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ABSTRACT 
 
Helmet detection is crucial for advancing protection levels in public road traffic dynamics. 

This problem statement translates to an object detection task. Therefore, this paper 

compares recent You Only Look Once (YOLO) models in the context of helmet detection in 

terms of reliability and computational load. Specifically, YOLOv8, YOLOv9, and the newly 

released YOLOv11 have been used. Besides, a modified architectural pipeline that 

remarkably improves the overall performance has been proposed in this manuscript. This 

hybridized YOLO model (h-YOLO) has been pitted against the independent models for 
analysis that proves h-YOLO is preferable for helmet detection over plain YOLO models. 

The models were tested using a range of standard object detection benchmarks such as 

recall, precision, and mAP (Mean Average Precision). In addition, training and testing 

times were recorded to provide the overall scope of the models in a real-time detection 

scenario. 
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1. INTRODUCTION 
 

In many countries, traffic accidents involving motorbikes and scooters are among the top causes 

of injury and death. Helmets are widely recognized as one of the most effective ways to prevent 
fatal or severe head injuries. Helmet detection presents an object detection challenge where 

models must accurately determine if a rider is wearing a helmet, often in real-time situations. 

While traditional computer vision techniques have their merits, they also face limitations in terms 
of processing speed, accuracy, and adaptability to various environments. The emergence of deep 

learning-based object detection algorithms has transformed this area, particularly with the 

introduction of the YOLO series of models. 
 

YOLO’s capability for fast, real-time object detection makes it particularly suitable for helmet 

detection applications. This paper examines the performance of YOLOv8, YOLOv9, and 

YOLOv11, and their hybridized version for identifying helmets on bike and motorbike riders. 
 

The YOLO family of models has widely been applied in various object detection tasks due to its 

efficiency in balancing speed and accuracy. Initially proposed by Redmon et al. [1], YOLO 
frames the task of object detection as a single regression problem that significantly reduces the 

time of detection in comparison to the earlier methods such as Recurrent-Convolutional Neural 

Network (R-CNN) or Single Shot Detector (SSD). With each consecutive version of YOLO, 
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architects have added improvements that bring benefits in terms of accuracy, reduced latency, or 

lower computational load. 
 

Indeed, two of the most critical ideas that the present study focuses on are as follows: helmet 

detection is one of the most important initiatives undertaken to make roads safe, and the 

automation of helmet detection systems especially those utilized in the traffic monitoring setup. 
According to the National Safety Council, helmet usage by motorcyclists alone is estimated to be 

37% more effective in preventing fatal injuries. In this regard, the model proposed here can be an 

excellent tool for law enforcement agencies to discover bike riders who do not wear helmets. 
Such a system could reduce casualties from bike and motorbike accidents.  

 

2. LITERATURE SURVEY 
 

YOLO models have evolved substantially since their inception. One key work in this area is a 
comprehensive review of YOLO architectures, tracing their development from YOLOv1 to 

YOLOv8. This study highlights the model’s single-stage approach, where object localization and 

classification are performed simultaneously, making it highly efficient for real-time applications 
such as autonomous vehicles and video surveillance [2]. Another notable study proposes 

Complexer-YOLO, which integrates 3D object detection into the YOLO framework using 

semantic point clouds. This extension enhances the model's performance for real-world tasks like 

autonomous driving by improving detection accuracy in complex environments [3].  
Additionally, another study emphasizes the integration of YOLO with a sliding innovation filter 

for object tracking in dynamic environments, addressing challenges like occlusions and 

disturbances, and showcasing YOLO's adaptability beyond static image detection [4]. 
 

While YOLO models excel in speed, other methods offer a different tradeoff between accuracy 

and computational complexity. Faster R-CNN, for instance, is a two-stage object detector that 
significantly improves precision by first generating region proposals and then refining them using 

convolutional neural networks. Though slower, it remains a top choice for tasks where accuracy 

is critical, such as medical imaging and precise localization [5][6]. SSD (Single Shot MultiBox 

Detector), like YOLO, adopts a single-stage approach but focuses on balancing speed with 
improved accuracy over simpler YOLO versions [7]. Another significant development is 

RetinaNet, which introduces the focal loss function to address the problem of class imbalance, 

thereby boosting accuracy in detecting small objects, a common issue in real-world applications 
[8] L Nkabulo et. al. performed an ensemble of faster R-CNN and YOLO by first passing the 

input to the YOLO model and then refining the output using faster R-CNN [9] Lastly, Mask R-

CNN extends Faster R-CNN to not only detect objects but also perform instance segmentation, 
making it highly effective in tasks requiring pixel-level precision, such as robotics and 

autonomous systems [10]. 

 

The above survey has been represented in Table 1 contains the previous highly notable works 
that have inspired this work and are concerned with object detection. Thus the table highlights the 

key differences between existing methodology and the methodology proposed in this paper. 
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Table 1.  Literature survey of some works concerned with  2-D and 3-D object detection. 

 

S. No. Authors Methodology Dataset 

1 J. Terven et al. [2] YOLOv1-v8, YOLO-NAS 
PASCAL VOC 2007, 
2012, MS COCO 

2 M. Simon et al. [3] Complexer-YOLO KITTI 

3 
A. Moksyakov, et al. 

[4] 

YOLO in conjunction with 

estimation theory filters 

MS COCO and custom 

dataset 

4 S. Ren et al. [5] Faster R-CNN 
PASCAL VOC 2007, 
2012, MS COCO 

5 J. Fan, J. Lee et al. [6] Faster R-CNN+YOLOv2 Custom dataset 

6 W. Liu et al. [7] 
Single Shot multibox 

Detector (SSD) 

PASCAL VOC, 

COCO, and ILSVRC 

7 
T.-Y. Ross and G. 

Dollár [8] 
RetinaNet MS COCO 

8 

L. Nkalubo, R. 

Nakibuule, and N. 

Okila [9] 

YOLOv5+Faster R-CNN, 

RetinaNet, Cascade R-CNN, 

SSD 

Custom dataset 

9 
K. He, G. Gkioxari et 

al. [10] 
Mask R-CNN MS COCO 

10 
M. Vaikunth et al. [This 

work] 

h-YOLOv8, v9, v11 and 

YOLOv8, v9, v11  

Online [11] and 

custom dataset 

 

While the literature is dominant in numbers with independent object detection systems, a deeper 

study of combined architectures needs to be explored further. Rightly so, this work compares a 
set of recent YOLO models by manipulating the YOLO pipeline by including a lightweight 

custom (CNN) that feeds features to the YOLO model for enhanced object detection. Further 

details as to how the overall pipeline is designed will be discussed in the next section. 

 

3. PROPOSED METHODOLOGY 
 

The development of the Helmet Detection System follows a systematic approach designed to 

ensure high accuracy and robustness. This approach is divided into several key stages, including 
dataset Collection, preprocessing, image augmentation, model training, hyperparameter tuning, 

and model testing as described in Figure 1. 

 

3.1. Dataset Collection 
 

The process begins with gathering images depicting individuals both wearing and not wearing 
helmets. The dataset is curated from two main sources: an online database [11] and custom 

images captured using phone cameras. This variety ensures that the images feature individuals 

from different perspectives and under varying lighting conditions, which is crucial for building a 
model that performs reliably in real-world scenarios. The total image count exceeds 3500. 

 

3.2. Preprocessing 
 

Once the dataset is collected, preprocessing is carried out to standardize the images and prepare 

them for model training. This includes converting all images to RGB format for uniformity and 
resizing them to a consistent resolution. Pixel normalization is also applied to scale the pixel 
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values, which enhances the efficiency of the model training process by ensuring that all input 

data is on the same scale. 
 

To further improve the robustness of the model, image augmentation is applied. By introducing 

variations in the dataset through techniques such as rotation, flipping, zooming, and adjusting 

brightness and contrast, the model is exposed to a wider range of possible image scenarios while 
simultaneously eliminating the need for the requirement of a large number of training images 

[12]. This helps prevent overfitting, as the model becomes more adaptable to changes in the real 

world, such as lighting and angle variations. 

 

3.3. Model Training 
 
After splitting the data into training and testing sets, the training phase begins. This phase 

involves a specific training pipeline that involves the usage of CNNs to feed features into the 

independent YOLO model. In specific, three CNN models have been used in sequence as shown 
in Figure 1. The first CNN layer is shown in Figure 2 for reference and the subsequent CNN 

layers, which are otherwise similar to the first, vary only in the number of filters, dimensions, and 

padding. From Figure 2, it is observable that after kernel application, batch normalization 

followed by activation is carried out. 
 

Normalization is a crucial part of creating a robust model since it allows for data of different 

types to be brought into a common scale for further processing. Hence, it is a very popular 
preprocessing tool. In the case of a CNN, the hidden layer outputs can be normalized for faster 

training. The normalization of input coming from another layer is called batch normalization. 

This process has also proved to bring stability to the CNN training. 

 

3.4. Hyperparameter Tuning 
 
Fine-tuning the hyperparameters is a key step in optimizing the model’s performance. Important 

parameters, such as the number of epochs, batch size, learning rate, and choice of optimizer are 

adjusted to strike a balance between training efficiency and accuracy. Adam Optimizer is chosen 
for its adaptive learning rate, which speeds up convergence [13][14]. The learning rate is 

carefully tuned to ensure effective learning without skipping important minima. Likewise, the 

batch size and number of epochs are adjusted to improve the model’s training speed and 

accuracy. 

 

3.5. Model Testing 
 

Once trained, the model undergoes thorough testing to validate its performance. Techniques like 

image fusion are employed to refine detection accuracy by combining outputs from different 

images and also a data enhancement method to overcome the shortcomings that high noise offers 
[15]. Evaluation metrics, such as precision and recall provide insight into classification 

performance. Additionally, the Mean Average Precision (mAP) score is used with the 

Intersection over Union (IoU) set to a 50% confidence threshold to assess how well the predicted 
bounding boxes align with the actual helmet regions in the images. 

 

3.6. Individual YOLO Model Description 
 

All in all, six YOLO models have been used – h-YOLOv8, h-YOLOv9, h-YOLOv11, and their 

corresponding independent versions.  
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Independent YOLO models have been extensively studied as testified by the literature review in 

this manuscript. Although independent models deliver satisfactorily and, in some cases, 
outstanding results, it is important to strive for as much reliability as possible without overfitting 

the model. 

 

The independent YOLO models have a different architecture compared to hybridized systems. 
This architecture involves identical steps as the h-YOLO but devoid of the hybridization block as 

depicted in Figure 1. Everything else from data preprocessing to data testing remains the same. 

This setup ensures that the comparison between the independent and hybridized versions remains 
justified as the hybridization block will be the only varying parameter. Detailed analyses of the 

independent YOLO models are given in the following subsections. 

 

 
 

Figure 1.  Overall architectural diagram of h-YOLO containing the flow of data from the raw data directory 

to the final object detection output. 

 

 

 
 

Figure 2.  Architectural diagram of the first layer of CNN used in the overall hybrid model. 
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3.6.1. YOLOv8 

 
YOLOv8 focuses heavily on improving multi-object detection accuracy and introducing better 

handling of small objects within cluttered scenes [16]. Additionally, the model has been 

optimized for edge devices, which means it can deliver high accuracy without requiring extensive 

computational resources. 
 

A key innovation in YOLOv8 is the use of attention mechanisms integrated into the network. 

These mechanisms allow the model to focus on critical regions in the image, leading to better 
detection in complex scenes. 

 

3.6.2. YOLOv9 

 
This model has made significant improvements in terms of global context awareness, which is 

crucial for tasks like object detection in videos or complex scenes where spatial dependencies 

matter. YOLOv9 is the first in the series to utilize a hybrid CNN-Transformer backbone, which 
enhances its ability to capture both local and global features of objects. Advancements such as 

the introduction of GELAN (Generalized Efficient Layer Aggregation Network) and PGI 

(Programmable Gradient Information) significantly improve feature extraction and gradient flow 
capabilities [17].  

 

YOLOv9 also introduces a new loss function that better handles the problem of class imbalance, 

improving its accuracy for datasets with skewed object distributions. The model also benefits 
from further improvements in data augmentation techniques and adaptive learning rates, making 

it more resilient to variations in data quality and scale. As will be described in the results and 

discussion session, this model proves to be the model with the most mAP score for the utilized 
data, however with a delay in time taken to achieve said results. 

 

3.6.3. YOLOv11 

 

YOLOv11 is the newest iteration of the YOLO series of models. It features improved feature 

extraction capabilities on its own due to the enhanced backbone and neck architecture [18]. This 

version introduces boosted deployment capabilities across various platforms like the cloud and 
systems supporting NVIDIA GPUs. 

 

While each of these YOLO models offers specific improvements over its predecessor, the 
hybridized approach, which combines the strengths of the pre-CNN, has been employed in this 

study. Since the CNN is lightweight, in the sense that it does not contain a massively 

interconnected network of thousands and thousands of neurons, instead it uses neurons in the 

range of tens and hundreds [19]. This ensures that although the features are being fed to the 
YOLO model ahead, the pre-CNN does not increase the time taken significantly. However, the 

features fed by the CNN result in higher recall and mAP scores. Hence the trade-off for a small 

increment in time taken is justifiable for the substantial increase in model scores. 

 

3.7. Testing and Evaluation 
 
The validity of the proposed models has been judged using some of the standard metrics used for 

the purpose of object detection in literature. In specific, this work utilizes precision, recall, and 

mAP@50 score. Precision can be defined as the ability of the model to correctly identify positive 
instances of a particular class. On the other hand, recall measures how many instances of a 

particular class were correctly detected by the model compared to all the instances of that 

particular class. Both these metrics are mathematically represented in the equations given below.  



Computer Science & Information Technology (CS & IT)                                           89 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

   

𝑅𝑒𝑐𝑎𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Here, TP refers to true positives, FP refers to false positives and FN refers to false negatives. 

While experimenting with the hyperparameters, such as the confidence threshold, of the model to 
achieve different precision and recall scores, it is observed that there is typically a trade-off 

between precision and recall. 

Precision and recall have different purposes. For example, one should aim for a higher precision 
score when the false negatives are to be tightly controlled while one should aim for a higher 

recall score when it is important to maximize the identification of a particular class while the 

presence of false negatives can be tolerated to an extent. In most real-world scenarios though, the 

optimization of both these scores is crucial and this is where the F1 score that combines both 
recall and precision comes into play giving the analyzer a comprehensive view of the model’s 

performance. As is seen in the equation below. 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
Another important criterion that is used to criticize a model is the Mean Average Precision 

(mAP) score. This builds on the average precision (AP) values which is essentially the average of 

precision scores across a range of recall values and at a particular confidence threshold. When 

this average is calculated for precision-recall values over a set of confidence thresholds, it is said 
to be the mean of average precision, hence mAP. In this manuscript, the usage of mAP at a 

specific Intersection over Union (IoU) value, i.e. 50%,  is taken into consideration, and therefore 

it is mentioned as mAP@50. However, to facilitate detailed analysis and due to a stronger 
representation of overall performance; mAP has been preferred over F1 in this manuscript. On 

the contrary, the area under the receiver operating characteristics (AUROC) cannot be considered 

a justifiable metric for object detection tasks due to its reliance on true negatives (TN). This is 
because the true negatives in object detection refer to all those bounding boxes that do not 

contain an object, in this case, a helmet; and therefore TN is practically infinite. 

 

4. RESULTS AND DISCUSSION 
 
Evaluation of the various models has been conducted using the rubrics mentioned in the previous 

section. From Table 1, it is understood that the h-YOLO models categorically produce better 

precision, recall, and mAP compared to plain YOLO models. When it comes to training and 
testing time, as shown in Table 2, plain YOLO models take less time than h-YOLO models.  

 

While tackling a safety enforcement task, as is done in this manuscript, it is important to prefer 

higher scores over faster times not to say that this priority is absolute though, rather,  it varies 
depending on the problem statement. What this means is that one should prefer the model with 

higher accuracy only when the accuracy difference between the juxtaposed models is significant. 

Hence, the h-YOLO models are preferred over independent YOLO models as the accuracy 
difference is 2-3\% which is significant considering the objective of the project can potentially 

deal with civilian life.  

 

As the comparison between the non-hybridized and the hybridized model has been sorted; 
naturally, the comparison to find the best among the hybridized systems needs to be conducted. 
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This can be inferred by analyzing results in Table 1 and Table 2. The h-YOLOv9 model has the 

best precision, recall, and mAP@50 scores, but h-YOLOv11 only minutely trails while 
maintaining strikingly shorter training and testing times.  

 

The shorter run times of the h-YOLOv11 models can be explained by analyzing the attributes of 

the underlying YOLOv11 model. According to the official documentation of the YOLOv11 
model, it is stated that the YOLOv11 model has been subjected to enhancement of training and 

inference pipeline. This enhancement contributes to the overall speed of the system. Moreover, 

the YOLOv11 model has fewer parameters than the v8 and v9 versions.  
 

Therefore, it is understood that the h-YOLOv11 model provides a reliable balance between 

detection ability and inference speed making it an ideal choice for real-time detection tasks. 

 
Table 2.  Comparison of performance metrics between various models. 

 

Model Precision Recall mAP@50 

h-YOLOv8 0.853 0.912 0.925 

YOLOv8 0.792 0.91 0.905 

h-YOLOv9 0.887 0.9 0.932 

YOLOv9 0.852 0.88 0.906 

h-YOLOv11 0.867 0.91 0.914 

YOLOv11 0.863 0.859 0.892 

 
Table 3.  Training and testing times of different models. 

 

Model Training time (min) Testing time (ms) 

h-YOLOv8 78 13.8 

YOLOv8 74 10.7 

h-YOLOv9 134 36.4 

YOLOv9 133 43.0 

h-YOLOv11 101 11.9 

YOLOv11 99 10.1 

 

5. CONCLUSIONS 
 
To encapsulate, helmet detection is an important task in terms of public safety and for 

technological advancement in automated systems. The YOLO models gained a stronghold as 

leaders in the arena of real-time object detection. This manuscript is focused on providing a 

comparative analysis between YOLOv8, YOLOv9, and the latest YOLOv11 and their hybridized 
models thereby opening up new avenues of thought regarding speed, accuracy, and 

computational load trade-offs in the context of helmet detection applications. The task of 

detecting helmets or any other safety equipment such as rear-view mirrors or riding shoes for that 
matter can have a multitude of applications in enforcing road safety laws. Specifically, such 

automated detections using machine learning algorithms and frameworks can allow the 

concerned authorities to take action when due. While the implementation of such technology that 
can detect defaulters is outside the scope of this paper, the first step of detecting helmets with 

practical reliability has been achieved, evidently so by the results expressed in the previous 

section. Therefore, this paper confirms the following --- overall reliability of using machine 

learning frameworks, the superiority of h-YOLO over independent YOLO by 2-3\% mAP score, 
and the ability of h-YOLOv11 specifically to balance speed and performance. Future work can 
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involve utilizing h-YOLO to not only detect helmets but also to identify number plates on 

vehicles. This would allow the concerned authorities to take necessary action and enforce road 
safety. This manuscript can moreover serve as a guide for the prospective implementation of 

helmet-detection programmatic chips in traffic cameras. 
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