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Abstract. This study assesses the accuracy of the Variational Quantum Eigensolver (VQE) and Quantum
Phase Estimation (QPE) for calculating the ground state energy of the hydrogen molecule (H2). Using a
minimal STO-3G basis set and a bond length of 0.735 Å, we compare the performance of both algorithms
against the theoretical ground state energy. Our results demonstrate the high accuracy of QPE under
idealized conditions, achieving close agreement with the theoretical value when initialized with the Hartree-
Fock state. However, the VQE approach, employing a simple ansatz of RX rotations and CNOT gates,
exhibits limited accuracy due to its inability to fully capture electron correlation. We analyze the impact
of ansatz choice on VQE performance and discuss the challenges of implementing QPE on near-term
quantum hardware, particularly the resource requirements and the impact of noise. Our findings underscore
the importance of ansatz selection in VQE and the need for further research into noise-resilient QPE
implementations. This comparative study provides valuable insights into the strengths and weaknesses of
VQE and QPE for molecular energy calculations, guiding future development and application of these
quantum algorithms.
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1 Introduction

Quantum chemistry has long sought to accurately predict the properties of molecules,
offering crucial insights into chemical reactions, material properties, and biological pro-
cesses [1,2]. A central challenge in this field is the accurate determination of molecular
energies [3,4], as these values underpin a vast array of chemical phenomena [5,6], includ-
ing reaction rates, molecular stability, and spectroscopic properties [7,4]. However, classical
computational approaches for solving the Schrödinger equation, the fundamental equation
governing molecular behavior, face significant limitations [8,9]. The computational cost of
these methods scales exponentially with the system size, rendering accurate calculations
for even moderately sized molecules intractable on classical computers [10,11]. This ”ex-
ponential wall” has spurred the exploration of alternative computational paradigms, with
quantum computing emerging as a particularly promising avenue [12,13]. Quantum com-
puters, leveraging the principles of quantum mechanics, offer the potential to overcome
these limitations by exploiting the inherent quantum nature of molecular systems [5,14].
Specifically, the ability to represent and manipulate quantum states directly allows for
the efficient simulation of molecular Hamiltonians, opening the door to accurate energy
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calculations for larger and more complex molecules than currently feasible with classi-
cal techniques [5,15]. This capability holds transformative potential for numerous fields,
from drug discovery and materials science to fundamental chemical research, highlight-
ing the importance of developing and assessing quantum algorithms for accurate energy
calculations [11,16].

Among the most promising quantum algorithms for tackling the challenges of molec-
ular energy calculations are the Variational Quantum Eigensolver (VQE) and Quantum
Phase Estimation (QPE) [17,18,19,20]. VQE is a hybrid quantum-classical algorithm that
leverages the power of quantum computers to prepare and measure quantum states, while
relying on classical optimization routines to minimize the energy expectation value [17,18].
In VQE, a parameterized quantum circuit, called an ansatz, is used to prepare a trial wave-
function [12,21]. The expectation value of the molecular Hamiltonian with respect to this
trial wavefunction is then measured on a quantum computer. This value is fed back to a
classical optimizer, which adjusts the circuit parameters to iteratively lower the energy,
ultimately converging towards the ground state energy [5,22]. QPE, on the other hand, is
a purely quantum algorithm that directly estimates the eigenvalues (energies) of a given
unitary operator, which in this context is constructed from the molecular Hamiltonian
[19,20]. QPE relies on the quantum Fourier transform to extract the phase accumulated
by a quantum state evolving under the influence of the Hamiltonian [23,24]. This phase
is directly related to the corresponding energy eigenvalue [25,5]. While QPE offers the
potential for highly accurate energy estimations, it typically requires more complex quan-
tum circuits and a greater number of qubits than VQE, posing significant challenges for
near-term quantum computers [26,5].

In this study, we aim to assess the accuracy of both VQE and QPE for determining
the ground state energy of molecular hydrogen (H2). H2, as the simplest neutral molecule,
serves as an ideal testbed for evaluating these quantum algorithms. By comparing the
results obtained from both VQE and QPE with the well-established theoretical value for
the H2 ground state energy, we can gain valuable insights into the performance and limi-
tations of each method. A key objective of this work is to analyze the factors contributing
to any discrepancies between the calculated and theoretical energies. This analysis will
focus on the impact of ansatz choice in VQE, the influence of the initial state preparation
in QPE, and the implications of working within the constraints of idealized quantum com-
putation. Through this comparative analysis, we aim to provide a deeper understanding
of the strengths and weaknesses of VQE and QPE, paving the way for the development of
more accurate and efficient quantum algorithms for molecular energy calculations.

2 Methods

This section details the computational methods employed to investigate the electronic
structure of the hydrogen molecule. We begin by defining the molecular system under
study, specifying its key parameters. Following this, we describe the process of constructing
the qubit Hamiltonian, which is essential for quantum computation.

2.1 Molecular System

Our investigation focuses on the hydrogen molecule (H2) in its ground electronic state.
We consider a fixed internuclear distance (bond length) of 0.735 Å, which is close to
the experimentally determined equilibrium bond length. This choice allows for a direct
comparison with established theoretical results. To represent the molecular orbitals, we
employ the minimal STO-3G basis set. This basis set, while relatively small, provides
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a reasonable balance between computational cost and accuracy for this small molecule,
making it suitable for our comparative study. The molecule is neutral (charge = 0) and
in a singlet spin state (multiplicity = 1). These parameters define the electronic structure
problem and are used as input for the subsequent quantum chemistry calculations. A
schematic representation of the H2 molecule is shown in Figure 1.

H H

0.735

Fig. 1: Schematic representation of the H2 molecule with a bond length of 0.735 Å.

We consider the hydrogen molecule (H2) with the following parameters, summarized
in Table 1.

Table 1: Parameters of the H2 Molecule

Parameter Value

Bond Length 0.735 Å

Basis Set STO-3G

Multiplicity Singlet state (S = 0)

Charge Neutral molecule (Charge = 0)

2.2 Hamiltonian Construction

The first step in constructing the qubit Hamiltonian involves performing classical electronic
structure calculations.

Electronic Structure Calculations: We perform electronic structure calculations using
PySCF to obtain the molecular Hamiltonian in second quantization form:

Ĥ =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa

†
qaras (1)

where a†p and ap are fermionic creation and annihilation operators. hpq and hpqrs are one-
and two-electron integrals, respectively. The process of these calculations is illustrated in
Figure 2.

Given the molecular geometry, basis set (STO-3G), charge, and multiplicity specified
in Section 2.1, PySCF calculates the molecular orbitals and the corresponding one- and
two-electron integrals. These integrals define the electronic Hamiltonian in the second-
quantized form. Specifically, we utilize PySCF to perform a Hartree-Fock calculation,
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Ĥ

Fig. 2: Flowchart of the electronic structure calculation process using PySCF.

which provides a reasonable initial guess for the ground state electronic structure. While
more sophisticated methods like MP2, CISD, and CCSD are also employed in our broader
calculations, the Hartree-Fock result is sufficient for generating the Hamiltonian used in
both VQE and QPE.

Jordan-Wigner Transformation: Once the electronic Hamiltonian is obtained in the
second-quantized representation, we utilize the Jordan-Wigner transformation to map it
onto a qubit Hamiltonian. This transformation expresses the fermionic creation and annihi-
lation operators in terms of Pauli spin operators acting on qubits, as shown in Equations 2
and 3:

a†p =

p−1∏
j=0

Zj

 Xp − iYp
2

(2)

ap =

p−1∏
j=0

Zj

 Xp + iYp
2

(3)

This results in a qubit Hamiltonian, as expressed in Equation 4:

Ĥqubit = J (Ĥ) (4)

where J denotes the Jordan-Wigner transformation, and Xp, Yp, Zp are Pauli matrices
acting on qubit p. A schematic representation of this transformation is shown in Figure 3.

Fermionic Operators
<latexit sha1_base64="TZXJRGVIxBbbwXHSFQHiWQPs05w="></latexit>

a†
p, ap

Qubit Operators
<latexit sha1_base64="zNqWXTpAyuA29MxMcYsLjandSZY="></latexit>

Xp, Yp, Zp

Jordan-Wigner Transformation

Fig. 3: Schematic of the Jordan-Wigner transformation mapping fermionic operators to
qubit operators.

The resulting qubit Hamiltonian is then represented as a sum of Pauli strings, which
is a form suitable for implementation on a quantum computer. Finally, we obtain a sparse
matrix representation of the qubit Hamiltonian, which is computationally advantageous
for both the classical optimization in VQE and the simulation of time evolution in QPE.
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This sparse representation allows for efficient manipulation and calculation of expectation
values.

2.3 Variational Quantum Eigensolver (VQE)

Ansatz:

Ansatz: Our VQE ansatz employs a straightforward structure of single-qubit rotations
and two-qubit entangling gates, offering a computationally tractable starting point while
highlighting the trade-off between ansatz complexity and achievable accuracy. The ansatz
begins with a layer of RX rotations, defined as in Equation 5:

Rx(θi) = exp

(
−iθi

2
Xi

)
, (5)

applied to each qubit i, where θi are the variational parameters and Xi is the Pauli-X
operator. These rotations allow exploration of different states within the Hilbert space.
Subsequently, a linear chain of CNOT gates, as defined in Equation 6:

CNOTi,i+1 = |0⟩ ⟨0|i ⊗ Ii+1 + |1⟩ ⟨1|i ⊗Xi+1, (6)

introduces entanglement between neighboring qubits, enabling the representation of corre-
lated states. The complete ansatz circuit U(θ), constructed by sequentially applying these
gates, is depicted in Figure 4. While this simple structure may have limited expressibility
compared to more sophisticated alternatives, it serves as a valuable benchmark for future
investigations with more complex ansatzes.

|q0⟩ Rx(θ0)

|q1⟩ Rx(θ1)

|q2⟩ Rx(θ2)

|q3⟩ Rx(θ3)

Fig. 4: Quantum circuit of the VQE ansatz with RX rotations and CNOT entangling gates.

Optimization: The goal is to find the parameter vector θ that minimizes the energy
expectation value:

E(θ) =
〈
0
∣∣∣U †(θ)ĤqubitU(θ)

∣∣∣ 0〉 (7)

We use the COBYLA (Constrained Optimization BY Linear Approximation) algorithm
for classical optimization, starting from random initial parameters θ0. The optimization
of the variational parameters θi in the VQE ansatz is performed classically.

COBYLA iteratively constructs linear approximations of the objective function (in this
case, the energy expectation value) and uses these approximations to determine the next
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set of parameters to evaluate. This approach is well-suited for VQE calculations, where
the objective function can be subject to noise due to limitations in quantum hardware
or the statistical nature of measurement. The initial values of the variational parameters
θi are randomly chosen from a uniform distribution between 0 and 2π. This random
initialization allows for exploring different regions of the parameter space and reduces the
risk of converging to a local minimum far from the true ground state energy. While more
sophisticated initialization strategies exist, random initialization provides a reasonable
starting point, particularly given the simplicity of our chosen ansatz. The optimization
process continues until a convergence criterion is met or a maximum number of iterations is
reached. In our calculations, we set a maximum of 200 iterations to balance computational
cost and the desire to achieve a reasonably converged energy value.

2.4 Quantum Phase Estimation (QPE)

Initial State: The initial state in QPE plays a crucial role in the algorithm’s accuracy and
efficiency, ideally possessing significant overlap with the system’s ground state. We utilize
the Hartree-Fock (HF) state, |ψHF⟩, for our QPE calculations on H2. This state, represent-
ing the electronic wavefunction as a single Slater determinant, offers a computationally
tractable approximation to the ground state. In H2, the HF state closely approximates
the true ground state due to the molecule’s simple electronic structure and minimal elec-
tron correlation. This substantial overlap ensures that the QPE algorithm predominantly
projects onto the ground state energy, facilitating accurate estimation. Preparing |ψHF⟩
on a quantum computer is also efficient, involving applying X (NOT) gates to the qubits
corresponding to the Ne lowest occupied orbitals, where Ne represents the number of
electrons:

|ψHF⟩ = Xq0Xq1 · · ·XqNe−1 |0⟩
⊗n (8)

This approach simplifies the state preparation process while providing a suitable initial
state for accurate QPE calculations in this specific context.

Controlled Time Evolution: Controlled time evolution, a core component of QPE,
is implemented using the Trotter-Suzuki decomposition. The time evolution operator, as
shown in Equation 9:

U(t) = e−iĤqubitt, (9)

is approximated by breaking it into smaller time steps, as shown in Equation 10:

∆t : U(t) ≈

∏
j

e−ihj P̂j∆t

N

, (10)

where N = t/∆t, hj are coefficients, and P̂j are Pauli string operators. This Trotterization,
while introducing an error scaling with t2 and the commutator norms, is mitigated by the
small system size and short evolution times used in our H2 simulation. For each ancillary
qubit k, we apply a controlled-U2k operation, defined as in Equation 11:

Controlled-U2k = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U2k . (11)

This controlled time evolution is crucial for accurate phase estimation and is implemented
within the overall QPE circuit, depicted in Figure 5, with the evolution time t chosen
appropriately for each ancillary qubit. While higher-order Trotter decompositions can
improve accuracy, we chose a first-order decomposition for its balance between simplicity
and circuit depth.
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...
...

|0⟩ H QFT−1

|0⟩ H

...

|0⟩ H

|ψHF⟩ U20

Fig. 5: Quantum circuit for the Quantum Phase Estimation algorithm applied to H2.

Measurement and Energy Calculation: Following controlled time evolution, the an-
cillary qubits in the QPE algorithm are measured in the computational basis. These qubits,
encoding the accumulated phase during evolution, provide a bit string

s = s1s2 . . . st, (12)

which is then converted to a decimal value ϕ between 0 and 1: ϕ =
∑t

j=1 sj
1
2j
. This

measured phase ϕ is related to the energy eigenvalue E. However, to account for the
Hamiltonian’s eigenvalue range, we rescale the energy. The minimum (Emin) and maxi-
mum (Emax) eigenvalues of the qubit Hamiltonian are calculated classically, and the final
estimated energy E is obtained by rescaling

ϕ : E = ϕ(Emax − Emin) + Emin (13)

illustrated in Figure 6. This rescaling ensures the estimated energy falls within the correct
spectral range, a crucial step for accurate energy estimations, especially for Hamiltoni-
ans with wide eigenvalue spans. Since our QPE implementation uses the time evolution
operator e−iHt, the relationship between E and ϕ needs careful consideration, account-
ing for the chosen time step ∆t or total evolution time t used in the Trotterization. You
should carefully review which time value (t or ∆t) is the correct one to use in your energy
calculation based on your specific QPE setup and implementation.

ϕ

E

Emin

Emax

ϕ

E

Fig. 6: Illustration of rescaling the measured phase ϕ to obtain the energy E.
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3 Results

This section presents the results obtained from the Variational Quantum Eigensolver
(VQE) and Quantum Phase Estimation (QPE) algorithms applied to the hydrogen molecule.
We first detail the findings from the VQE calculations, including the optimized energy and
corresponding parameters. Subsequently, we present the results obtained using QPE.

3.1 VQE Results

The VQE algorithm, upon optimization using the COBYLA method as described in Sec-
tion 2.3, yielded a ground state energy of -0.5246 Hartree. The corresponding optimized
parameters, representing the RX rotation angles θi in the ansatz, are listed in Table 2.

– Final VQE Energy:

EVQE = −0.524615Hartree (14)

– Optimized Parameters:

θopt = [4.61696612, 3.14259293, 3.14160479, 3.14154898] (15)

Table 2: Optimized VQE Parameters

Parameter (θi) Value (radians)

θ0 4.61697

θ1 3.14259

θ2 3.14160

θ3 3.14155

This result, while representing the lowest energy achievable with our chosen ansatz
and optimization strategy, deviates significantly from the theoretical ground state energy
of H2, highlighting the limitations of the chosen ansatz. This discrepancy will be further
analyzed in the Discussion section. The optimized parameters used to obtain this energy
are detailed in Table 2. The final VQE energy and the optimized parameters are shown in
Equations 14 and 15, respectively.

3.2 QPE Results

Utilizing six ancillary qubits and the Hartree-Fock state as the initial state, our QPE
algorithm estimated the ground state energy of H2 to be EQPE = −1.137306 Hartree.
This result demonstrates QPE’s potential for accurate energy estimations under idealized
conditions and with a suitable initial state. The six ancillary qubits provide sufficient
resolution in the phase estimation to achieve this high level of accuracy, which closely
agrees with the theoretical ground state energy. Further discussion and comparison with
the VQE results follow in the next section.
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3.3 Compare

For the H2 molecule at a bond length of 0.735 Å and using the STO-3G basis set, the
theoretical ground state energy is approximately −1.137 Hartree (this value can be ob-
tained from highly accurate classical calculations or experimental data). Our QPE result
of −1.1373 Hartree agrees remarkably well with this theoretical value, demonstrating the
accuracy of QPE under idealized conditions. In contrast, the VQE calculation yielded a
significantly higher energy of −0.5246 Hartree.

We summarize and compare these results in Table 3. This substantial difference high-

Table 3: Comparison of Calculated Energies

Energy (Hartree) Difference from E0 (Hartree)

Theoretical Ground State Energy (E0) −1.1370 0

VQE Calculated Energy (EVQE) −0.5246 +0.6124

QPE Calculated Energy (EQPE) −1.1373 −0.0003

lights the limitations of the simple ansatz employed in our VQE implementation. The
simple ansatz struggles to capture the electron correlation effects crucial for accurately
describing the ground state of the molecule. This discrepancy underscores the importance
of ansatz selection in VQE and the potential trade-off between circuit complexity and
accuracy, a point that will be further explored in the Discussion. The close agreement
between QPE and the theoretical result, on the other hand, emphasizes the potential of
this algorithm for achieving high accuracy, albeit with potentially higher resource require-
ments.

4 Discussion

This section provides a comprehensive analysis of the results obtained from both the
VQE and QPE algorithms, comparing their performance and discussing the implications
of our findings. We begin with a detailed analysis of the VQE results, followed by a
similar analysis for QPE. Finally, we present a direct comparison of the two algorithms,
highlighting their respective strengths and weaknesses.

4.1 VQE Performance Analysis

This subsection analyzes the performance of the VQE algorithm in calculating the ground
state energy of the hydrogen molecule. We discuss the observed discrepancy between the
VQE result and the theoretical value, the limitations of the chosen ansatz, and the potential
influence of the classical optimizer.

VQE Energy and Discrepancy with Theoretical Value: As presented in the Results
section, a significant discrepancy exists between the VQE-calculated ground state energy
(-0.5246 Hartree) and the theoretical value (-1.137 Hartree). This difference highlights a
key limitation of the VQE approach: the accuracy of the result is highly dependent on the
choice of ansatz. The VQE computed energy is significantly higher than the theoretical
ground state energy. This discrepancy underscores the importance of carefully selecting
an ansatz that balances complexity and accuracy for a given molecular system.
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Limitations of the Simple Ansatz: The limited expressibility of our chosen VQE
ansatz, consisting of single-qubit RX rotations and a linear chain of CNOT gates, directly
impacts its ability to capture electron correlation, crucial for accurately describing the
H2 ground state. Electron correlation, arising from Coulombic interactions between elec-
trons not fully accounted for in the Hartree-Fock approximation, lowers the true ground
state energy. Our ansatz generates states that are essentially combinations of single Slater
determinants. These states lack the flexibility to fully represent the correlated motion of
electrons. While CNOT gates introduce some entanglement, their linear connectivity re-
stricts the capturable correlations. More sophisticated ansatzes, like those based on the
Unitary Coupled Cluster (UCC) formalism, systematically incorporate higher-order exci-
tations, effectively capturing more complex correlation effects by exploring a larger portion
of the Hilbert space. In contrast, our simple ansatz confines the optimization to a smaller
subspace, preventing VQE from reaching the true ground state energy. This limitation
emphasizes the need for more sophisticated ansatzes in VQE calculations targeting high
accuracy, especially for systems with significant electron correlation. In essence, the VQE
algorithm finds the lowest energy state within the subspace accessible to the ansatz, but
this state is not a sufficiently accurate representation of the true ground state due to the
ansatz’s limitations.

Optimizer Performance and Local Minima: While the ansatz’s limited expressibility
is the primary constraint in our VQE calculation, the possibility of the COBYLA optimizer
being trapped in a local minimum cannot be discounted. Even simple molecules possess
complex energy landscapes with numerous local minima, and COBYLA, as a local opti-
mization algorithm, is susceptible to this. If initialized near a local minimum, COBYLA
may converge to a suboptimal solution, even if a lower energy exists within the ansatz’s
accessible subspace. Our random initialization strategy mitigates this risk by sampling the
parameter space, but it doesn’t guarantee finding the global minimum. More sophisticated
techniques, like global or stochastic optimization algorithms, could improve the chances
of finding the true minimum. Repeated VQE calculations with multiple random initial-
izations, selecting the lowest energy result, can also help avoid local minima. Although
ansatz expressibility is likely the dominant factor affecting the discrepancy between the
VQE result and the theoretical value, the potential influence of local minima underscores
the importance of optimization strategy in VQE. Further investigations with advanced
optimization techniques and multiple initializations could provide additional insights into
the role of local minima in limiting VQE performance.

4.2 QPE Performance Analysis

This subsection analyzes the performance of the QPE algorithm, focusing on its high
accuracy in idealized conditions and the crucial role of the initial state.

High Accuracy in Ideal Conditions: Our QPE calculation yielded a highly accu-
rate estimate of the H2 ground state energy, closely matching the theoretical value. This
impressive performance, particularly within our idealized simulation setting, highlights
QPE’s potential for molecular energy calculations. Unlike VQE, QPE directly estimates
Hamiltonian eigenvalues, making it less susceptible to wavefunction representation limita-
tions. The Hartree-Fock state’s substantial overlap with the true ground state in H2 en-
abled efficient projection onto the ground state energy during QPE. This good initial state
is crucial for QPE’s success, and its impact is discussed further. Our simulations, assum-
ing ideal quantum computation and neglecting noise and decoherence, allow exploration
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of QPE’s theoretical capabilities. While these ideal conditions contribute significantly to
the observed accuracy (∆ϕ = 1

2t , where t is the number of ancillary qubits), they don’t
reflect the current realities of quantum computing. The challenges of implementing QPE
on near-term hardware are addressed later.

Role of Initial State and Overlap: The choice of the Hartree-Fock state as the initial
state was crucial for our QPE calculation’s success. QPE’s accuracy depends heavily on the
overlap between the initial and target (ground) states. A larger overlap results in a stronger
projection onto the desired eigenvalue during phase estimation. In H2, the Hartree-Fock
state closely approximates the true ground state due to the molecule’s simplicity and lim-
ited electron correlation. Consequently, the substantial overlap ensures effective isolation
of the ground state energy by the QPE algorithm. A less suitable initial state, with poorer
overlap, would likely reduce accuracy, as the measured phase would contain contributions
from multiple eigenstates. This highlights a key consideration for applying QPE to more
complex molecules: finding a good initial state balancing computational feasibility and
sufficient overlap with the target state. When the Hartree-Fock state is a poor approxi-
mation, more sophisticated state preparation techniques are necessary. This dependence
on the initial state is both a strength and limitation of QPE: while a good initial state
enables high accuracy, finding such a state for complex systems can be challenging, as the
probability of measuring the ground state energy is proportional to this overlap:

|⟨ψHF|ψ0⟩|2 ≈ High. (16)

4.3 Comparison of VQE and QPE

This subsection provides a direct comparison of the VQE and QPE algorithms, considering
their performance, resource requirements, inherent trade-offs, and practical implementa-
tion challenges.

Performance and Resource Requirements: Our findings reveal a stark contrast in the
performance of VQE and QPE for calculating the ground state energy of H2. QPE, under
idealized conditions and with a suitable initial state, delivered a highly accurate result,
closely matching the theoretical value. VQE, on the other hand, produced a significantly
less accurate energy estimate due to the limitations of the simple ansatz employed. This
difference in performance reflects a fundamental trade-off between the two algorithms.
QPE, while offering higher accuracy, comes with greater resource demands. It requires
a larger number of qubits, particularly ancillary qubits for phase estimation, and deeper
circuits for implementing the controlled time evolution. The complexity of these circuits
scales with the desired accuracy and the system size. VQE, in contrast, is less demanding
in terms of quantum resources. It utilizes a smaller number of qubits and shallower circuits,
making it more amenable to near-term quantum computers. However, the accuracy of VQE
is strongly dependent on the choice of ansatz, and finding a suitable ansatz for complex
molecules can be challenging.

We summarize the resource requirements and characteristics of both algorithms in
Table 4. This difference in performance reflects a fundamental trade-off between the two
algorithms. QPE, while offering higher accuracy, comes with greater resource demands.
It requires a larger number of qubits, particularly ancillary qubits for phase estimation,
and deeper circuits for implementing the controlled time evolution. The complexity of
these circuits scales with the desired accuracy and the system size. VQE, in contrast, is
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Table 4: Comparison of VQE and QPE Resource Requirements

VQE QPE

Qubits Required n qubits n+ t qubits (with t ancilla qubits)

Circuit Depth Relatively shallow; depends on
ansatz

Deep; due to controlled unitary op-
erations and QFT

Classical Optimization Required; iterative Not required

Initial State Flexible; can be simple Should have high overlap with tar-
get state

Susceptibility to Noise Moderate; shorter circuits High; long coherence times needed

less demanding in terms of quantum resources. It utilizes a smaller number of qubits and
shallower circuits, making it more amenable to near-term quantum computers. However,
the accuracy of VQE is strongly dependent on the choice of ansatz, and finding a suitable
ansatz for complex molecules can be challenging.

Fundamental Trade-offs Between Ansatz and Controlled Time Evolution: The
contrasting performance of VQE and QPE for H2 highlights a fundamental trade-off in
quantum algorithm design for molecular energy calculations. VQE’s accuracy is intrin-
sically linked to ansatz complexity. More expressive ansatzes, capturing greater entan-
glement and electron correlation, generally yield better energy estimates. However, in-
creased complexity also means more variational parameters, complicating classical opti-
mization, and deeper quantum circuits, challenging near-term hardware. QPE, conversely,
bypasses the parameterized ansatz, directly targeting Hamiltonian eigenvalues. This elim-
inates ansatz selection but introduces other complexities. QPE’s success hinges on a good
initial state, significantly overlapping with the desired eigenstate, and accurate controlled
time evolution. While the Hartree-Fock state sufficed for H2, preparing suitable initial
states for more complex molecules is non-trivial. Controlled time evolution, requiring deep
circuits for accurate simulation, especially with long evolution times or complex Hamiltoni-
ans, presents further challenges. Trotterization, while practical, introduces approximation
errors needing careful management. Therefore, choosing between VQE and QPE involves
balancing ansatz complexity (VQE) against the difficulties of state preparation and con-
trolled time evolution (QPE). This trade-off necessitates ongoing research in algorithm
and hardware development to advance quantum chemistry calculations.

Practical Implementation Challenges: Our QPE simulation’s high accuracy relies on
idealized conditions, neglecting the noise and decoherence inherent in real-world quantum
computers. These factors can severely impact QPE performance, causing errors in the es-
timated phase and calculated energy. A key challenge for practical QPE is the depth of the
circuits required for controlled time evolution. Trotterization, while necessary, introduces
approximation errors mitigated by finer time steps, which in turn lead to deeper, noise-
prone circuits. Furthermore, QPE requires numerous highly coherent ancillary qubits.
Maintaining coherence throughout the procedure is crucial, but current quantum comput-
ers are limited in both qubit number and coherence time, making large-scale, fault-tolerant
QPE currently infeasible. Our idealization also assumes perfect gate operations, neglecting
the errors that accumulate in real quantum gates, further degrading accuracy. Addressing
these challenges requires advances in both quantum hardware (improved qubit coherence
times) and algorithm development (error mitigation techniques, fault-tolerant computing).

130                                        Computer Science & Information Technology (CS & IT)



While our simulation showcases QPE’s theoretical potential, bridging the gap to practical
implementation remains a significant task. VQE, while also affected by noise and deco-
herence during measurements, is primarily sensitive to ansatz choice and the optimization
landscape. QPE, conversely, faces the significant hurdles of deep circuits, exceeding current
hardware’s coherence times, and the difficulty of implementing precise controlled unitary
operations.

5 Conclusion

Our investigation into the performance of VQE and QPE for calculating the ground state
energy of H2 reveals key insights into the capabilities and limitations of these quantum
algorithms. We found that QPE, under idealized conditions and using the Hartree-Fock
state as the initial state, provides a highly accurate estimate of the ground state energy,
closely matching the established theoretical value. This result underscores the potential
of QPE for achieving high accuracy in molecular energy calculations when provided with
a suitable initial state and in the absence of noise and decoherence. In contrast, the VQE
approach, employing a simple ansatz composed of single-qubit rotations and a linear chain
of CNOT gates, yielded a significantly less accurate energy. This discrepancy highlights
the strong dependence of VQE’s performance on the choice of ansatz and the limitations of
simple ansatzes in capturing the electron correlation effects crucial for accurate molecular
energy calculations. This comparative study demonstrates the trade-off between accuracy
and resource requirements for these two prominent quantum algorithms. While QPE offers
high accuracy, it demands greater quantum resources and is more susceptible to the detri-
mental effects of noise in real-world quantum devices. VQE, while less resource-intensive,
requires careful ansatz selection to achieve reasonable accuracy. These findings provide
valuable guidance for selecting and optimizing quantum algorithms for molecular energy
calculations, emphasizing the need for tailoring the approach to the specific characteristics
of the molecule and the available quantum resources.

The limitations of the simple VQE ansatz employed in this study became evident in
the significant discrepancy between the calculated and theoretical ground state energies
of H2. The restricted expressibility of the ansatz, consisting only of single-qubit rotations
and a limited chain of CNOT gates, hindered its ability to accurately capture the elec-
tron correlation inherent in the molecule’s ground state. This limitation underscores the
crucial role of ansatz selection in VQE calculations and the need for more sophisticated
ansatzes when targeting higher accuracy. The potential for improvement in VQE perfor-
mance lies primarily in exploring more complex ansatzes. Ansatzes based on the Unitary
Coupled Cluster (UCC) framework, for instance, offer a systematic approach to incorpo-
rating higher-order excitations and capturing more complex correlation effects. While such
ansatzes introduce additional variational parameters and increase the complexity of the
quantum circuits, they offer the potential to significantly improve the accuracy of VQE
calculations. Further research into the design and implementation of efficient and expres-
sive ansatzes is essential for advancing the capabilities of VQE for tackling more complex
molecular systems. Beyond the ansatz itself, exploring alternative classical optimization
strategies may also yield improvements in VQE performance. More robust optimization
algorithms could help mitigate the risk of converging to local minima in the energy land-
scape, potentially leading to more accurate energy estimates even with the same ansatz.
Thus, while our study revealed the limitations of a simple ansatz, it also pointed towards
promising avenues for enhancing VQE’s accuracy through more sophisticated ansatzes and
optimization techniques.
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While our QPE simulation demonstrated remarkable accuracy under idealized condi-
tions, realizing this potential on current quantum hardware presents significant challenges.
The depth of the circuits required for accurate controlled time evolution, particularly for
larger molecules or longer simulation times, renders QPE highly susceptible to noise and
decoherence, the detrimental effects inherent in current quantum devices. Maintaining
qubit coherence throughout the lengthy QPE procedure remains a major hurdle. Fur-
thermore, the need for a substantial number of ancillary qubits, each with high fidelity
and long coherence times, poses a significant challenge for near-term quantum computers.
These limitations underscore the importance of ongoing research in both quantum hard-
ware development and algorithm design. Exploring error mitigation techniques, developing
more noise-resilient QPE variants, and ultimately achieving fault-tolerant quantum com-
putation are crucial steps towards harnessing the full power of QPE for accurate molecular
energy calculations in the future.

6 Future Work

A primary avenue for future work is the exploration of more complex and expressive
ansatzes within the VQE framework. As highlighted by the limitations of the simple ansatz
used in this study, accurately capturing electron correlation requires a more sophisticated
representation of the molecular wavefunction. The Unitary Coupled Cluster (UCC) fam-
ily of ansatzes, particularly UCC with Singles and Doubles (UCCSD), offers a promising
route for achieving higher accuracy. UCCSD systematically incorporates single and dou-
ble electron excitations, allowing for a more complete description of electron correlation
effects. While implementing UCCSD introduces additional variational parameters and in-
creases the complexity of the quantum circuits, the potential gains in accuracy warrant
further investigation. Exploring the performance of UCCSD and other advanced ansatzes
for H2 and larger molecules will be crucial for assessing their effectiveness and practical-
ity in the context of near-term quantum computers. Furthermore, developing strategies
for efficiently optimizing the increased number of parameters associated with these more
complex ansatzes is essential for their successful implementation. Investigating alterna-
tive optimization algorithms and developing tailored strategies for specific ansatzes are
promising directions for future research.

Beyond exploring more sophisticated ansatzes, investigating advanced optimization
techniques is crucial for enhancing the performance of VQE. The choice of classical opti-
mizer significantly impacts the efficiency and accuracy of the variational parameter search.
While COBYLA, the optimizer used in this study, provides a reasonable starting point,
its susceptibility to local minima and relatively slow convergence can limit the achiev-
able accuracy, especially for complex ansatzes with numerous parameters. Exploring al-
ternative optimization algorithms, particularly those designed for noisy or non-smooth
objective functions, is a promising avenue for future research. Gradient-based methods,
such as stochastic gradient descent (SGD) and its variants like Adam, offer potential ad-
vantages in terms of convergence speed. However, their applicability to VQE depends on
the efficient estimation of gradients on quantum hardware. Furthermore, investigating hy-
brid optimization strategies that combine elements of global and local optimization could
prove beneficial. Global optimization algorithms can help escape local minima and explore
a wider parameter space, while local optimization methods can refine the solution in the
vicinity of a promising candidate. Developing optimization techniques tailored to the spe-
cific characteristics of VQE, such as the noise inherent in quantum measurements and the
structure of specific ansatzes, could lead to significant improvements in both the speed
and accuracy of VQE calculations.
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For QPE to transition from a theoretical tool to a practical method for molecular en-
ergy calculations, the challenges associated with controlled time evolution and quantum
error correction must be addressed. The accuracy and feasibility of QPE are intrinsically
linked to the precise implementation of the time evolution operator e−iHt. As discussed
earlier, Trotterization provides a means to approximate this operator, but it introduces
errors that scale with the evolution time and the Hamiltonian’s complexity. Developing
more efficient and accurate methods for controlled time evolution is crucial for realizing
the full potential of QPE. Higher-order Trotter decompositions, alternative simulation al-
gorithms, and techniques for optimizing the Trotter step size are promising areas for future
research. Furthermore, the impact of noise and decoherence on QPE cannot be overlooked.
Real-world quantum computers are inherently noisy, and these imperfections accumulate
throughout the computation, degrading the accuracy of the phase estimation. Quantum
error correction (QEC) offers a path towards mitigating these errors and achieving fault-
tolerant quantum computation. Developing and implementing QEC schemes tailored to
the specific requirements of QPE is essential for its practical application to molecular sys-
tems. This involves exploring efficient encoding and decoding strategies, optimizing error
correction protocols, and integrating QEC into the overall QPE algorithm. Addressing
these challenges in controlled time evolution and quantum error correction will pave the
way for realizing the promise of QPE as a powerful tool for accurate and reliable molecular
energy calculations on quantum computers.
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