [56, 57, 58]. Algorithms within remaining modules 

can then access and query the knowledge base/ontology to obtain relevant information for their 

respective tasks. 
 

3.3. Visual Scene Analysis 
 
The Visual Scene Analysis module is the first step in the processing chain of the system. Visual 

input data in given to the module in the form of images or videos and the algorithms identified by 

the Algorithm Selector sub-module are applied to the data to extract meaningful information 
about the scene. As different types of information can be extracted, it employs a multi-stage 

processing pipeline to perform various tasks and ensure that processes required by multiple 

algorithms are not performed more than once. 

 
Internally, the module should have a hierarchical structure that goes from basic pre-processing 

techniques, such as noise reduction, image enhancements, normalization, resizes and other low-
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level image manipulation techniques; to more advanced techniques. Naturally, the processes 
required depend on the input data and on the requirements specified by the user and associated 

rule sets. These advanced techniques include processes such as: object detection and recognition, 

semantic segmentation, pose estimation, and so on. Additionally, other more specialized and 

advanced algorithms may also be integrated, based on the rules specified for the scene analysis 
algorithms. These may include scene classification, object tracking, action recognition, group 

behaviour and so on. We can see in Figure 4 an illustration of this module, where the hierarchy of 

the processing pipeline within the module can be observed. 
 

 
 

Figure 4.  High level scheme of the visual scene analysis module. At the top we can have preprocessing 

techniques that are followed by more advanced processes to extract meaningful information. These 

processes may or may not be interconnected and depend on the application scenario and the rules specified 

as well as the desired output. The output of the module is processed data that is the forwarded to the scene 

description module.  

 
Overall, the internal architecture of the Visual Scene Analysis module incorporates a combination 

of traditional computer vision techniques and state-of-the-art deep learning-based methods to 

extract rich, high level and meaningful information from the input data. The combination of the 

results obtained by these algorithms is then forwarded to the Scene Description module to 
finalize the overall scene understanding process. 

 

3.4. Scene Description 
 

The Scene Description module has two main responsibilities: enhance the analysis with semantic 

information to finalize the scene understanding process; provide means to describe the entire 
scene in a well-structured way. The internal structure of the module is divided into two levels. 

One for finalizing the scene interpretation and another to prepare the obtained data for 

distribution. To achieve these responsibilities, different methodologies can be considered when 
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we look at the specific requirements and constraints of a given application. For instance, 
relational databases could be used to store and manage scene data, which may be useful for 

applications that only require efficient retrieval and querying of data. Semantic networks [59], 

that represent objects or concepts as nodes, and semantic relationships between as edges are also 

useful as they can capture complex semantic relationships and dependencies within a scene. The 
ORA-SS (Object-Relationship-Attribute Data Model for Semi-structured Data) data model [60], 

which focuses on representing objects, their attributes, and the relationships between them in a 

more tabular or relational format, can also be applicable for scenarios where the scene structure is 
less hierarchical. However, these methodologies have limitations if we consider arbitrary visual 

scenes and their inherent hierarchical structure that combine both visual and semantic data can be 

of use for other applications. Taking these limitations into consideration and the fact that we have 
a data orchestrator that provides a global ontology/knowledge base, we argue that incorporating 

scene graphs could be advantageous. The choice of using scene graphs comes from the fact that 

they are an hierarchical structure that captures the objects in the scene as nodes and their 

relationships as edges. Each node represents an object, and edges denote relationships between 
objects. Another important aspect is that scene graphs provide a compact and expressive 

representation that allows for rich scene understanding and reasoning. 

 
The module starts by extracting object-level and contextual information from the output of the 

Scene Analysis module, which includes detected objects, their attributes (such as colour, size, and 

shape), their spatial relationships, their interconnections within the scene, and then formulates a 
scene graph with these components. To enhance the accuracy and completeness of the scene 

description, the module leverages the structured knowledge within the ontology/knowledge base 

to correct potential errors or inconsistencies that may arise from the object detection or 

relationship detection processes by using a semantic reasoner to infer logical consequences from 
the data. It is important to highlight that there exist automatic scene graphs generation methods, 

which target both the scene analysis and description at the same time. Our idea is to incorporate 

these algorithms in the system, as well as enhance the description with other data extracted from 
the scene analysis. Works such as [61, 62, 63], are good candidates for this approach, as they 

leverage spatial and temporal information to better formulate and generate accurate scene graphs. 

Another good example is presented in [58], where ontologies are used to refine the resulting 

scene graphs to better target specific application scenarios.  
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Figure 5: High level view of the scene description module. It receives the processed data from the scene 
analysis and extracts semantic information from it to then produce a scene graph. The output of the module 

is a serialized and refined graph. 

 

After the generation of the scene graph and its refinement, the module prepares a data structure to 
output the graph in a readable and editable way. This involves encoding the generated scene 

graph and associated visual and semantic scene information into a suitable format that can be 

edited and interchanged, thus ensuring that the information obtained from the analysis of the 

scene can be stored and transmitted. A depiction of this module can be seen in Figure. 5. To 
create this textual representation, the module may utilize various data formats such as JSON, 

XML or other formats that are tailored to the specific needs of the system. For instance, it may 

also support a binary format that allows further information compression and faster read speeds. 
It is important that the chosen format ensures that the data is stored efficiently, and that the scene 

information extracted and processed is preserved both in integrity and completeness, so that this 

information can be further used without the need to analyse the scene once again.  
 

Overall, this module has a pivotal role in this architecture, as it is crucial for providing a 

structured and semantically rich output of the complete analysis of a visual scene. The 

representation provided by the module also serves as a fundamental basis for further processing, 
visualization and storage or exchange of scene information. For instance, users can manually 

change the description to modify the underlying scene and therefore enable the synthesis of 

different scenes without changing anything in the processing pipeline. This capacity also enables 
the support of a wide range of application and tasks, by leveraging the rich information contained 

in the representation. 

 

3.5. Scene Synthesis 
 

The Scene Synthesis module is the final component of our architecture, and it takes as input the 
structured description of the scene provided by the previous module. It leverages this description 
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in order to generate a visually and semantically coherent 3D representation of the described 
scene. To achieve this, the module should internally combine 3D modelling techniques, rendering 

algorithms, and synthesis methods to generate a realistic and comprehensive visual output.  

 

To generate the virtual scene, the module follows a series of steps, that depend on both the scene 
description and the user input that specifies the desired output. In a first phase, it starts by 

instantiating 3D models of the objects and their respective attributes within the scene. To do so, it 

can either utilize 3D modelling techniques such as geometric modelling or voxel-based 
representations or even a template-based approach where a 3D basic 3D model of each 

component is fetched from a database of previously generated models. Then, these models are 

positioned and arranged on the virtual scene according to the spatial information that is presented 
on the description. Once the positioning and instantiation of the models is made, the module 

begins the rendering process, where the lighting, shading, and texture mapping is made to 

improve the quality of the virtual environment. Naturally, this process is also very dependent of 

the user input that is given, as different techniques can be applied depending on the desired 
outcome. For instance, ray tracing, simple rasterization, global illumination simulation, and many 

others are techniques that can be employed in this process in order to provide the desired realism. 

This shows that the architecture not only supports different types of components for the scene 
analysis but also for the scene synthesis. Thus, enabling different implementations depending on 

the application scenario. To further improve realism techniques such as generative adversarial 

networks (GANs) or Neural Radience Fields (NeRF) could also be applied. 
 

The final output of the Scene Synthesis module is expected to be a visually appealing and 

coherent 3D representation of the analysed scene, that ensures that the semantic information 

presented is the same as the one obtained from the scene analysis. This virtual representation 
should closely resemble the real-world environment described in the scene representation and 

follow the user instructions that define what type of output is to be created. This synthesized also 

has an important feature, where the representation can be rendered from different viewpoints and 
can have varying levels of detail, enabling visualization, virtual reality experiences, or integration 

into other applications. Figure 6 depicts a high-level view of the scene synthesis module. 
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Figure 6: High level view of the scene synthesis module. It receives a serialized and refined graph and 

proceeds to translate the information present on the scene graph to 3D content that is then exported to a 

desired format. 

 

The type and format of the output will also depend on specified user/application requirements 

and can be of the following forms: rendered images, rendered videos, 3D models, USD, or other 
application dependent data formats. It could also export 3D models of the synthesized scene in 

various formats, such as FBX (Filmbox), OBJ (Wavefront Object), or COLLADA 

(COLLAborative Design Activity), that may include the geometry, textures, materials, and 
animations of the scene, allowing for further manipulation or integration with other software. 

Similarly, the usage of USD could also be enabled as it is an open and scalable interchange 

format for 3D scenes that enables efficient storage, sharing, and collaboration across different 

software tools and platforms. Finally, this architecture could also enable the integration of other 
different data formats that could be specifically tailored to other applications for a seamless 

integration, or even allow the generation of mixed reality scenes, where virtual components are 

included into a real scene. 
 

4. POSSIBLE USE CASES 
 

As we have seen above, our proposal puts forward the building blocks necessary to create a 

system or framework that enables visual scene understanding description and possible posterior 
3D scene representation. As the workflow transitions from scene analysis to representation and 

then to synthesis, it can be applied in multiple areas that are related to each of these steps. In this 

section we will present some potential applications and use cases for a system that implements 
our architecture, discussing what can be achieved.  
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As the last step of our proposal is the synthesis of virtual scenes, it is natural that one of the most 
direct use cases is related to content creation. By taking advantage of the possibility to pick a 

base scene and changed its description according to a user’s desires, it is possible to synthesize 

3D content for various purposes, such as movies, advertisements, or virtual worlds. Enabling 

content creators to generate realistic objects and scenes and without relying solely on physical 
setups or real-world recordings and manual labour creating the scenes from scratch. Furthermore, 

by having the possibility of controlling the synthesis process, it is possible to create different 

types of visualization of the same input data by enabling more or less detail or even providing 
different points of view. Similarly, it sees application in the creation and augmentation of datasets 

either of purely virtual spaces and actors, or mixed content, with virtual avatars in real scenes. 

 
Another relevant area that sees usability is virtual and augmented reality, where users could 

recreate physical scenes and turn them into immersive and interactable virtual worlds, that could 

be easily changed by editing their associated descriptions. Additionally, by porting these 

descriptions into an augmented reality device, we could create virtual overlays with information 
of objects onto the real world, thus providing a seamless and immersing AR experience. In a 

similar fashion, it can also be applied for gamification or serious games, where specific situations 

can be recreated and used to provide valuable input for patient treatment and rehabilitation.  
 

Another important area that sees advantages in using our proposal is in surveillance and overall 

security environments, where a complete visual scene understanding system for synthesis can be 
a great tool to provide multiple types of information. For instance, it could: detect anomalies by 

analysing the detections of objects, people and their interactions; provide a synthesized 

representation of the space, so that events can be analysed without infringing personal data laws, 

as only virtual representation of arbitrary human models is stored and provided; help better define 
the position of camera solutions to ensure better surveillance; provide a powerful tool to store and 

visualize past recordings without the need to store the original video. 

 
By employing this architecture, we gain the ability to analyse, describe, and synthesize visual 

scenes with a high level of accuracy and realism that is derived from the applied algorithms. This 

enables us to understand the content of images and videos and represent scenes in a structured 

manner, and also providing flexible output options, allowing users to select the most suitable 
format for their needs. This way, it sees applicability in a wide range of applications 

encompassing multiple scenarios. 

 

5. PROOF OF CONCEPT 
 

In this section, we present a practical application of the proposed architecture for visual scene 

understanding and 3D synthesis, applied to a real-world scenario. In this implementation we 

target the specific problem of generation of hybrid data, that integrates real live scenes with 
virtual avatars performing actions based on real actors. To do so we detect and swap existing 

humans in videos with 3D avatars performing the same activities, ensuring the anonymity of the 

original actors, which is an important aspect when data protection specifications are highly 
restrictive. This system integrates our proposed architecture and makes use of state-of-the-art 

technologies. In this implementation we show how each component of the system can be 

plugged, highlighting the seamless integration of the scene analysis, description, and synthesis 
modules. As this proof of concept intends to show the possibilities of the proposed architecture, 

we do not elaborate a complex ontology or define multiple rules. Rather, we focus on detecting, 

tracking and translating humans from videos to a virtual representation that is then synthesized 

for an output video, while also allowing manual change of the description in order to manipulate 
the outcome of the synthesis without interfering with the input data.  
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In the scene analysis module we detect, segment and track humans in the input videos. This is 
achieved by relying on the state-of-the-art YOLO-v8, presented by Ultralytics [64]. This way, we 

identify bounding boxes, segmentation masks and obtain IDs for each human in the scene. This 

information is then provided to the VIBE [65] pose estimation algorithm, so that the pose of each 

human in the scene is detected and mapped to SMPL models, which are versatile and realistic 
representation of human body shape and pose [66]. For the scene description, we formulate a 

simple scene graph that contains the corresponding ID of the associated person, as well as pose 

and SMPL data associated with them, for each frame. In this implementation we also store 
separately the corresponding segmentation masks that can be used to aid the inpainting process 

required to remove the original detections from the images. This information is then serialized to 

a JSON file, as we want to illustrate the ability to store and distribute information extracted from 
the analysis of the scenes. This also shows the ability of the system to divide the processing 

pipeline, where Scene Analysis and Description can first be performed, and the Scene Synthesis 

module can later use the generated description to generate the synthesis. For the rules established 

in this implementation, we simply select an inpainting process if the user wishes to swap the 
humans in the input video with the 3D avatars. Otherwise, the avatars are overlapped in the 

resulting video. For the inpainting we used the E2FGVI algorithm [67] as it shows impressive 

results. To illustrate the results obtained by our proof of concept with and without inpainting, we 
selected videos from the HMDB51 dataset [68]. 

 

In Figure 7 we show a simple example of the possible outcomes that can be obtained by our 
implementation. We can place avatars over the original video or remove the original actor and 

place an avatar on its place.  

 

 
 

Figure 7: Example of a video of a woman swinging a golf club. In the center we have an avatar overlaping 

the original actor and in the right we completely remove the actor. 

 

In the next example, depicted in Figure 8, we show that for an arbitrary frame we can obtain a 
corresponding scene graph that represents the information in it. Furthermore, by manipulating the 

graph and introducing a rotation attribute, we can tell the Scene Synthesis module to apply a 

rotation on the generation of the avatar. In the graph, we use the special +has relationship to 

include the data extracted from the analysis. 
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Figure 8: In the top images we have an avatar swinging a golf club, with the corresponding scene 
graph associated. On the bottom we see the same synthesis but with a modification in the scene 

graph, resulting in a rotation of the avatar on the synthesis process. We use red to denote entities, 

green for attributes and blue for relationships 
 

We are also able to generate hybrid content that is semantically different from the original video. 

For instance, in Figure 9 we show that we can transform a video of a person running towards a 

pier in a video where the avatar is actually running from the pier. We are able to do this by 
introducing a rotation and specifying to the Scene Synthesis module to produce the results 

backwards. 
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Figure 9: Example of a video of a woman running towards a pier on the top three images. In the bottom we 

have an avatar rotated 180 degrees and running from the pier, as we have generated the synthesis 
backwards. 

 

6. CONCLUSION AND FUTURE WORK 
 

In this work we explore the vast field that is visual scene understanding and introduce a different 
paradigm that is visual scene understanding for 3D synthesis, where visual and semantic data 

extracted from real visual scenes can be leveraged to provide concise descriptions of their 

underlying scenes and used to recreate 3D virtual environments. We further explore this idea and 
present a comprehensive architecture for the task of visual scene understanding for 3D synthesis. 

We address the complexities of analysing, describing, and recreating scenes in 3D through the 

proposal of a modular architecture that allows a seamless integration of scene analysis, 

description, and synthesis. 
 

For each module of our proposal, we explore existing technologies and algorithms that can be 

employed and show how each module can interact with the other to ensure that the information is 
always well understood inside all of the modules. We also highlight the benefits of this approach 

and explore real-world applications where our proposal can have impact. Additionally, we 

provide a proof-of-concept example where the architecture’s ability to detect and track humans, 
estimate and describe their poses, and generate 3D avatars is demonstrated. We combine state-of-

the-art computer vision techniques and algorithms to show that it is possible to use our proposal 

to generate and manipulate visual content with 3D virtual humans performing actions. Compared 

to traditional methodologies, our proposal enables a unique architecture that can be leveraged for 
multiple workflows that require the processed data obtained from images or videos. Thus, also 

enabling a faster development process for new applications.  

 
While our work provides a robust foundation for the development of a system or framework, it 

leaves multiple opportunities for future research and development of associated topics, namely: 

research on fine-grained scene description supported by the scene graphs that allow precise 
details about object attributes, environment, scene illumination or group behaviours, which can 

lead to even more precise descriptions of the scene and ultimately a better and more realistic 

scene synthesis; Dynamic scene synthesis, where the generated content can incorporate lighting 

changes; real-time processing for integration in applications such as live broadcasts or mixed 
reality scenarios. Naturally, other challenges and research opportunities could also be 
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encountered when applying our proposal into more specific application scenarios, ultimately 
showing that this is a new and challenging task that can see a broad applicability. 
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