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ABSTRACT 
 
This study uses motif-based graph databases to visualize and classify tactics in the MITRE 

ATT&CK framework. Machine Learning classification models, capable of detecting 

Reconnaissance network attack tactics, labeled as per the MITRE ATT&CK framework, are 

created for the newly created UWF-ZeekData22 dataset. The work analyzes Zeek 

Connection logs. Feature selection is performed using graph motifs. Results show that 
model performance can be increased using various network graph motifs. Upon completion 

of this work, it was concluded that, of the motifs used, the Star motif performed the best; 

and, the most important feature for predicting Reconnaissance network attacks within the 

Zeek Connection Logs dataset was the “From” feature, or Source IP, which represents the 

network address from where the connection is originating. It was also determined that, 

irrespective of which motif was used to train the model, the Decision Tree algorithm 

performed best. 

 

KEYWORDS 
 
Graph Databases, Motifs, Star Motif, Reconnaissance, Machine Learning, Cybersecurity, 
Visualizing attacks 

 

1. INTRODUCTION 
 

Cybersecurity has become a critical issue within our society. With the increasing reliance on 
technology, the number of occurrences and complexities of cyberattacks increases. Cyberattacks 

can cause severe consequences such as legal liabilities, financial losses, and even the loss of 

lives. Cybersecurity Ventures estimates that by 2025, cybercrime costs will grow to 
approximately $10.5 trillion USD [1], which displays the urgent need for effective cybersecurity 

measures. 

 

Cyberattacks can present themselves in various forms, such as ransomware, social engineering, 
hacking, phishing, and malware. These effects can target single individuals, businesses, and even 

whole governments alike, leaving devastating, long-lasting consequences. As the world continues 

to become digitized, it is imperative that we have the ability to protect ourselves against cyber 

https://airccse.org/
https://airccse.org/csit/V14N25.html
https://doi.org/10.5121/csit.2024.142510


136                                        Computer Science & Information Technology (CS & IT) 

 

threats; researchers have started to use graph databases coupled with machine learning (ML) 
models to create models capable of detecting nefarious network traffic. 

 

Graph databases are a type of NoSQL database that store data in the form of vertices and edges. 

Vertices represent entities and the edges represent the relationships between them [2]. Graph 
databases allow for more flexible and efficient querying of more complex data relationships since 

graph databases do not use the traditional table and row architecture to store data [3]. Because of 

the looser data schemas, graph databases are naturally more suited for applications that have 
highly interconnected data, such as social networks, fraud detection systems, and 

recommendation engines; they also allow for more accurately representing network topologies as 

each network device can be represented as a vertex, with the edges between them acting as 
network routes. 

 

Feature selection is one of the most important steps in ML model creation. Feature selection is 

when a subset of the dataset’s features are selected to train the model. Feature selection can have 
a significant impact on model accuracy and can reduce the time needed to train the model, hence 

the time needed to detect attacks [4]. Using too many features at the same time can lead to 

incorrect predictions due to the curse of dimensionality [5]. There are many different methods of 
selecting features including Forward Feature Selection, Backward Feature Elimination, and 

Exhaustive Feature Selection [6].   

 
The novelty of this work lies in using graph databases to visualize and classify the network 

attacks using different graph motifs. Since network data is interconnected, using graph databases 

to analyze and visualize the data was a natural selection. Feature selection was done using 

various graph motifs. In order to fully understand how the attacks are happening, where they are 
originating from, and where they are being targeted, it is important to visually analyze the 

attacks. In this work, a new network log dataset, UWF-Zeekdata22, composed of Zeek 

Connection (Conn) logs, defined as per the MITRE Adversarial Tactics, Techniques, and 
Common knowledge (ATT&CK) Framework [7], is used to classify and visualize the attack 

tactics in this data. Specifically, the work focuses on detecting the Reconnaissance tactic 

(TA0043) [8]. Various ML algorithms were used in an attempt to create the best ML model using 

the smallest number of features.  
 

The rest of this paper is organized as follows. Section two presents the related works; section 

three presents the background necessary to understand this work, that is, the motifs and the 
machine learning algorithms; section four presents the data and pre-processing; section five 

presents the results and discussion and the last section presents the conclusions. 

 

2. RELATED WORKS 
 
The combination of graph databases and ML techniques has been a topic of interest for many 

researchers in various fields. In the financial industry, the two most commonly are paired to 

create ML models capable of detecting financial fraud such as credit card fraud [9,10]. In the 
hospitality industry, researchers have used ML models coupled with Neo4j, an open-source no-

SQL graph database, to create a ML classification models that can predict hotel reservation 

cancellations [11]. Another set of researchers paired ML and graph databases to analyze social 
networks; these researchers used graph-based representations of social networks and ML 

algorithms to create a model capable of predicting the importance of nodes within the social 

network [12]. [13] looked at similarity graphs to determine how social networks differ across 

platforms and how information networks change over time. Other researchers extended graph 
databases and ML into the medical field [14]. This set of researchers created a model to predict 

autism and its conversion to Alzheimer's disease [15]. 
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The idea of using graph databases with machine learners has started to become an item of interest 

for network security researchers. One group of researchers created attack profiles that were used 

to detect simulated network attacks. To do this, the researchers utilized a graph database, which 

allowed for the identification of the network attacker and the impacted components of the 
network [16]. [17] proposed ADAMM to look at finding anomalous instances using complex 

graph databases of node and edge attributed multi-graphs. They also used the associated 

metadata. [18] looked at finding anomalous activity given a set of node-labeled directed weighted 
graphs. They proposed GAWD for detecting anomalous graphs in directed weighted graph 

databases. [19] used Memgraph to apply graph ML techniques to detect cybersecurity attack 

tactics. Node classification was used to predict the connection between IP addresses and ports 
using Memgraph’s graph neural networks. 

 

The work detailed in this paper expands on the idea of extending graph databases, generated in 

[20], into the network security discipline. [20] visually represents the Reconnaissance Tactic of 
the MITRE ATT&CK framework using UWF-Zeekdata22, but does not go as far as making ML 

predictions. 

 
This work, however, differs from previous research in various aspects. First and foremost, this 

work focuses on predicting one specific network attack tactic, Reconnaissance, using ML 

classification. Additionally, this work incorporates using graph network motifs within the ML 
models in an attempt to improve model prediction. 

 

3. BACKGROUND 
 

In this section we discuss the graph motifs as well as the ML classifiers to be used in this work.  
 

3.1. Motifs 
 
Graph motifs are recurring subgraph patterns between vertices found in complex graph networks 

[21]. Motifs are utilized to help understand the function and structure of complex networks. By 

understanding these patterns, one can learn valuable information about the dynamics of complex 
systems and can use that information to curate more effective strategies for network control and 

network analysis. In this research, two different motifs will be explored: star motifs and clique 

motifs. 

 

3.1.1. Star Motif 

 

Star motifs, by definition, are a pattern in which there is a central vertex that is connected to other 
outer vertices, resembling the shape of a star. Figure 1 presents an example of a generic star 

motif. There is a central vertex (143.88.2.10) that is connected to outer vertices (183.88.7.10, 

183.88.7.15, 183.88.7.12, 183.88.7.11, and 183.88.7.1). This means that, the central vertex, 
143.88.2.10, is generating or sending out attacks to the other vertices. 
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Figure 1. Example of a generic Star Motif 

 
Figure 2 presents the star motif of the Reconnaissance attack tactic, found when analyzing the 

Reconnaissance data - the vertex with the IP address 143.88.2.10 acts as the central vertex with 

all connections originating from that central vertex. This means that all the attacks or 
reconnaissance is been done from (or originating from) the central vertex 143.88.2.10 and going 

to so many other vertices. 

 

 
 

Figure 2. Star Motif for Reconnaissance 

 

3.1.2. Clique Motif 
 

Clique motifs are complete subgraphs, in which the subgraph has all adjacent vertices [22]. The 

subgraphs in cliques are relatively homogenous and have homogenous connectivity. Figure 3 
presents an example of a clique motif. Each vertex in the graph is connected by an edge to every 

other vertex.  
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Figure 4 presents two examples of clique motifs found within the attack data. The yellow-
highlighted clique consists of vertices 143.88.11.1, 143.88.11.13, and 143.88.11.10. The blue-

highlighted clique consists of vertices 143.88.11.1, 143.88.11.12, and 143.88.11.10. 

 

 
 

Figure 3. Clique Motif 

 

3.2. Machine Learning Algorithms 
 

The five algorithms that were implemented and evaluated for predicting Reconnaissance network 

attack tactics were Naive Bayes (NB), Decision Tree (DT), Support Vector Machines (SVM), 
Logistic Regression (LR), and Gradient Boosting Trees (GBT). 

 

3.2.1. Naive Bayes 

 
Naive Bayes is a supervised learning algorithm used for classification. The “naive” in the 

algorithm name comes from the fact that the algorithm assumes the input features are 

conditionally independent of each other (in reality features are rarely independent). This naive 
assumption makes calculating the conditional probability easier. To make a prediction, the 

algorithm computes the conditional probability of each class given the in-put features using 

Bayes' theorem. The class with the highest conditional probability is assigned the predicted class 
label [23]. 

 

3.2.2. Decision Tree 

 
Decision trees are a supervised learning algorithm used for both classification and regression and 

resembles a tree-like structure. The objective of the Decision Tree algorithm is to maximize 

information gain at each split in the tree. Each branch represents an outcome of a test based on a 
feature of the training set. At each root vertex, the feature with the highest predictive power is 

used to split the tree. For each decision/internal vertex, a feature of the dataset is tested against a 

certain value and the tree is traversed based on the results. Once a leaf vertex is reached, a 
condition to stop splitting is achieved and a prediction is made [24]. 



140                                        Computer Science & Information Technology (CS & IT) 

 

 
 

Figure 4. Clique Motif within the Data 

 

3.2.3. Support Vector Machines  
 

Support vector machines are a supervised learning algorithm that can be used for both 

classification and regression. SVM works by finding a linear decision boundary that maximizes 

the margin between classes - decision boundaries with large margins tend to have lower 
generalization error. If the data is not linearly separable, the data is converted to linear separable 

data in a higher dimensional space [25]. 

 

3.2.4. Logistic Regression 

 

Logistic Regression, a supervised learning algorithm used for binary classification, models the 

probability of a binary response variable based on one or more predictor variables. The objective 
of the Logistic Regression algorithm is to fit a line that best separates the two classes in the data. 

It uses a logistic function to model the relationship between the predictor variables and the 

response variable. The logistic function takes in the linear combination of the predictor variables 
and returns the probability of the response variable being in a particular class [26]. 

 

3.2.5. Gradient Boosting Trees 
 

Gradient Boosting Trees (GBT) are a supervised learning algorithm used for regression and 

classification. GBTs iteratively improve model performance by minimizing a loss function. A 

new weak learner is added to the model in each iteration to correct the errors made by previous 
learners. The final model is the sum of all weak learners and can be used to make predictions on 

new data [27]. 

 

4. THE DATASET: UWF-ZEEKDATA22 
 

The dataset used in this work, UWF-ZeekData22, available at [28], is labeled as per the MITRE 

ATT&CK framework. It contains a total of 18,562,468 records with 9,280,869 of them 

representing network attacks tactics and 9,281,599 representing regular network traffic (benign 
traffic). UWF-ZeekData22 contains 10 tactics, presented in Table 1, with the highest number of 
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tactics being the Reconnaissance tactic [29]. Due to the minimal amount of data for attack tactic 
types other than Reconnaissance, this research is focused only on the Reconnaissance tactic. 

 
Table 1. Tactics in UWF-ZeekData22 [29] 

 
Attack Tactic Count 

None (Not an attack) 9,281,599 

Reconnaissance 9,278,722 

Discovery 2,086 

Credential Access 31 

Privilege Escalation 13 

Exfiltration 7 

Lateral Movement 4 

Resource Development 3 

Defense Evasion 1 

Initial Access 1 

Persistence 1 

 

The Zeek Connection logs dataset, crafted by the Cyberrange at the University of West Florida, 

has the schema presented in Table 2. The datasets used in this research are a sub-set of this Zeek 

Connection Logs dataset, also used in [20]. 
 

Table 2. Zeek Connection Logs Data Schema [30] 

 

Attribute Name Attribute Description 

ts Time of first packet 

uid Unique identifier of connection 

id.orig_h IP address of packet senders 

id.orig_p Outgoing port number 

id.resp_h IP address of packet receiver 

id.resp_p Incoming port number 

proto Transport layer protocol of connection 

service Identification of application protocol being sent over connection 

duration How long connection lasted 

orig_bytes Number of payload bytes originator sent 

resp_bytes Number of payload bytes responder sent 

conn_state Possible connection states 

local_orig If connection is responded to locally, value is T 

local_resp If connection is responded to locally, this value is T 

missed_bytes Number of bytes missed in content gaps, representative of packet loss 

history Records the state history of connections as a string of letters 

orig_pkts Number of packets originator sent. Set if: zeek:id:use_conn_size_analyzer = T 

orig_ip_bytes Number of packets responder sent. Set if: zeek:id:use_conn_size_analyzer = T 

resp_pkts 
Number of IP level bytes responder sent. Set if zeek:id:use_conn_size_analyzer 

= T 

resp_ip_bytes Number of IP level bytes responder sent 

community_id id Connection’s 4-tuple of endpoint addresses/ports 

tunnel_parents 
If connection was over tunnel, indicates *uid* values for encapsulating parent(s) 

connections used over lifetime of inner connection 

 



142                                        Computer Science & Information Technology (CS & IT) 

 

4.1. Data Preprocessing 
 

Since the idea on the graph databases and in the graph motifs is to see where the attacks are 

originating from and where they are going, the attributes used in the graph formation, as per [20], 
were the source and destination IP addresses, bytes transferred, and connection duration. Table 3 

shows these attributes with some sample data. Source and destination IP addresses were used as a 

key and the bytes transferred and connection duration were aggregated. Additional attributes 
were derived from the aggregated attributes: Count, Average Duration and Average bytes.  

 

  • Count is the number of connection occurrences between the source and destination 

IPs; 
  • Average duration is the average duration of all connections between the source and 

destination IPs; 

  • Average bytes is the bytes transferred for all connections between the source and 
destination IPs. 

 

These attributes are presented in Table 4, with some sample data.  
 

For data aggregation, the following pseudocode (Code snippet 1) was implemented in Java using 

linked hash maps; the key to the hash maps were the source and destination IP addresses. The 

values to the respective keys were the various attributes. Tables 3 and 4 show an example data 
input and data aggregation respectively. 

 
For each record in the input file 

   key = srcIP,dstIP 

   if key has not been encountered before 

      set key:connectionCount to 1 

      set key:bytes       to record:bytes 

      set key:duration    to record:duration 

   else 

      increment key:connectionCount 

      add record:bytes    to key:bytes 

      add record:duration to key:duration 
 

Code Snippet 1. 

 
Table 3. Example input data 

 

Source IP Destination IP Bytes Duration Tactic 

143.88.2.10 143.88.7.15 0 143.88.7.15 Reconnaissance 

143.88.2.10 143.88.7.15 0 143.88.7.15 Reconnaissance 

143.88.2.10 143.88.7.15 0 143.88.7.15 Reconnaissance 

143.88.2.10 143.88.7.1 0 143.88.7.1 Reconnaissance 

 
Table 4. Resulting aggregation 

 

Source IP 
Destination 

IP 
Count Bytes Duration Avg Bytes 

Avg 

Duration 
Tactic 

143.88.2.10 143.88.7.15 3 0 0.02144094 0 108 362 

143.88.2.10 143.88.7.1 1 0 0.00019192 0 15 18 
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4.2. Graph Datasets Generated 
 

Table 5 provides an overview of the three graph datasets used to make predictions. Preprocessed 

data matching the star and clique motifs were extracted. In addition, a third dataset was created, 
Non-attack-edges. This dataset was a complete set of all the Reconnaissance and Non-Attack 

connections that occurred irrespective of the motifs.  

 
The clique data had only 18 rows. This would not be sufficient to get meaningful ML results, 

hence this dataset was excluded from the ML analysis. Subsequent sections will discuss the 

results of running the algorithms against the star-edges and the non-attack-edges datasets. 

 
Table 5. Graph Datasets Used 

 

Dataset Description 
Reconnaissance 

Count 

Non-

Attack 

Count 

Raw 

Count 

Star-edges 

The source and destination IP 

address represent edges that are in 

star motif 

254 108 362 

Clique-

edges 

The source and destination IP 

address represent edges that are in 

clique motif 

3 15 18 

Non-

attack-

edges 

The source and destination IP 

address represent edges in a graph 
258 118 376 

 

4.3. Graph Dataset Schema 
 
Table 6 shows the final graph dataset schema that was used in this ML analysis. The third column 

shows whether this was an original attribute or derived. Since, in a graph database analysis, it is 

important to visualize where the attacks are originating from and who they are targeting, hence 
the source and destination IPs were the main attributes. The data were grouped by source and 

destination IP address. The count was used to determine if there was an edge between the source 

and destination vertex pair. The other pieces of information that would be important would be, 

average and total duration between the source and destination vertex pairs and the average and 
total bytes between the source and destination vertex pairs. Another attribute related to this 

information was the hop count, that is, the distance from the root vertex to the destination vertex. 

So basically, this ML study would determine if, a dataset composed of where was the attack 
originating from, where was it going, how long was it taking, and how many bytes was it 

carrying, would be adequate to predict an attack.  
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Table 6. Graph Dataset Schema Used in Machine Learning Analysis 

 
Column Description Source or 

Derived 

Id The edge’s unique id. Not used in ML algorithm features - 

From The edge’s source vertex IP address Source - 
id.orig_h 

To The edge’s destination vertex IP address Source - 

id.resp_h 

Count Count of the occurrences of an edge between the source and 

destination vertex pair 

Derived 

Avg_Duration Average duration of all edge occurrences between source and 

destination vertex pair 

Derived 

Total_Duration Total duration of the all edge occurrences between the source and 

destination pair 

Derived 

Avg_Bytes Average bytes transferred in all edge occurrences between the 

source and destination vertex pair 

Derived 

Total_Bytes Total sum of bytes transferred in all edge occurrences between the 

source and destination vertex pair 

Derived 

Hop_Count Vertex distance from root vertex to destination vertex, starting with 

root as 1 

Derived 

Tactic  Attack tactic is either “Reconnaissance” or “None” Source - tactic 

 

5. RESULTS AND DISCUSSION 
 

The Naive Bayes, Decision Tree, Logistic Regression, SVM, and Gradient Boosting Tree 

algorithms were run using the graph datasets in order to predict the attack tactic. For each 
algorithm, the results are presented for the Star-edges dataset and the Non-attack edges datasets. 

The objective was to predict a reconnaissance attack using the Star-edges and the Non-attack 

edges (which had some non-Reconnaissance edges mixed in).  

 
For all datasets, all 255 feature combinations were evaluated and the best results as well as worst 

results are presented. The worst results were presented to further understand or verify the 

important features.  
 

99% of the tactics present in the dataset were Reconnaissance, thus only the Reconnaissance 

tactic was analyzed. Binary classification was used, hence either a Reconnaissance attack 

happened or no attack happened. Table 7 lists the algorithm evaluation metrics used in 
determining the algorithms’ performance. 

 
Table 7. Algorithm Evaluation Metrics Used 

 
Metric Description 

Accuracy The percentage of data whose attack (or lack thereof) was correctly predicted. 

Precision A higher precision score indicates the algorithm results in fewer false positives. 

Recall A higher recall score indicates the algorithm can identify most of the positive cases. 

F Measure 
A metric that combines precision and recall to evaluate the performance of a binary 
classification. 

False Positive 

Rate 
The percentage of false positive cases. 

AUC-ROC A higher AUC-ROC score indicates more true positives and less false positives. 

Confusion 

matrix 

A matrix showing the number of true positive, false positive, false negative, and true 

negative cases. The matrix is read top to bottom, left to right. 
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5.1. Naïve Bayes Results 
 

5.1.1. Star-Edges Dataset 

 
With the Star-edge dataset, we are predicting whether a reconnaissance will be happening using 

the Naïve Bayes algorithm.  

 
Table 8 presents the features that resulted in the best statistical metrics for the Star-edges using 

Naïve Bayes classification and Table 9 presents the features that resulted in the worst statistical 

metrics for the Star-edges using the Naïve Bayes classification. Although there were a few 

combinations that presented good results, for example [From and Average Duration] and [From, 
Average_Duration and Hop_count], the combination of the three features, [From, Total_Duration 

and Total_Bytes], as well as the combination of these latter three features with any other features, 

resulted in the best results. The confusion matrix shows that there were no false positives or false 
negatives.  

 

From Table 9 it can be observed that the [From] feature by itself did not give good results using 
the Naïve Bayes classifier using Star-edges, and the combination of the [From] feature that do not 

also include the [Total_Duration, and Total_Bytes] features resulted in the lowest accuracy and 

other statistical metrics. 

 
In summary, this means that, Source ID [From] by itself is not a good predictor of an attack or 

reconnaissance happening, but Source in combation with Average Duration or Total Duration and 

Hop Count are excellent indicators of reconnaissance happening. 
 

Table 8. Naive Bayes Results: Star-Edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From, Avg_Duration 1 1 1 1 0 1 
[78, 0 

0, 33] 

From, Avg_Duration, 

Hop_Count 
1 1 1 1 0 1 

[78, 0 

0, 33] 

From, Total_Duration, 

Hop_Count 
1 1 1 1 0 1 

[78, 0 

0, 33] 

From, Total_Duration, 

Avg_Bytes 
1 1 1 1 0 1 

[78, 0 

0, 33] 

From, Total_Duration, 
Total_Bytes 

1 1 1 1 0 1 
[78, 0 
0, 33] 

From, Total_Duration, 

Total_Bytes + Any other 

feature(s) 

1 1 1 1 0 1 
[78, 0 

0, 33] 

 
Table 9. Naive Bayes Results: Star-Edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From 0.58 0 1 0.92 0 0.5 
[78, 0 
33, 0] 

From + Any other features 

except Total_Duration, 

Total_Bytes 

0.58 0 1 0.92 0 0.5 
[78, 0 

33, 0] 
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5.1.2. Non-Attack-Edges Set 
 

With the Non-attack edges dataset, we are predicting if reconnaissance happens even if some 

non-attack edges are mixed in.  

 
Table 10 presents the features that resulted in the best statistical metrics for the Non-attack-edges 

dataset using Naïve Bayes classification and Table 11 presents the features that resulted in the 

worst statistical metrics for the Non-attack-edges dataset using Naïve Bayes classification for the 
Reconnaissance Tactic. The combination of the [From and Count] features resulted in the best 

accuracy with the fewest number of features. Adding additional features to [From and Count] 

kept the accuracy and other matrices the same. As Table 11 shows, utilizing only the 
[Hop_count] feature resulted in the lowest accuracy. So, the reconnaissance can also be predicted 

with some non-attack edges mixed in, with the Source IP and the Count features, and the 

Hop_count is the worst at predicting reconnaissance. 

 
Table 10. Naive Bayes: Non-attack-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From, Count 0.983 0.944 0.976 0.980 0.024 0.988 
[80, 2 

0, 34] 

From, Count + Any other 

feature(s) 
0.983 0.944 0.976 0.980 0.024 0.988 

[80, 2 

0, 34] 

 
Table 11. Naive Bayes: Non-attack-edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Hop_count 0.541 0 1 0.911 0 0.5 
[78, 0 

38, 0] 

 

5.2. Decision Tree Results 
 

5.2.1. Star-Edges Dataset 

 
Table 12 presents the features that resulted in the best statistical metrics for the Star-edges dataset 

using DT classification and Table 13 presents the features that resulted in the worst statistical 

metrics for the Star-edges dataset using DT classification for the Reconnaissance Tactic. From 
Table 12, it can be noted that the [From] feature was the only feature needed for 100% accuracy 

by the DT algorithm. Adding additional features did not increase or decrease the accuracy. The 

confusion matrix shows that there were no false positives or false negatives. The difference in the 
magnitude of the DT and NB confusion matrices is due to the differences in training and 

validation set sizes. There was a 83%/17% split with the DT compared to an 70%/30% split with 

the NB, SVM, and LR algorithms. The training set had to be increased in order for the DT to 

work due to the relative low number of rows in the dataset. Table 13 shows that, the [To] feature 
(and combinations including the [To] feature) including the [To] feature without the [From] 

feature resulted in the lowest accuracy. 

 
In summary, using the Star-edges, the Source_IP is the best feature at determining the 

reconnaissance attack using the DT algorithm and the Destination_IP is the worst feature for 

determining the reconnaissance attack using the DT algorithm.  
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Table 12. Decision Tree Results: Star-Edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From 1 1 1 1 0 1 
[46, 0 
0, 19] 

From + any other feature(s) 1 1 1 1 0 1 
[46, 0 

0, 19] 

 
Table 13. Decision Tree Results: Reconnaissance: Star-Edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

To 0.07 0.2 0 0 1 0.5 
[0, 52 

0, 13] 

To + any other feature(s) 0.07 0.2 0 0 1 0.5 
[0, 52 
0, 13] 

 

5.2.2. Non-Attack-Edges Dataset 

 
Table 14 presents the features that resulted in the best statistical metrics for the Non-attack-edges 

dataset using DT classification and Table 15 shows the features that resulted in the worst 

statistical metrics for the Non-attack-edges dataset using DT classification for the 
Reconnaissance Tactic. As can be seen from Table 14, the combination of [Avg_duration and 

Hop_count] resulted in the best accuracy with the fewest number of features. Adding additional 

features to [Avg_duration and Hop_count] did not improve or decrease the accuracy. As shown 

in Table 15, like the star-edges dataset, the [To] feature (or any other feature in addition to the 
[To] feature) resulted in the lowest accuracy. 

 

To determine the reconnaissance attacks using the non-attack-edges data, average duration and 
hop count perform the best using the DT algorithm.  

 
Table 14. Decision Tree Results: Non-attack-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Avg_duration, Hop_count 0.985 0.944 0.98 0.984 0.02 0.99 
[49, 1 

0, 17] 

Avg_duration, Hop_count + 
Any other feature(s) 

0.985 0.944 0.98 0.984 0.02 0.99 
[49, 1 
0, 17] 

 
Table 15. Decision Tree Results: Non-attack-edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

To 0.072 0.208 0 0 1 0.5 
[0, 53 

0, 14] 

To + Any other feature(s) 0.072 0.208 0 0 1 0.5 
[0, 53 

0, 14] 
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5.3. Support Vector Machine Results 
 

5.3.1. Star-Edges Dataset 

 
Using SVM, there were over 30 combinations of features that allowed for an accuracy of 100% 

(1). The minimal number of features required to reach an accuracy of 1 was 2: [From and To], 

that is Source IP and Destination IP respectively. Table 16 is a truncated table of the SVM Star-
edges results. The two unique feature combinations that resulted in an accuracy of 1.0 were 

[From, To] and [To, Count, Total_Bytes]. The remaining feature combinations were duplicates of 

these two combinations with additional features and thus, were eliminated from the table to 

remove redundancy. 
 

Table 16. SVM Results: Truncated Star-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From, To 1 1 1 1 0 1 
[78,0 

0, 33] 

To, Count, Total_Bytes 1 1 1 1 0 1 
[83, 0 

0, 28] 

 

5.3.2. Non-Attack-Edges Dataset 

 
As presented in Table 17, for the Non-attack-edges dataset, an accuracy of 1 was not reachable. 

The highest accuracy reached was 0.981, which was reached using the features [Avg_Bytes and 

Total_Bytes]. 

 
Table 17. SVM Results: Non-attack-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Avg_Bytes, Total_Bytes 0.981 1 0.977 0.989 0 0.989 
[86, 2 

0, 16] 

From, Total_Bytes 0.981 1 0.977 0.988 0 0.989 
[85, 2 

0, 17] 

Avg_Bytes, Total_Duration 

Count, Total_Bytes 
0.981 1 0.977 0.988 0.063 0.989 

[85, 2 

0, 17] 

Avg_Bytes 0.981 0.989 0.988 0.989 0.059 0.963 
[87, 1 

1 , 15] 

Count, Total_Bytes 0.981 0.989 0.989 0.989 0.059 0.965 
[86, 1 

1, 16] 

Avg_Bytes, Total_Duration, 

Avg_Duration, Count 
0.981 0.989 0.989 0.989 0 0.965 

[86, 1 

1, 16] 

 

No worst results table were presented for SVM since most of SVM results were higher on the 

average. 

 

5.4. Logistic Regression Results 
 

5.4.1. Star-Edges Dataset 

 

Table 18 shows that the [From] feature, that is, the Source IP, was the only feature needed for 
100% accuracy using the LR algorithm. Adding additional features did not increase or decrease 
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the accuracy. The confusion matrix shows that there were no false positives or false negatives. 
Table 19 presented the worst results for LR using Star-edges. 

 
Table 18. Logistic Regression Results: Star-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From 1 1 1 1 0 1 
[78, 0 

0, 33] 

From, To 1 1 1 1 0 1 
[78, 0 
0, 33] 

From + any other feature(s) 1 1 1 1 0 1 
[78, 0 

0, 33] 

 
Table 19. Logistic Regression Results: Star-edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Average_Duration 0.63 0 1 0.93 0 0.5 
[82, 0 

29, 0] 

Total_Duration 0.65 0 1 0.94 0 0.66 
[84, 0 
27, 0] 

 

5.4.2. Non-Attack-Edges Dataset 

 
Table 20 presents results similar to the Star-edges dataset in that the [From] feature, or Source IP, 

was the only feature needed for 100% accuracy. Adding additional features did not increase or 

decrease the accuracy. Where these results differ from the previous results is that including only 

the [Total_duration] feature resulted in the lowest accuracy, as presented in Table 21. 
 

Table 20. Logistic Regression Results: Non-attack-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From 0.983 0.944 0.976 0.980 0.024 0.988 
[80, 2 

0, 34] 

From + any other feature(s) 0.983 0.944 0.976 0.980 0.024 0.988 
[80, 2 

0, 34] 

 
Table 21. Logistic Regression Results: Non-attack-edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Total_duration 0.705 0.5 0.919 0.886 0.081 0.576 
[79, 7 

23, 7] 

 

5.5. Gradient Boosting Tree Results 
 

5.5.1. Star-Edges Dataset 
 

Table 22 shows that the [Avg_duration and Hop_count] features resulted in the highest accuracy 

using the GBT algorithm on the Star-edges dataset. Adding additional features in addition to 
[Avg_duration and Hop_count] did not increase or decrease the accuracy. The confusion matrix 

shows that there were two false positives and no false negatives. Table 23 shows that, using the 
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[To] feature (or any combination of thereof) resulted in the lowest accuracy. The confusion 
matrix shows a 100% false positive rate for this scenario. 

 
Table 22. Gradient Boost Results: Star-Edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

From 1 1 1 1 01 1 
[46, 0 

0, 19] 

From + any other feature(s) 1 1 1 1 01 1 
[46, 0 
0, 19] 

 
Table 23. Gradient Boost Results: Star-Edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

To + any other feature(s) 0.072 0.209 0 0 1 0.5 
[0, 53 

0, 14] 

 

5.5.2. Non-Attack-Edges Dataset 

 

Table 24 shows that the [From] feature, or Source IP, resulted in 100% accuracy using the GBT 
algorithm. Adding additional features in addition to [From] did not increase or decrease the 

accuracy. The confusion matrix shows that there were no false positives and no false negatives. 

Table 25 shows that, using the [To] feature (or any combination of thereof) resulted in the lowest 
accuracy. The confusion matrix shows a 100% false positive rate for this scenario. 

 
Table 24. Logistic Regression Results: Non-attack-edges Dataset – Best Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

Avg_duration + Hop_count 0.985 0.944 0.98 0.98 0.02 0.99 
[49, 1 

0, 17] 

Avg_duration + Hop_count 
+ any other feature(s) 

0.985 0.944 0.98 0.98 0.02 0.99 
[49, 1 
0, 17] 

 
Table 25. Logistic Regression Results: Non-attack-edges Dataset – Worst Results 

 

Features Accuracy Precision Recall 
F-

Measure 
FPR 

AUC-

ROC 

Confusion 

Matrix 

To + any other feature(s) 0.067 0.2 0 0 1 0.5 
[0, 52 

0, 13] 

 

5.6. Summary of Results 
 
After analyzing all the results from the individual algorithms, we found that the most important 

feature that worked best for the Star-edges dataset irrespective of algorithm was the [From] 

feature, that is, the Source IP. All models that gave perfect performance in terms of accuracy, 
precision, recall, and F-measure included the [From] feature or Source IP. For the Non-attack-

edges dataset, the best results were obtained by LR as well as DT, with an accuracy of 98.5%, 

both using the features average duration as well as hop_count. 
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Overall, the models trained with the Star-edges dataset tended to perform better on average than 
the models trained with the Non-attack-edges dataset. All of the Star-edges models were able to 

reach a perfect performance in terms of accuracy, precision, recall, and f-measure. Though the 

Non-attack-edges models, were only able to reach metrics as high as 98.5%, this performance by 

itself is pretty good overall. Moreover, these results are natural since the Non-attack-edges 
dataset had some “non-attack” edges mixed in, explaining the slightly lower results.  

 

The best performing algorithm irrespective of dataset appeared to be the DT algorithm. It was 
able to receive a perfect metric performance for the Star-edges dataset with the minimal number 

of features, which was the [From] feature or the Source IP. That means, using the Star-edges 

data, the Source IP itself can predict reconnaissance. The DT and LR algorithms also achieved 
the best results for the Non-attack-edges dataset, it had the highest accuracy, precision, recall, and 

F-measure compared to the rest of the algorithms run on the Non-attack-edges dataset. 

 

6. CONCLUSIONS 
 
The objectives of this research were to, first, create ML models capable of detecting 

Reconnaissance network attacks using graph data from the Zeek Connection Logs Data [28], 

train the models with various network motif datasets from a graph database, and then finally 
compare the results. Upon completion of this research, it was concluded that the most important 

feature for predicting Reconnaissance network attacks within the Zeek Connection Logs dataset 

was the [From] feature, the Source IP, which represented the network address of where the 

connection was originating. It was also found that irrespective of which motif was used to train 
the model, the DT algorithm performed best. These findings provide valuable insights for future 

research on applying graph database data to machine learners to create models capable of 

predicting nefarious network traffic. 
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