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ABSTRACT 
 

The booming of IoT devices has attracted significant interest in data integration platforms 

that enable seamless utilization and control of sensor data across various applications. 

However, most existing platforms are centralized structure, aggregating data on specific 

companies' servers. This centralization raises privacy concerns and imposes limitations on 

data sharing with third parties. To address these challenges, this paper proposes a 

decentralized demand-supply matching system for IoT device data distribution using 

blockchain technology. The paper details the requirements for the entire matching system, 

including both users and IoT devices, and introduces a system concept alongside a 

practical implementation. Evaluation experiments conducted on a prototype system 

demonstrate the feasibility and effectiveness of the proposed approach. 
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1. INTRODUCTION 
 

Recent advancements in embedded device performance and network technologies have resulted 

in the widespread IoT integration of nearly all household electronic devices. These IoT devices no 

longer operate in isolation but instead interact with one another, providing more comprehensive 

information and enabling unified control. Moreover, the data and control functionalities of these 

devices have extended beyond local home and corporate networks, connecting to external 

networks to facilitate various services. To support this interconnectivity, data integration 

platforms play a crucial role. These platforms enable the aggregation, integration, and sharing of 

data generated by IoT devices, supporting not only data flow but also the integration and 

optimization of control mechanisms. For example, one such integration [1] involves a smart 

agriculture big data platform that uses IoT technology to collect real-time environmental data, 

such as temperature and soil moisture, enabling farmers to remotely manage and optimize their 

operations. 

 

Data integration platforms for IoT devices are gaining attention across various fields. However, 

existing data integration platforms are predominantly centralized, with data being aggregated on 

servers managed by the manufacturers [2]. Figure 1 illustrates this traditional centralized 

architecture, where IoT devices installed in homes typically communicate with platforms 

provided by their manufacturers, enabling data transmission and control. Users leverage these 

platforms to utilize aggregated data for analysis and to exert control over external systems. These 

platforms support the interoperability of the manufacturer's IoT devices, allowing for complex 

services when devices are used in together. While this structure offers numerous benefits, it also 
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presents several critical issues. 

 

 
 

Figure 1. Centralized Data integration platforms 

 

Firstly, as shown in Figure 1 (①), IoT devices from different manufacturers are typically 

incompatible with platforms other than their designated ones, which hinders the integration and 

exchange of data across devices. This limitation not only restricts the versatility of IoT 

ecosystems but also reduces the potential for comprehensive data analysis and control across 

multiple devices. Secondly, as indicated in Figure 1 (②), the centralized management of these 

platforms raises significant privacy concerns, as all data are collected and stored on manufacturer-

controlled servers. This centralization can lead to the potential misuse or unauthorized access to 

sensitive user data [3]. Finally, Figure 1 (③) illustrates how the rigid structure of some platforms 

may prevent the free and unrestricted exchange of data, as the platform policies or technical 

limitations might inhibit users from sharing or utilizing their data beyond the confines of the 

platform. 

 

To address the structural issues of centralized data platforms, research has increasingly focused 

on decentralized data integration platforms leveraging blockchain technology [4]. These 

decentralized systems distribute data ownership and access rights directly to users, reducing 

reliance on a central authority and promoting greater transparency and tamper resistance. Prior 

studies have explored encryption technologies to safeguard the confidentiality and integrity of 

data transactions, while also estimating the costs associated with blockchain-based data flows. 

These studies demonstrate the effectiveness of blockchain in enhancing security and transparency 

across decentralized ecosystems. 

 

However, despite these advancements, many prior studies fail to fully address the comprehensive 

requirements of data integration platforms, particularly those involving users and IoT devices in a 

complete matching system with concrete implementations. Additionally, many existing platforms 

limit the provision of data to only representative values, which mitigates the risk of low-cost 

resale by buyers but significantly restricts the scope of data that can be offered. While this 

approach works well in large-scale marketplaces, it limits flexibility. Our study addresses these 

shortcomings by focusing on smaller-scale environments, such as homes or small businesses, 

where the risk of malicious reselling is lower and the need for a wider range of raw data and 

control capabilities is more pressing. 
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To address the above-mentioned challenges, this paper proposes a decentralized demand-supply 

matching system utilizing blockchain technology to facilitate the secure and integrated flow of 

IoT device data. The principal contributions of this research are as follows: 

 

 Comprehensive System Requirements Organization: We systematically define and 

organize the requirements for IoT device data distribution platforms, emphasizing user- 

centric considerations such as data privacy, security, scalability, and the seamless 

interoperability of heterogeneous IoT devices. This structured approach provides a robust 

foundation for addressing the complexities inherent in distributed data systems. 

 Development of a Dual-Mode Data Distribution Mechanism: We introduce a novel 

mechanism that enables both active and passive data distribution by users. This dual- mode 

functionality allows users to either actively engage in data transactions or utilize rule-based 

automation to manage data flows in the background. This approach enhances the system’s 

flexibility and accommodates diverse user preferences, contributing to its practical 

applicability in various contexts. 

 Portability and Open-Source Implementation: In this study, we have improved the 

portability of the system by utilizing Docker, ensuring that it can be deployed across various 

environments without compatibility issues. Furthermore, we have made the source code 

publicly available, providing transparency and fostering community collaboration for further 

enhancements and adaptations of the system. 

 

To evaluate the effectiveness of the prototype system, we conducted a series of experiments that 

measured CPU usage, memory utilization, and gas costs during operation. The results 

demonstrated that the system operates within practical limits in terms of both computational load 

and transaction costs, making it feasible for real-world deployment. Moving forward, we plan to 

further extend our work by conducting stress tests using actual IoT devices and exploring 

improvements in the metadata structure to enhance usability and system efficiency. 

 

This paper is structured as follows: Chapter 2 introduces foundational concepts, including 

blockchain technology and smart contracts. Chapter 3 reviews related work, focusing on 

decentralized data integration platforms and highlighting the limitations of these studies, thereby 

clarifying the position of this research. Chapter 4 outlines the system requirements for IoT data 

distribution and presents the architecture and design of the proposed system. Chapter 5 describes 

the system’s implementation and discusses the results of performance evaluations, demonstrating 

the system’s efficacy. Chapter 6 reflects on the experimental findings, examines the limitations of 

the prototype system, and outlines directions for future improvements. Finally, Chapter 7 

concludes the paper with a summary of findings and potential avenues for future research. 

 

2. BACKGROUND KNOWLEDGE 
 

2.1. Blockchain 
 

Blockchain is a type of database that directly connects terminals on an information 

communication network and processes and records transaction data in a decentralized manner 

using cryptographic technology. When a transaction occurs on the blockchain, its content is 

verified by participants and recorded in the ledger only if consensus is reached. Multiple 

transaction records in the ledger are grouped into a new block. This block not only contains the 

transaction data but also stores the hash value of the previously generated block. This process of 

linking blocks in a chain-like manner gives blockchain its name. Despite its decentralized nature, 

blockchain is highly resistant to data destruction and tampering. If a user attempts to alter a 

transaction, the hash value of the block containing the altered transaction will change. 
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Consequently, the hash values of subsequent blocks will also change sequentially, allowing other 

users to detect the tampering. Therefore, to tamper with the blockchain, one would need to 

regenerate all subsequent blocks, which is practically impossible. Additionally, unlike traditional 

centralized systems governed by a specific authority, blockchain involves multiple systems, each 

holding information and constantly synchronizing with each other. As a result, even if some 

systems stop or fail, the impact on the overall operation and functionality of the system is 

minimal [5]. 

 

2.3. Ethereum 
 

Ethereum, introduced by Vitalik Buterin in 2014, represents a major development in blockchain 

technology and is often referred to as a second-generation blockchain [6]. Unlike Bitcoin, which 

primarily functions as a digital currency, Ethereum stands out for its support of smart contracts. 

These smart contracts are self-executing agreements with terms directly written into code, 

allowing transactions to be automated without the need for intermediaries, thereby making 

processes faster and more secure. A key innovation of Ethereum is its use of a Turing-complete 

programming language, which enables developers to create a wide variety of smart contracts on 

its blockchain. This has made Ethereum the go-to platform for building decentralized applications 

(DApps), greatly expanding the potential uses of blockchain technology. 

 

Originally, Ethereum used a Proof of Work (PoW) consensus algorithm, where miners solved 

complex puzzles to validate transactions and secure the network. However, Ethereum has recently 

transitioned to a Proof of Stake (PoS) model, which is more energy-efficient and better suited for 

scalability [7]. This shift helps Ethereum remain sustainable and capable of handling the growing 

demands of its network. 

 

2.2. Ethereum Dapps 
 

DApps, or decentralized applications, operate on blockchain technology. Unlike traditional 

applications, DApps do not have a central management body and are instead run by all nodes 

participating in the blockchain. This eliminates the need for intermediaries, enabling open 

information flow and allowing users to conduct highly transparent transactions. The key 

difference between DApps and traditional web services lies in how the data is processed— 

specifically, whether the backend services are decentralized. As a result, many existing web 

services can be built as DApps. Known fields where DApps are deployed include social 

networking [8], gaming [9], and finance [10]. 

 

2.4. Ethereum Events 
 

Events are a feature used in smart contracts to notify applications connected to the blockchain of 

specific processes [11]. By declaring events within a contract and using the reserved word emit in 

functions, event information is stored in the Ethereum Virtual Machine (EVM) log area. 

Applications connected to the blockchain periodically query this log area to check for issued 

events. When an event is detected, the application can perform specific actions using the internal 

data of the event. 

 

3. RELATED WORK 
 

In this chapter, we review previous research on blockchain-based data integration platforms and 

examine how these studies have addressed key challenges in the field. We also identify the 

current focus areas of existing research and highlight their limitations. Finally, we position our 
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work in relation to these studies, explaining how our approach addresses the challenges that 

remain unresolved. 

 
Table 1. Comparison of Blockchain-Based Data Distribution Platforms 

 

 [6] [7] [8] [9] Proposed System 

Target Area Cross Domain IoT Personal ~ 

Organization IoT 

Data 

Medical Spatial Home ~ 

Organization IoT 

Data 

Privacy 

Preservation 
✓ ✓ ✓ ✓ ✓ 

Device 

Compatibility 
✓ ✓ ✓ ✓ ✓ 

Decentralized 

Manner 

- ✓ ✓ ✓ ✓ 

Tamper Resistance - ✓ ✓ ✓ ✓ 

High Throughput ✓ - - - ✓ 

User Entry Policy ✓ - - - ✓ 

Open-Source 

Availability 

- - - - ✓ 

 

Xinghui et al. [12] proposed a decentralized data integration platform using a consortium 

blockchain to address cross-domain data sharing challenges caused by incompatible 

communication protocols. Their system aggregates IoT data from various domains, such as urban 

environments and agriculture, reconciling domain differences and recording access information 

on the blockchain. A smart contract-based authentication system ensures secure cross-domain 

data requests. The platform’s feasibility was demonstrated through a practical experiment 

conducted in Xi'an, China. 

 

Vlasis et al. [13] introduced "Agora," a privacy-preserving decentralized data marketplace that 

combines blockchain and cryptographic techniques. In Agora, encrypted data is shared with 

brokers, who compute functions using functional encryption keys, revealing only the results while 

keeping raw data private. Smart contracts automate secure payments, but high verification costs 

limit Agora’s scalability, and its reliance on weighted sums restricts complex data processing. 

 

Alsharif et al. [14] developed a blockchain-based medical data marketplace focused on 

confidentiality and transparency. Their platform uses attribute-based encryption (CP-ABE) and 

zk-SNARKs to ensure that only authorized entities can access sensitive data. Smart contracts 

automate fair exchanges by requiring verifiable proof of payment and delivery, preventing fraud 

and ensuring data integrity. 

 

Hui et al. [15] applied blockchain to spatial data markets, securing data with Interplanetary File 

System (IPFS) for storage and function encryption for privacy. Their system uses a Vickrey 
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Reverse Auction for fair data pricing, where sellers receive the second-lowest bid. Although the 

approach protects privacy through disposable accounts, the auction’s high execution costs pose 

scalability challenges. 

 

In this study, we created a comparison table (Table 1) to analyze the key features of prior works. 

The comparison is based on eight criteria: the six requirements defined in Section 4.1, along with 

Target Area and Open-Source Availability. These criteria enable us to evaluate and discuss the 

strengths and weaknesses of the prior research in comparison to our own study. 

 

First, while the transparency of blockchain can sometimes pose challenges to privacy 

preservation, extensive research in cryptography has aimed to address these issues. Various 

methods have been developed to ensure privacy protection. Although the approaches and 

strengths of these methods differ, both prior works and our study adequately address privacy 

concerns. 

 

Regarding device compatibility, all the reviewed studies meet this requirement. For instance, 

while the research by Alsharif et al. and Hui et al. focuses on specific domains, their mechanisms 

are not restricted to any particular type of IoT device, making them broadly applicable to a wide 

range of IoT data. 

 

The work by Xinghui et al. shares many similarities with our study, particularly in its ability to 

handle large volumes of data at high speed. Their experiments demonstrated that users could 

easily engage with the system through user-friendly applications, making system participation 

straightforward. However, their approach relies on data-sharing components within each domain 

for data collection and distribution, rather than giving users direct control. Additionally, their 

study lacks a mechanism for verifying data integrity. 

 

Overall, numerous studies on blockchain-based data distribution platforms have focused on 

leveraging cryptographic techniques to ensure privacy, confidentiality, and data integrity. 

However, few studies have fully implemented the entire process, from user participation to actual 

data distribution. Our research distinguishes itself by conducting a comprehensive analysis of the 

system requirements for a complete matching system that includes users and IoT devices, 

implementing these requirements, and releasing the solution as an open-source project. 

 

4. SYSTEM REQUIREMENTS AND PROPOSED SYSTEM 
 

4.1. System Requirements 
 

In this section, we outline the key system requirements necessary to facilitate smooth data 

distribution among users and IoT devices participating in the platform. These users include not 

only the general public, who may lack advanced knowledge of IoT devices, but also corporations 

and organizations. The primary system requirements are as follows: 

 

 Privacy Preservation 

 Excellent Device Compatibility 

 Decentralized Structure 

 Tamper Resistance of Data 

 High Throughput 

 Flexible User Entry Policy 
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Privacy preservation is essential because data collected by IoT devices can potentially threaten 

privacy when aggregated. For example, data on the operation times of home appliances can reveal 

a user's daily routine. Therefore, safeguarding user privacy is a crucial requirement. 

 

The system must ensure excellent device compatibility to accommodate the rapidly increasing 

number of IoT devices with diverse performance levels and data types. To achieve seamless data 

distribution across this varied ecosystem, a unified method that operates independently of device 

capabilities and data characteristics is essential. 

 

The platform should be operated with a decentralized structure by its users. This approach 

eliminates the risk of improper data usage by a central authority, ensuring the platform remains 

transparent and trustworthy. By distributing control among users, the platform fosters a more 

open and secure environment for equitable data exchange, promoting a dynamic and inclusive 

data distribution market for IoT devices. 

 

Tamper resistance of data is critical for maintaining the reliability of services that depend on it. If 

data is tampered with, it could undermine trust in the services using it. Therefore, the system 

requires mechanisms to ensure that the data collected by IoT devices remains identical to the data 

exchanged. 

 

The platform must support high throughput to efficiently manage large volumes of data. 

Applications like traffic monitoring require real-time processing, while accurate data analysis and 

machine learning rely on substantial data sets. Therefore, the system must be designed to handle 

large-scale data rapidly and efficiently to meet the demands of these use cases. 

 

A flexible user entry policy is crucial for encouraging widespread adoption of the platform. Since 

the proliferation of IoT devices is expected to be driven largely by general users, their 

participation will be key to the platform's success. To engage and retain these users, the system 

must include mechanisms that simplify the data distribution process for individuals without 

advanced technical expertise, fostering active and sustained participation. 

 

These system requirements were derived from our research group's analysis of common demands 

in previous studies on data distribution platforms and existing services. To build a more practical 

and robust system, it is essential to incorporate insights from experiments involving technicians 

and users experienced in IoT device development, and to continuously improve the system based 

on these insights. 

 

4.2. System Overview 
 

This subsection outlines the proposed demand-supply matching system, with its overall 

architecture depicted in Figure 2. 

 

1. IoT Devices: Controlled by the Data Provider, these devices transmit data and execute 

operations based on the provider's requirements. 

2. Data Provider: The owner of the IoT devices, responsible for managing the data they 

generate. The Data Provider can be an individual or organization, seeking social or financial 

benefits from providing this data. 

3. Data Provider’s Mediator: Acting as the Data Provider's agent, the Mediator manages IoT 

devices, processes data, and accesses the blockchain. It also automatically generates and 

deploys metadata to the Data Exchange DApps based on the Data Provider’s settings to 

facilitate smooth data distribution. 
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4. Data Consumer: The user who enters a transaction with the Data Provider via a Data 

Request and utilizes the data for purposes such as analysis or service improvement. 

5. Data Consumer’s Mediator: Managed by the Data Consumer, this Mediator acts as their 

agent, handling the Data Request, decryption, Data Integrity Verification, and payment 

settlement upon completion of the data acquisition process. 

6. Data Storage: The cloud service used by the Mediators of both the Data Provider and Data 

Consumer to exchange data. This can include cloud storage services like Dropbox, 

decentralized storage using IPFS, or data brokerage servers with pub/sub messaging. By not 

limiting data mediation to the blockchain, the system can handle large-scale data efficiently, 

though additional measures for data integrity and access control are necessary. 

7. Data Exchange DApps: A set of Blockchain Smart Contracts and web applications that 

facilitate data transactions. DApps manage metadata provided by the Data Provider, 

including the provider's ID, data volume, type, distribution status, and a hash value for later 

Data Integrity Verification. The web application offers an intuitive interface, enabling Data 

Consumers to make Data Requests and engage in transactions without blockchain expertise. 
 

 

Figure 2. System Overview 

 

4.3. Data Distribution Flow 
 

This subsubsection provides a detailed explanation of the data transaction flow within the 

proposed demand-supply matching system, as illustrated in the sequence diagrams shown in 

Figures 3 and 4. Figure 3 depicts the flow from system setup, through the Mediator ̓  s deployment 

of metadata, to the Data Consumer’s Data Request, while Figure 4 illustrates the process from the 

Data Request to the completion of the transaction. It is important to note that the Upload and Data 

Request steps, as shown in Figure 3, can occur repeatedly throughout the transaction process. 

 

The system is designed with the assumption that users operate multiple IoT devices within a local 

network at home or within an organization. These devices continuously collect sensor data, which 

is then transmitted to a local system managed by the user. To deploy the system, the market 

owner initiates the deployment of Blockchain Smart Contracts on the blockchain, establishing 

them as Data Exchange Dapps, and launches the corresponding web application. Additionally, 

Ethereum’s source code verification tools allow the market owner to validate the 
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integrity of the deployed smart contracts, effectively preventing unauthorized use. This process 

not only ensures the reliability of the system but also enhances user confidence in participating on 

the platform. 
 

 
Figure 3. Data Distribution Flow (Setup ~ Data Request) 

 

Once the system is deployed, users can set up and configure Mediator nodes within their local 

network (Step 1 in Figure 3). This configuration includes defining how the Mediator will access 

the IoT devices, providing blockchain account details, and setting up automation rules for 

transaction processes. These automation rules serve two primary functions: the first is for data 

provision, where the Mediator automatically deploys smart contracts when certain data conditions 

are met, thereby initiating the process of data provision. The second function is for data 

acquisition, where the Mediator automatically monitors metadata and requests data that meets 

specified conditions. 

 

As the system operates, the Mediator continuously monitors data from connected IoT devices. 

When the data meets the predefined conditions for provision, the Mediator generates metadata 

based on the collected data. This metadata includes the data type, volume, the Data Provider’s ID, 

the current distribution status, and a hash value used for Data Integrity Verification later in the 

process. The metadata is then deployed to the Data Exchange Dapps, making it available for other 

participants in the system to access (Step 2 in Figure 3). 
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Figure 4. Data Distribution Flow (After Data Request) 

 

Data Consumers can request the necessary data based on this deployed metadata. There are two 

primary methods for making a Data Request: one method involves the Data Consumer actively 

requesting data through the web application (Step 3a in Figure 3), and the other involves the 

Mediator automatically making a Data Request based on preconfigured rules (Step 3b in Figure 

3). When using the web application, the Data Consumer can search through the available 

metadata, select the required data, and submit a Data Request. In the rule-based method, the 

Mediator monitors the metadata deployed to the Data Exchange Dapps in the background, and if 

it finds a match, it automatically initiates a Data Request. In certain cases, the system may require 

a Digital Currency payment at the point of request. However, the Data Provider cannot withdraw 

the Digital Currency until the subsequent Data Integrity Verification is successfully completed. 

 

Once a Data Request is made, the Data Exchange Dapps issue events to both Mediators, 

instructing them to proceed with the data exchange. The Data Provider’s Mediator then uploads 

the actual data to the specified Data Storage and retrieves the access information (Step 4 in Figure 

4). This access information is encrypted using the Data Consumer’s public key and broadcasted 

as an event on the blockchain (Step 5,6 in Figure 4). The Data Consumer’s Mediator monitors the 

blockchain, captures the event, and decrypts the access information using its private key (Step 7 

in Figure 4). This allows the Data Consumer to securely retrieve the requested data from the Data 

Storage. 
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To ensure data integrity, the Data Consumer’s Mediator calculates a hash value of the retrieved 

data and sends it to the Data Exchange Dapps for verification (Step 8,9 in Figure 4). The Dapps 

compare this hash value with the original hash value recorded in the metadata to confirm that the 

data has not been tampered with. If the verification is successful, the Data Provider is then 

permitted to withdraw the Digital Currency (Step 10 in Figure 4). If the verification fails, the 

process is restarted, ensuring that both parties fulfill their obligations before completing the 

transaction. 

 

To ensure data integrity, the Data Consumer’s Mediator calculates a hash value of the retrieved 

data and sends it to the Data Exchange Dapps for verification (Step 8,9 in Figure 4). The Dapps 

compare this hash value with the original hash value recorded in the metadata to confirm that the 

data has not been tampered with. If the verification is successful, the Data Provider is then 

permitted to withdraw the Digital Currency (Step 10 in Figure 4). If the verification fails, the 

process is restarted, ensuring that both parties fulfill their obligations before completing the 

transaction. 

 

These processes collectively ensure the integrity and transparency of data transactions within the 

system, making data distribution reliable and secure. The automation rules set in the Mediator 

significantly reduce the user’s manual effort, enabling both Data Providers and Data Consumers 

to efficiently conduct secure data transactions. Furthermore, by employing a straightforward 

encryption and decryption mechanism, the system can accommodate various types of Data 

Storage, providing flexibility without being constrained to a specific storage solution. 

Additionally, the design of the system minimizes the incentive for either party to engage in 

dishonest behavior, as neither the Data Consumer receives verified data nor the Data Provider 

withdraws Digital Currency until the entire transaction is successfully completed. This transaction 

mechanism ensures that the system adheres to the requirements established in Section 4.1. 

 

5. IMPLEMENTATION AND EVALUATION 
 

5.1. Implementation 

 
5.1.1. Implementation Overview 

 

To demonstrate the feasibility of the proposed system, we implemented a proof of concept (PoC) 

that supports active data transactions facilitated by users via a web application. This 

implementation focuses on evaluating the core functionality of the system, specifically its 

efficiency and security in handling data transactions. 

 

The overall architecture of the prototype system is illustrated in Figure 5. In this implementation, 

we focused on realizing four key components from the proposed system described in Chapter 4. 

These components are the Data Provider’s Mediator, Data Consumer’s Mediator, Data Storage, 

and Data Exchange Dapps. The Data Provider’s Mediator manages data collected from IoT 

devices on behalf of the data provider, while the Data Consumer’s Mediator is responsible for 

receiving the data and verifying its integrity on behalf of the data consumer. The Data Storage 

component supports secure data exchange between the Mediators, and the Data Exchange Dapps 

mediate data transactions through smart contracts. 

 

For the implementation, we selected an optimal technology stack for each component. The Data 

Provider’s Mediator and Data Consumer’s Mediator were implemented using Rust [14], chosen 

for its high performance and memory safety, which are crucial for real-time data processing. The 

blockchain-related parts of the Data Exchange Dapps were developed using Solidity for smart 
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contract development, with Hardhat serving as the integrated development environment. Hardhat 

is optimized for smart contract development, testing, and private chain deployment. 

 

Additionally, the UI was developed using SvelteKit, a web application framework, implemented 

with TypeScript for efficient and robust user interface development. 
 

 
Figure 5. Implemented System and Data Flow 

 

The development environment was established using VSCode's DevContainer [14], allowing for 

the creation of isolated development environments for each component. DevContainer leverages 

container technology to ensure consistency across development environments by encapsulating 

the dependencies and toolchains required for each component. To facilitate interaction between 

components, these containers were configured to operate on the same network, enabling seamless 

testing of inter-component communication. 

 

The implementation of the system has been made available as open-source software. The source 

code, along with detailed documentation, can be accessed at 

(https://github.com/ertlnagoya/Blockchain_IoT_Marketplace/). This availability encourages 

further experimentation and collaboration within the research community. 

 

5.1.2. Component Implementation 

 

Data Provider’s Mediator and Data Consumer’s Mediator share the same source code, with 

configuration files determining the specific account used by each. In this proof of concept, the 

sample text file within the Data Provider’s Mediator project serves as the target for distribution. 

Once the system is initialized, metadata is deployed to the Data Exchange Dapps. When a Data 

User makes a data request via the UI application, the Data Consumer’s Mediator accesses the 

Data Storage, retrieves the requested text file, and saves it within the project. Additionally, the 

UUID generated during the data upload to Data Storage is encrypted and decrypted to prevent 

unauthorized third-party access, ensuring secure transactions. 

 

Data Storage functions as a web server, providing the following handlers: / responds to GET 

requests for health checks, returning a 200 OK status. The /upload endpoint responds to PUT 

requests, handling multipart/form-data files and saving them. To test the integrity verification 

feature, there is a 50% chance that the file will be tampered with during this process. After the file 

is saved, a randomly generated UUID is issued and returned as a response, which serves as the 

file path for subsequent downloads through the /download endpoint. The UUID is generated 
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using a secure method, making it resistant to external guessing. 

 

Data Exchange Dapps are composed of smart contracts running on the blockchain and a 

connected web application. The smart contracts include a contract managing the list of metadata 

and individual contracts for each metadata entry, enabling efficient data transaction management. 

The UI application features both a metadata listing page and a detailed view, allowing users to 

review details and make data requests. Furthermore, the UI application supports MetaMask, 

enabling users to easily and securely perform data transactions by leveraging their digital wallets 

within the web browser. MetaMask enhances the transparency and security of transactions by 

allowing users to manage digital currencies and sign blockchain transactions directly. 

 

5.1.3. Deployment and Configuration 

 

This subsection outlines the deployment and configuration steps required to initialize each 

component of the proposed system and ensure the entire system operates as intended. These steps 

follow the data distribution flow described in Chapter 4. 

 

The development environment utilizes VSCode's Dev Container, providing isolated execution 

environments for each component. These environments are configured to operate on the same 

network, facilitating easy testing of communication between components. 

 

The deployment begins with the initialization of the private blockchain within the Data Exchange 

Dapps to provide an environment where smart contracts can operate. Subsequently, a script 

included in the project is executed to deploy the smart contracts that manage the metadata list, 

establishing the foundation for metadata deployment. 

 

Next, the account information from the private blockchain is copied and reflected in the 

configuration files of both the Data Provider’s Mediator and the Data Consumer’s Mediator. 

While the default settings are sufficient for operation, the configuration files can be modified if 

necessary. The MetaMask extension is then installed in the web browser and set up to connect the 

user to the private blockchain. Utilizing MetaMask ensures secure data requests. 

 

Data Storage is activated using the cargo run command, placing the system in a state where it is 

ready to handle requests. Subsequently, both the Data Provider’s Mediator and Data Consumer’s 

Mediator are also initiated using the cargo run command. Upon startup, each Mediator performs a 

health check on the Data Storage and the private blockchain. Following this, the Data Provider’s 

Mediator reads a text file, creates metadata, and deploys it to the blockchain, preparing the system 

to operate according to the data distribution flow. 

 

Finally, the web application is accessed via a browser, where a request is made for the deployed 

data. MetaMask facilitates the signing of the request, initiating a secure data transaction. This 

process enables the Data Provider’s Mediator and Data Consumer’s Mediator to collaborate, 

executing the data distribution and saving the text file within the Data Consumer’s Mediator 

project. This sequence of steps confirms the coordinated operation of the entire system. 

 

5.2. Evaluation 
 

5.2.1. Introduction and Experimental Environment 

 

To quantitatively evaluate the performance of the implemented prototype system, we conducted a 

series of experiments focusing on three key aspects: 
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1. CPU and memory usage of the Mediator nodes 

2. Costs for executing and deploying functions on the blockchain 

 

These experiments were performed on a MacBook Air with the following specifications: Apple 

M3 chip (8-core CPU, 10-core GPU, 16-core Neural Engine), 16 GB of unified memory, and a 

512 GB SSD. The operating system used was macOS Sonoma (version 14.6.1). Docker Desktop 

(version 4.28.0) was utilized for containerization, and Rust (version 1.76) was employed for 

compiling the programs. 

 

The prototype system's Mediator was implemented in Rust, and the build was conducted using 

Rust's cargo build system in release mode. The resulting binary for the Mediator node was 

approximately 3.3 MB in size, with the code segment occupying around 3.25 MB, the data 

segment around 111 KB, and the BSS segment 713 bytes. The system relies on standard libraries 

such as libssl.so.1.1 and libcrypto.so.1.1 for SSL/TLS communication, as well as libc.so.6, 

libm.so.6, and libpthread.so.0 for standard C operations, mathematical computations, and 

threading support. These widely available libraries ensure compatibility across general- purpose 

Linux environments. Furthermore, the system is designed to run within Docker containers, 

ensuring portability and ease of deployment across various environments. 

 

5.2.2. Evaluation of CPU and Memory Usage 

 

The CPU and memory usage of the Mediator nodes were continuously monitored during system 

operations using a script that executed the docker stats command every second in the background. 

This script created a new log file for each measurement, using the current timestamp as the file 

name, and logged the Mediator nodes' performance metrics at each interval. This approach 

enabled continuous tracking of resource consumption throughout the experiment. 
 

 

Figure 6. CPU and Memory Usage of Data Provider’s Mediator 
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Figure 7. CPU and Memory Usage of Data Consumer’s Mediator 

 

Figures 6 and 7 illustrate the CPU and memory usage trends for the Data Provider’s and Data 

Consumer’s Mediator nodes, respectively. In these graphs, the x-axis represents the time elapsed 

since the Mediator nodes were started, while the red line indicates CPU usage and the blue line 

indicates memory usage. At certain points, the CPU usage shows a slight increase, which can be 

attributed to the initiation of a Data Request. This process involves several consecutive 

operations, including data upload, UUID encryption, and the transmission of the encrypted UUID 

to the blockchain. Similarly, a minor increase in memory usage is observed around the same time, 

likely due to internal caching mechanisms. Overall, both CPU and memory consumption 

remained minimal throughout the experiment, demonstrating the lightweight nature of the 

Mediator. This performance indicates its feasibility for deployment on IoT devices. 

 

5.2.3. Costs for executing and deploying functions on the blockchain 

 

To measure the gas costs associated with function execution and contract deployment on the 

blockchain, the Hardhat development environment was used in conjunction with the `hardhat- 

gas-reporter` plugin. This plugin allows for extended functionality in gas estimation, enabling the 

calculation of gas consumption during test code execution and smart contract deployment. 

Additionally, Coin Market Cap’s API was used to retrieve the latest Ethereum price and average 

gas price, allowing for a USD conversion of the gas costs. 

 

Table 4 presents the results of gas cost estimation obtained by running `npx hardhat test`. As of 

14:22 UTC on August 20, 2024, the gas price was approximately 3 gwei, and the price of 1 ETH 

was $2636.05 USD. The gas consumption and corresponding costs were measured for both the 

deployment of the entire system and the execution of individual methods. 

 

According to the table, the average gas cost incurred by the market owner for deploying the 

system was 3,467,190 gas, which is equivalent to $32.06 USD. Among the methods executed by 

system participants, the `deploy Merchandise` method was the most expensive, with an average 

gas consumption of 1,302,679 gas. This high cost is attributed to the fact that the method handles 

the deployment of a contract internally. 
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Table 4. Gas Reporter Output 

 

Methods 

Contract Method Average gas (gwei) Average USD 

IoTMarket deployMerchandise 1302679 10.30 

Merchandise emitUpload 29701 0.23 

 purchase 118337 0.94 

 verify 45075 0.36 

 withdraw 34499 0.27 

PubKey registerKey 317934 2.51 

Deployments 

Contract Average gas(gwei) Average USD 

IoTMarket 2030357 16.06 

Merchandise 1371714 10.85 

PubKey 651119 5.15 

 

In contrast, other methods such as `emitUpload` and `purchase` consumed significantly less gas, 

costing approximately $0.23 USD and $0.94 USD per execution, respectively. The `verify` 

method, which is responsible for ensuring data integrity, consumed an average of 45,075 gas, 

corresponding to a cost of $0.36 USD. Despite being a crucial part of maintaining the reliability 

of transactions, the cost of this method is relatively low. 

 

These results demonstrate that while gas costs are inherent to blockchain operations, the overall 

costs associated with system deployment and function execution are reasonable, allowing the 

system to operate efficiently within the blockchain environment. 

 

6. DISCUSSION 
 

In this study, we proposed a decentralized data integration platform utilizing blockchain 

technology and developed a proof-of-concept (PoC) prototype for evaluation. The system 

employs data integrity verification by comparing hash values embedded in metadata and retries 

the process until accurate data is obtained. Furthermore, by leveraging smart contracts to 

automate the validation process and manage cryptocurrency withdrawals for Data Providers, the 

system minimizes the potential for malicious behavior from both Data Providers and Data 

Consumers, thus ensuring a reliable and secure transaction flow. 

 

The experimental results demonstrate that the Mediator component is lightweight, confirming that 

it can operate efficiently on relatively high-performance IoT devices such as Raspberry Pi. 

Additionally, our analysis of gas costs associated with system operations revealed that the overall 

costs remain within a feasible range for practical use. Although deploying metadata incurs higher 

costs due to the nature of smart contract interactions, the system can still be operated at a 

reasonable expense. 

 

However, the current implementation is limited to handling only active Data Requests, thereby 

constraining the system’s functionality. Furthermore, the evaluation did not include tests to assess 

the system's performance under high loads, where multiple Data Requests are made 

simultaneously. This leaves open the question of how the system handles scalability under such 

conditions. Additionally, the experiment was conducted within a virtualized network environment 

on a single PC. Future work will need to include tests conducted on real IoT devices in a more 

realistic operational environment to better assess the system’s viability in practice. 
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Regarding the metadata uploaded to the blockchain, future iterations of the system may require 

the embedding of richer data to enhance search ability and improve overall efficiency. However, 

this would likely increase deployment costs, and careful consideration must be given to the trade-

off between the volume of data and the associated costs. 

 

Looking ahead, future experiments will focus on simulating real-world scenarios and evaluating 

the system's performance under large-scale Data Request conditions. The insights gained from 

these tests will inform further improvements to the proposed system, ensuring its effectiveness 

and robustness in practical deployments. 

 

7. CONCLUSION 
 

This paper proposes a decentralized demand-supply matching system leveraging blockchain 

technology for the distribution of IoT device data. The research goes beyond the typical scope of 

data distribution platforms by systematically organizing the requirements for the entire matching 

system, including the users and IoT devices, and presenting a system concept designed to meet 

these requirements. To demonstrate the feasibility of the proposed concept, a proof-of-concept 

implementation was developed and evaluated. 

 

The evaluation focused on three key aspects: the binary size of the Mediator program, its CPU 

and memory usage during operation, and the gas costs associated with blockchain function 

execution and deployment. The results showed that the system operates efficiently within 

practical limits, demonstrating that the proposed concept is viable for real-world deployment. 

 

In addition, this study examined several prior works on decentralized data integration platforms. 

While many of these studies focus on privacy, data integrity, and confidentiality, few have placed 

sufficient emphasis on usability. By comparing these works with the proposed system, this paper 

highlights the unique contributions of this research, specifically its focus on user- centric design 

and comprehensive system requirements, setting it apart from existing studies. 

 

For future work, we recognize that the metadata uploaded to the blockchain plays a crucial role in 

stimulating data distribution. We aim to explore more efficient ways to structure and manage 

metadata, focusing on improving both search ability and cost-effectiveness. By refining the 

design of metadata, we hope to further enhance the functionality and scalability of decentralized 

data platforms, making them even more accessible and practical for widespread use. 
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