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Abstract. In this paper, we propose an innovative iterative approach to rule learning, specifically designed
for (though not limited to) text-based data. Our method focuses on progressively expanding the vocabu-
lary used in each iteration, resulting in a significant reduction in memory consumption. Additionally, we
introduce a Value of Confidence, which quantifies the reliability of the generated rules. By leveraging the
Value of Confidence, our approach ensures that only the most robust and trustworthy rules are retained,
thereby enhancing the overall quality of the rule learning process. We demonstrate the effectiveness of our
method through extensive experiments on both textual and non-textual datasets, including a case study
of significant interest to the insurance industry, highlighting its potential for real-world applications.
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1 Introduction

In recent years, the rapid advancement of Artificial Intelligence (AI) technologies has
revolutionized various industries and aspects of our daily lives (cf. [1,2,3], for instance).
However, as AI systems become more complex and sophisticated, the need for trans-
parency and interpretability in their decision-making processes has become increasingly
crucial. The concept of Explainable Artificial Intelligence (XAI; see for example [4,5]) has
emerged as a response to this demand, aiming to enhance the trust, accountability, and
understanding of AI systems by providing explanations for their outputs and actions.

Indeed, in many application domains of machine learning, such as automotive, medicine,
health and insurance industries, the need for security and transparency of the applied
methods is not only preferred but increasingly often of utmost importance or even legally
mandated (cf. the EU Artificial Intelligence Act, for instance).

A classic example in this context – often categorized as most informative in the area of
XAI [6] – is the generation of deterministic (if-then-else) rules that can be used for classi-
fication. For instance, when predicting a patient’s health status, the easily comprehensible
rule shown below is clearly preferable to the opaque output of a black-box model such as
a neural network, for both the doctor and the patient, as the decision is fully transparent.

IF BloodPressure in [70,80]

AND Insulin in [140,170]

THEN Diabetes = Yes.

Among others, the field of Rule Induction [7] particularly investigates the construction
of simple if-then-else rules from given input/output examples and provides some commonly
applied methods to obtain deterministic rules for the solution of a (classification) problem
at hand (more details are given in the Supplementary Material3). Representative examples
of such rules are shown for each data set considered in our experiments in Section 4,

3 See https://arxiv.org/abs/2411.00049.
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illustrating the major advantages of rule learning methods, namely their transparency
and comprehensibility, which make them a desirable classification tool in many areas.

Unfortunately, these benefits are coupled with the major drawback of generally less
accurate results – often referred to as the interpretability-accuracy trade-off [8]. Moreover,
for a long time, it has not been possible to efficiently apply rule learning methods on
very large data sets [9] as considered, for instance, in the industrial use case discussed in
Section 4.3, which is of central interest to us and our collaboration partner – the Allianz
Private Krankenversicherung (APKV). We have already extensively investigated these is-
sues in collaboration with the aforementioned company from insurance industries with the
primary aim of establishing rule learning methods – particularly FOIL [10] and RIPPER [11]
– as an efficient tool in the reimbursement process. Note that we have explored a wide
range of rule learning methods in previous work [12,13], but ultimately, we chose to fo-
cus on FOIL – one of the first methods from the field of Inductive Logic Programming
(ILP; cf. [14]) – and RIPPER, which is state-of-the-art in Rule Induction. This is because
especially the more modern ILP-tools have been shown to be unsuited for our needs, as
further explained in [12]. In the papers cited above, we introduced approaches to solve the
mentioned difficulties concerning the application of rule learning methods in a production
environment at least to some extent. First, we developed a modular approach [12], enabling
the application of ordinary rule learning methods such as FOIL and RIPPER on very large
data sets including several hundreds of thousands examples. However, the generally poorer
performance compared to state-of-the-art methods in terms of accuracy remained. So, we
came up with an extension of the introduced modular approach in the form of the voting
approach presented in [13].4 After consultation with our collaboration partner, we agreed
that, at the end of the day, it is even more important to ease the understanding of a
classification than to make the whole procedure fully transparent. Thus, this additional
step in the decision-making process addresses the interpretability-accuracy trade-off by
incorporating an ensemble of explainable and unexplainable methods. As a consequence,
the procedure loses its full transparency but gains a significant improvement in classifica-
tion accuracy, while preserving end-to-end explainability by corroborating each prediction
with a comprehensible rule.

At this point, we have already made a significant progress toward the application of
trustworthy AI methods within the company. However, another critical issue not ade-
quately addressed by the combination of the two approaches above is the handling of
text-based data. The data basis for the reimbursement use case is a collection of (scanned)
bills, where we extracted the most important information in the form of nominal (and
continuous) attributes, as described in more detail in Section 4.3. Unfortunately, this pre-
processing method may result in the loss of much additional information present in the
original textual data.

Up to this point, however, we have primarily focused on nominal data, with the ex-
ception of the IMDB movie reviews data set,5 which has been part of the benchmark
data sets in the evaluation of our modular approach. The results have not been really
satisfying, as the achieved accuracy fell below expectations. On the one hand, this issue
is solvable by our voting approach, at least to some extent. However, on the other hand,
it has shown that the form and complexity of the generated rules is not reasonably appli-
cable for (end-to-end) explainable classification. What does not seem overly problematic
in the case of the relatively small IMDB data set is the choice and, especially, the size of
the underlying dictionary used to generate rules. For the movie reviews, we simply con-

4 A concise summary of our previously introduced approaches is given in the Supplementary Material.
5 See https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews.
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sidered the thousand most common words in the data set, but the bills submitted to the
insurance company are significantly more complex. They usually consist of at least one
page of text using partly highly complicated technical terms from various medical fields
instead of 2-3 sentences describing personal opinions about movies in simple language.
Note that simply using a much larger dictionary as the basis for the rule learning process
is not a solution, as the computation time and memory consumption required to generate
the rules increase drastically with the size of the dictionary. In this paper, we aim to gain
more control over the complexity of the generated rules and make it possible to reasonably
apply rule learning methods such as FOIL and RIPPER to text-based data by starting with
a concise dictionary (designed by domain experts) and decreasing the number of consid-
ered examples before iteratively expanding the applied dictionary. The intention behind
this approach is to learn general rules in the first step, using a small and computationally
inexpensive dictionary for a very large number of input examples. With each learned rule,
the number of considered positive examples decreases by definition of the rule learning
algorithms. When a certain point is reached – either a predefined number of iterations or
a condition regarding the quality of a rule, as described in detail in Section 3 – we extend
the dictionary to handle more specific examples. This iterative process can be repeated
until a comprehensive dictionary is used for the remaining edge cases. In addition, the
basic idea behind this approach can also be applied to nominal (and continuous) data to
improve the quality of a rule, as explained in Section 3 and shown in the experimental
evaluation in Section 4.

In addition to evaluating our approach on common benchmark data sets for classifica-
tion of textual data (IMDB [15], Reuters-21578 [16], Hatespeech6), we also demonstrate
the advantages of applying the core idea of our approach to non-textual data, using some
common data sets from the UCI Machine Learning Repository [17] orKaggle7, respectively.
Moreover, we present novel results on explainable classifications of bills for reimbursement,
particularly using textual data as input. The latter case study stems from an industrial
collaboration with Allianz Private Krankenversicherung (APKV), an insurance company
offering health insurance services in Germany.

In summary, our primary goal is to address a text-based classification problem with
reasonable time and computational complexity by applying easily interpretable rules gen-
erated from a dictionary of variable size. Moreover, we define a measure for the quality of
a rule and integrate it in the iterative process on which our proposed approach is based
on. As shown in the experiments, this iterative rule refinement also proves beneficial for
non-textual data. All in all, this paper directly builds on our previous work and expands
upon the approaches presented therein to handle textual data more efficiently and gain
more control over the complexity of the generated rules by iteratively extending the size
of the applied dictionary (or, in general, the number of attributes).

More precisely, we make the following contributions.

Iterative Approach Based on Rule Learning We introduce a novel iterative ap-
proach based on rule learning exploiting the benefits of a variable number of attributes
(in particular an adaptable dictionary) during the generation of a rule set (see Section 3
for further details).

Together with the modular as well as the voting approach introduced in our previous
work [12,13], this positions rule learners as a serious alternative to state-of-the-art classi-

6 See https://www.kaggle.com/datasets/mrmorj/hate-speech-and-offensive-language-dataset.
7 See https://www.kaggle.com/.
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fication tools and enables the application of tried and trusted rule learning methods in a
complex and diverse production environment.

Experimental Evaluation Further, we provide ample experimental evidence that our
methodology not only clearly simplifies the application of rule learning methods on text-
based data but also provides significant improvements on the accuracy for the standard
benchmarks (see Section 4).

Industrial Use Case Finally, we show that our approach makes it possible to efficiently
apply the method we successfully introduced in previous work to text-based data, in par-
ticular the raw OCR scans used for reimbursement. We emphasize that our classification
yields comprehensible rules that are of direct interest to our industrial collaboration part-
ner (see Section 4.3).

Overview. Section 2 serves to discuss related work focusing on similar goals as considered
in this paper, especially on various forms of (explainable) text-based classification, while
we concretely introduce our aforementioned iterative approach as well as the Value of
Confidence applied therein as a measure of reliability of a rule in Section 3. Section 4
provides ample evidence of the advantages of our approach and presents the case study
mentioned. Finally, in Section 5 we summarize the main results and discuss ideas for future
work.

2 Related Work

After motivating the basic idea behind the approach introduced in this paper, this Section
discusses related work that focuses on the (explainable) classification of textual data as
well as novel ideas in the context of rule learning in general.

Regarding text classification in general, there is a huge number of methods out there
dealing with this problem. Some surveys summarizing the most common (explainable
as well as unexplainable) approaches have been done in recent years for instance by
[18,19,20,21]. Moreover, Mendez Guzman et al. [22] recently published a survey com-
paring different rationalisation approaches in the context of explainable text classification.
Furthermore, Altinel et al. [23] give an overview of common semantic text classification
methods and discuss the benefits of these methods over traditional text classification ap-
proaches.

A more specific method utilizing similar ideas to those we apply in our approach is
proposed by Johnson et al. [24], who introduce a tool kit for text categorization called
KitCat. They not only focus on the explainable classification of textual data but also
make use of a confidence measure for dealing with ambiguities, similar to our Value of
Confidence introduced in Section 3. For evaluation, they consider in particular the Reuters-
21578 data set where they report a micro-averaged precision/recall of 83.8%. As opposed
to their idea of deriving symbolic rules from decision trees optimized to handle sparse
data, we directly obtain rules from classical rule learning methods. We focus especially on
the complexity of the generated rules with respect to the underlying dictionary in order to
improve the versatility of the classical methods. Note that we cannot really compare the
achieved results, since we used a different data split. However, on NLTK’s Reuters corpus
we report an accuracy of about 80.5% for RIPPER and 81.7% for FOIL, respectively.
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The Reuters-21578 data set is a common benchmark for the evaluation of various
classification methods on text-based input data and has been extensively studied, for
instance, by Debole et al. [25]. Another approach from the field of explainable artificial
intelligence that considers this data set among others is Olex-GA [26]. The results of this
genetic algorithm are very similar to the if-then-else rules generated by the rule learning
methods considered by us. In the course of their evaluations, they compare their method
among others also with RIPPER and report comparative but slightly worse classification
results considering the break-even point – the average of precision and recall where the
difference between them is minimal – as accuracy metric.

In addition, we consider the IMDB movie reviews data set in our experiments which
has been investigated also by Pryzant et al. [27], for instance, who utilize ideas from neuro-
symbolic learning (cf. [28]) in a semi-supervised machine learning approach resulting in
interpretable results in the form of linear combinations of attention scores. They report
remarkable results with an F1-score of up to 89.41%, but they appear to have used a
subset or a different version of the data set. Specifically, they worked with 25 thousand
examples, while we used 50 thousand examples, resulting in an F1-score of 76.5% on our
data set. Moreover, regarding this approach it should be noted that there is an ongoing
discussion concerning the interpretability of attention weights (cf. [29,30]), whereas the
if-then-else rules generated by the rule induction methods applied in our approach are
commonly categorized as most informative in the area of XAI.

Regarding the selection of the applied dictionary in each iteration, we generally use n-
grams and order them according to the number of appearances in the input data. However,
in future work we aim to improve this way of proceeding and apply a more sophisticated
feature selection. Concerning this, quite some research has already been done. First of all,
there are various metrics out there for a selection of an appropriate number of features.
Regarding text classification, a valuable overview is for instance given by Forman [31].
Moreover, HaCohen-Kerner et al. [32] investigate the influence of different types of pre-
processing applied on textual input data.

Furthermore, Chen et al. [33] explore the selection of the vocabulary in more detail and
aim to find an optimal subset by providing a variational vocabulary dropout. However,
this approach is computationally quite demanding and probably not suited for very large
data sets. Similarly, Patel et al. [34] incorporate ideas from cooperative game theory with
the aim to find an optimal subset of the vocabulary maximizing the performance of a
classification model.

Another crucial point we want to address in more detail in future work is the class
imbalance problem, which occurs when certain classes are underrepresented in the dataset,
affecting the performance of classification models, particularly in our use case within the
insurance business. Up to now, it has been an acceptable solution for our collaboration
partner to summarize the smaller classes into a few super-classes and differentiate between
them. However, it would also be interesting to make a more granular distinction and
even in the currently applied setting with only a few considered classes, imbalanced data
remains a challenge. An extensive study on this topic has been conducted, for instance, by
Japkowicz et al. [35] and Krawczyk [36]. Common methods for handling imbalanced data
are summarized, for instance, by Spelmen et al. [37].

On the other hand, Ha-Thuc et al. [38] introduce a text classification approach that
does not require any labelled data. Instead of human-labelled documents, they rather
consider the description and more importantly the relationships with other categories for
classification which makes this approach especially suited for data sets with a lot of dif-
ferent (small) classes as present in our use case. So, incorporating this idea might also be
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an interesting direction for future work.

Finally, regarding general trends in rule learning, RIDDLE by Persia et al. [39] has
to be mentioned. They bridge deep learning and rule induction resulting in a white-box
method that apparently yields state-of-the-art results in many classification tasks in rule
induction. Although they claim that ”the trained weights have a clear meaning concerning
the decisions that the model takes”, the level of explainability is probably still lower than
the one achieved by the classical rule induction methods, such as RIPPER, for instance.
Moreover, for comparison, we also applied our approach on the Breast Cancer data set
from the UCI machine learning repository which has been used by Persia et al. [39] in
the empirical evaluation and achieved an accuracy of 95.99% with FOIL and 96.55% using
RIPPER, compared to 94.86% as the mean of 5 independent repetitions using the publicly
available implementation of the algorithm8.

3 Methodology

After motivating the ideas behind this paper and summarizing related work as well as
previous work on which this paper is build upon, we will introduce the applied methodology
in this section. Simply put, our iterative approach is based on a chosen rule learning method
and aims to refine the generated rules according to a chosen Value of Confidence that we
define as follows.

3.1 Value of Confidence

Definition 1. The Value of Confidence is a measure of reliability of a rule generated
by a rule learning method. This numeric value is calculated on a validation data set distinct
from the training set that is used to generate the rule. There are various possible calculation
methods depending on the exact goal of the use case of interest. However, a common metric
applied in this context might be the precision that is also used within our experiments since
it is especially important for our use case in the insurance business. For instance, one
option to compute the Value of Confidence is as follows.

V oC =
p

p+ n
,

where p is the number of positive examples and n the number of negative examples covered
by the rule.

Note that, in our case, we prefer to obtain no prediction at all rather than risk a wrong
prediction. This is because every bill that can be processed automatically is a gain for the
company, as long as the predicted class is correct with a very high degree of certainty. As
a result, the precision is an appropriate Value of Confidence for our purpose. However, in
other scenarios, it might be acceptable to obtain a (possibly) incorrect prediction instead
of no prediction at all. For instance, when the processing of an example by a human or a
different kind of method is very cost-intensive (compared to the expenses resulting from a
wrong prediction), a mistake may be tolerable. Similarly, if the rule outcomes are used as
decision guidance for a human, it may be more desirable to provide a prediction, even if it
is not perfectly accurate. A more detailed investigation of different metrics in this context
will be part of future work.

8 See https://git.app.uib.no/Cosimo.Persia/riddle
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Algorithm 1 Pseudo-Code for Iterative Approach
Input: Training and validation set
Parameter: Maximal number of iterations, Threshold, Initial size of dictionary
Output: Rule with corresponding Value of Confidence

Restrict training data to chosen dictionary size
iteration← 0
while iteration < max iterations do

rule← apply chosen rule learning method
if V oC(rule) < threshold then

add false positives from validation set to training set
dictionary size ∗ = 2
adapt data to new dictionary size
iteration + = 1

else
return rule with corresponding VoC

end if
end while

3.2 Iterative Approach

The basic procedure of the iterative approach is illustrated by the pseudo-code in Algo-
rithm 1 and explained in the following.

In a first step, the given data set is split into training, test and validation sets. For
instance, in our experiments we use a 80/20 train-test-split and use 15% of the training
data for validation.
The training and validation data serve as input for our approach. As already mentioned
above, the training data is used to learn a rule, while the corresponding Value of Confidence
is subsequently computed on the validation data.

However, before learning the first rule, the size of the input data is restricted to the
chosen initial dictionary size. Note that in our experiments we applied the TfidfVectorizer9

with a n-gram range of one to three on the raw text data for preprocessing, where we
considered all words that appear at least 5 times in the data set. The resulting total number
of features is our original dictionary size and we have ordered the features according to the
inverse document frequency. It has shown that a reasonable value for the initial dictionary
size applied in our algorithm is an eighth of the original dictionary size. This choice is small
enough to significantly decrease the necessary memory consumption for the rule generation
while it still covers the most important words and groups of words. Moreover, we do not
want to apply a huge number of iterations but rather stop after about 5 iterations as
done in our experiments since each iteration involves learning a rule which can be quite
time-consuming. Using the suggested initial dictionary size, we consider the whole feature
set in the fourth iteration and stop after one more iteration. It is probably not possible to
find a general optimal value here, since it strongly depends on the underlying data. For
instance, considering a data set where very few key words are sufficient to differentiate a
large part of the data, the initial dictionary size can be chosen very small whereas a data
set consisting of very similar classes might benefit from a larger initial size.

Once the data is prepared, we proceed as follows until the maximal number of iterations
is reached or a rule of satisfactory quality (with respect to the VoC) is found.

1. The chosen rule learning method is applied to the current training data in order to
learn one rule.

9 See https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfVectorizer.html.
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2. The Value of Confidence is computed for this rule considering the validation data.
3. The quality/reliability of the rule is checked:

(a) If the corresponding Value of Confidence exceeds the threshold passed as a param-
eter to the algorithm, we store the rule and remove the covered positive examples
from the training set, as usually done in rule learning.

(b) Otherwise, we increase the dictionary size (usually we multiply it by 2) and add
the covered negative examples (i.e., the false positives) from the validation set to
the training set.

4. If the quality of the rule is not satisfying, we start the next iteration considering the
new training data with increased dictionary size.

The procedure explained above and outlined in Algorithm 1 eventually yields one rule
together with the corresponding Value of Confidence. It is repeated until a given number of
rules has been generated. Additionally, to prevent overfitting and excessive computation,
we include an early stopping mechanism. If the quality of n consecutive rules does not
meet the required VoC threshold, the algorithm halts further rule generation. Both the
number of consecutive unsatisfactory rules n and the quality threshold are configurable
parameters.

In the first place, our iterative approach is intended to make it possible for common
rule learning methods to better handle large/complex text-based data sets and reduce
memory consumption. However, the basic idea (without increasing the feature space in
each iteration) is also suitable for any other kind of data and yields improved results as
shown in Section 4.

4 Experimental Evaluation

In this section, we evaluate the iterative approach introduced in this paper on several
common benchmark data sets, not only from the field of text classification but also on
non-textual data, demonstrating its versatile applicability. Additionally, we investigate a
practical example from the insurance industry.

4.1 Experimental Setup

As a first step, the data sets described below are split into train, validation, and test data.
Unless stated otherwise, we use 80% of the input data for training and the remaining
20% for testing. From the training data, we use 15% as the validation set for applying our
iterative approach. This additional split is not necessary when using the standard method.
Thus, the corresponding outcomes presented in the comparison in Section 4.2 are obtained
by considering the entire training data set (i.e., 80% of the total input data) without
generating a separate validation set. Note that at this point preprocessing has already
been done. Specifically, for the text-based data sets, the textual information has been
transformed into binary vectors, with attributes ordered according to inverse document
frequency, as mentioned earlier.

Before starting with our approach, we define an initial dictionary size, which is typically
an eighth of the total number of attributes, as explained above. For the maximum number
of iterations and the applied threshold for the Value of Confidence, we always use the
same settings: at most 5 iterations with a threshold of 0.9. However, note that we add the
rule resulting from the last iteration to our set of rules, regardless of the corresponding
Value of Confidence. So, in the final ruleset, there might be rules with an unsatisfactory
reliability, but we can ignore them during evaluation. In fact, we are interested in the
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differences that can be observed by applying only rules with a certain reliability as further
shown in Section 4.4.

After that, we can define the rule learning method we want to apply as well as the
number of rules that should be generated and our iterative approach proceeds as explained
in Section 3.

Before going into detail on the obtained results, we briefly explain the underlying data
considered in our experiments. We start with the considered benchmark data sets and
discuss the results obtained on them in Section 4.2. Afterwards, in Section 4.3, we will
focus on our use case from insurance industries showing that the benefits achieved by our
iterative approach are not only present considering some standard benchmark data sets
but also on a use case of crucial importance to our industrial collaboration partner.

Hatespeech This data set from Kaggle10 consists of about 25 thousand Twitter posts
labelled as hate speech, offensive language or neither. In our experiments, we summarized
the first two classes into one in order to differentiate simply between Hate Speech/ Offensive
Language or not. So, in our case this is a binary classification task. After preprocessing
we consider about 8000 attributes representing the occurrence of words/word groups like
hate, dumb, monkey as well as a lot of swearwords we do not want to mention here. A
simple rule learned in this context could be, for instance:

IF dumb = 1

THEN Type = Hate Speech

meaning that a tweet should be considered as Hate Speech if the word dumb appears.
Of course, there are also more complex rules not just considering the presence of one
certain swear word because some words can be used in a completely different context.
For example, the word monkey is sometimes used in a racist context but also in innocent
tweets about a zoo visit resulting in rules like

IF monkey = 1

AND cute = 1

THEN Type = NOT Hate Speech.

Reuters There are various variants of this data set commonly used in literature. We
considered the version contained in the python nltk package11 consisting of 10788 news
documents assigned to the according categories. After preprocessing, the data set com-
prised nearly 11 thousand attributes eventually resulting in rules like the following.

IF water = 1

AND carry = 1

THEN Type = SHIP

Note that we distinguish between the 10 most common categories while summarizing
the remaining smaller classes as other.

IMDB This data set from Kaggle12 contains 50 thousand informal movie reviews from the
Internet Movie Database mostly used for sentiment analysis. After preprocessing, we have
more than 70 thousand attributes available. It has shown that FOIL is able to handle this
number of features while RIPPER cannot, due to its increased complexity, which results
in extensive memory consumption. So, for our experiments with RIPPER we cropped the

10 See https://www.kaggle.com/datasets/mrmorj/hate-speech-and-offensive-language-dataset.
11 See https://www.kaggle.com/datasets/boldy717/reutersnltk.
12 See https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews.
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feature space and considered only the 20 thousand most important words according to the
inverse document frequency. An example of a learned rule in this context is as follows.

IF bad = 1

AND great = 0

AND like = 0

THEN Type = negative

Non-textual data sets In addition to these text-based data sets, we also considered
non-textual input data in order to investigate the advantages achieved just by assigning a
Value of Confidence to each generated rule, aiming to maximize this value in our iterative
approach without the need of restricting the data to a specific dictionary size. More pre-
cisely, we considered the following data sets discussed in more detail in the Supplementary
Material of our previous work.13

(i) Spambase14

(ii) Heart Disease15

(iii) Car Evaluation16

(iv) Diabetes17

(v) Breast Cancer18

4.2 Objectives & Summary

The empirical evaluation of the iterative approach introduced in this paper particularly
sought to answer the following questions.

RQ1 Accuracy compared to the base method. Can the iterative approach provide better
classification accuracy than the base method, i.e. the ordinary rule learning method?

RQ2 Memory consumption compared to the base method. Is our iterative approach able to
significantly reduce memory consumption for rule generation compared to the ordinary
method?

RQ3 Industrial case study. Are the advantages regarding classification accuracy and
memory consumption also observable for the classification of dental bills, an industrial
use case?

RQ4 Level of reliability. What is the impact of the Value of Confidence as a metric of
reliability concerning classification accuracy?

In order to investigate these questions, we consider the above-mentioned data sets.
Note that the reported results are always obtained on the test data.

For the text-based data sets, we not only compare the resulting accuracy from our
proposed iterative approach with the ordinary method, but also measure the memory
consumption in our experiments. The corresponding results are shown in Table 1 and
visualized in Figure 1 and 2, respectively. Note that all of the experiments are performed
on an AMD Ryzen Threadripper 2950X WOF CPU.

Regarding accuracy, we can clearly observe that our iterative approach outperforms
the ordinary method on the considered data sets for both FOIL and RIPPER. The only

13 See https://arxiv.org/pdf/2311.07323.
14 See https://archive.ics.uci.edu/ml/datasets/spambase.
15 See https://archive.ics.uci.edu/dataset/45/heart+disease.
16 See https://archive.ics.uci.edu/dataset/19/car+evaluation.
17 See https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database.
18 See https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original.

56                                              Computer Science & Information Technology (CS & IT)

https://arxiv.org/pdf/2311.07323
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/dataset/45/heart+disease
https://archive.ics.uci.edu/dataset/19/car+evaluation
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original


Data Learner Memory Consumption in GiB Accuracy in %

Hatespeech FOIL 6, 72 82, 00
FOIL - iter. 3, 92 86, 44
RIPPER 30, 54 89, 30
RIPPER - iter. 13, 45 92, 64

Reuters FOIL 4, 27 72, 21
FOIL - iter. 2, 92 81, 74
RIPPER 13, 19 78, 89
RIPPER - iter. 11, 26 80, 49

IMDB FOIL 148, 80 79, 13
FOIL - iter. 107, 57 79, 31
RIPPER 113, 6019 68, 39
RIPPER - iter. 91, 92 75, 01

Table 1. Performance of our approach on different benchmark problems for text classification. Note that
iter. denotes the iterative approach introduced in this paper.

exception is the application of FOIL on the IMDB data set, where both approaches are
equivalent. A possible reason for this might be the type of language used in this data
set, which could also explain the generally rather poor performance of RIPPER on this
example (besides the already mentioned restriction of the feature space). The IMDB data
set consists of movie reviews written in simple language, often using abbreviations and
containing typographical errors. This could significantly influence the dictionary we use
for rule learning. In future work, we aim to improve the preprocessing of the text-based
input data by applying large language models, for instance. Regarding this, Liu et al. [40]
have recently introduced a very promising approach to correct errors in text documents.

Furthermore, regarding memory consumption, it is evident that we can significantly
reduce memory consumption by applying the method introduced in this paper. Especially
using the FOIL algorithm, we can observe that the memory consumption is reduced by
about a third on all of the considered benchmarks. Using RIPPER, it seems that the

Fig. 1. Illustration of Accuracies shown in Table 1.
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Fig. 2. Illustration of Memory Consumptions shown in Table 1. Note that the memory consumption
illustrated for RIPPER applied on the IMDB data set corresponds to a reduced feature space compared to
the application of FOIL.

reduction of memory consumption rather depends on the underlying data. While we notice
a remarkable reduction of more than a half on the Hatespeech data set (where the two
classes are mostly distinguishable by considering the occurrence of some swear words), the
reduction of the memory consumption on the other two benchmark data sets is not that
distinct but still clearly visible with about 20%.

Regarding time consumption, we did not investigate the differences between the two
approaches in that detail but in general we observed an increased time consumption when
RIPPER is applied within our approach, while our iterative approach could even reduce
the run time using FOIL. For instance, on the Hatespeech data set using FOIL we observed
a total time consumption of about 37 minutes compared to approximately 77 minutes
corresponding to the classical method. On the other hand, applying RIPPER results in a
total time consumption of about 19 hours compared to about 4 hours with the classical
method. However, note that at the end of the day the introduced iterative approach is
intended to extend our framework for a versatile application of rule learning methods
we already established in previous work. In particular, in combination with the modular
approach proposed in [12] the total time consumption can be reduced by a multiple when
we apply parallelization. In order to do so, the reduced memory consumption achieved by
the iterative approach introduced in this paper is extremely beneficial.

Additionally, we evaluate our iterative approach on some nominal data sets, as men-
tioned above. The corresponding accuracy is depicted in Table 2 and Figure 3. As clearly
visible, our approach yields also significantly improved results on most of the considered
non-textual benchmarks and outperforms the classical method by up to 3.3%.

In summary, we can positively answer Questions RQ1 and RQ2.
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Spambase Heart Disease Car Diabetes Breast Cancer

FOIL 87, 69 81, 95 92, 00 92, 94 96, 00

FOIL - iter. 89, 71 85, 29 95, 07 94, 80 95, 99

RIPPER 92, 18 82, 16 92, 47 88, 84 95, 08

RIPPER - iter. 91, 74 82, 78 93, 84 90, 49 96, 55

Table 2. Accuracy in % achieved by our approach on different non-textual benchmark problems. Note
that iter. denotes the iterative approach introduced in this paper.

Fig. 3. Illustration of Accuracies shown in Table 2.

4.3 Use Case: Reimbursement

The Allianz Private Krankenversicherung (APKV) is an insurance company offering health
insurance services in Germany. As previously mentioned, the inspiration for this work
stems from a use case we worked on during a collaboration with this company. In our
previous work [12,13], we have already described the use case at hand in detail. However,
summed up, an insurance company regularly receives bills handed in by the clients asking
for reimbursement. Automated processing of these bills is desired in order to lower costs
and to gain an edge over the competition by reducing the time until the client receives the
reimbursed money.

As decision making, in particular in this sensitive area, should be transparent to both
parties, the operational use of black-box machine learning algorithms is often seen critically
by the stakeholders and is in many cases avoided. As a consequence, rule learning achieving
a comparable performance offers the desired advantage of explainability.

For our case study, we are focusing on dental bills. On those bills, the specific type
of dental service per row on the bill is unknown but needed for deciding on the amount
of refund. Especially differentiating between material costs and other costs is of crucial
importance.

In collaboration with the APKV, we have been provided with an anonymized training
data set consisting of nearly one million instances. As opposed to our previous work,
where we only considered structured information on the bills such as cost, date and simple
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engineered features, in this paper we especially aim to work with the textual data and make
predictions based on the occurrence of certain words or word groups. Due to extensive
memory consumption, we restricted our analysis to the 8000 most common words using
FOIL and the 3000 most common words for RIPPER.

Initially, large language and transformer models like RoBERTa [41] have been applied
to process the bills. Due to pending non-disclosure agreements, we cannot provide fur-
ther details about the exact procedures.20 However, these highly complex methods have
been applied to a combination of both textual information and engineered features. The
exclusive consideration of textual information has not been tested yet.

To investigate the benefits of applying our approach on real-world text data, we con-
sidered the textual information exclusively in our experiments. The inclusion of engineered
features is left for future work, where we plan to bring everything together and apply a
combination of all three of our introduced approaches (modular, voting and iterative) to
all available features.

In the experiments conducted during the evaluation of our approach on the industrial
use case, we primarily focused on the precision of fully satisfied rules and did not apply
partial matching (cf. [42]), which is typically done during evaluation. This means that
if no rule is completely satisfied for a considered example, no prediction is made, rather
than checking how many conditions of each rule are fulfilled and predicting the label
corresponding to the rule with the highest percentage of satisfied conditions.

Summed up, by considering the results shown in Table 3 and Figure 4 we can answer
Question RQ3 as follows. Both the reduction in memory consumption and the increase
in classification accuracy are clearly observable in the industrial use case involving dental
bills. More precisely, considering FOIL, we can almost halve the memory consumption.
Regarding the precision of the applied rules, the positive effect of the introduced Value of
Confidence is evident. While the precision of our iterative approach without restrictions
to the reliability of the applied rules is slightly smaller than the one achieved by the
classical method, the application of a threshold in this context immediately improves the
results enormously. For instance, using a threshold of 0.6 yields a precision (i.e., number of
correctly predicted examples divided by the total number of examples where a prediction
has been made) of nearly 92%, correctly predicting even more examples than the classical
method. Further restricting the reliability of the applied rules and using a threshold of

20 For more information please directly contact gabriela.dick guimaraes@allianz.de.

Learner Memory (GiB) Threshold Predicted Correct Precision (%)

FOIL 204, 53 178.910 137.564 76, 89
FOIL - iter. 126, 78 0 232.476 175.515 75, 50

0, 6 155.634 142.798 91, 75
0, 7 150.601 140.339 93, 19
0, 8 144.099 135.844 94, 27
0, 9 119.635 115.697 96, 71

RIPPER 213, 82 106.230 92.041 86, 64
RIPPER - iter. 165, 37 0 150.538 135.590 90, 07

0, 6 150.538 135.590 90, 07
0, 7 149.166 134.722 90, 32
0, 8 141.878 129.067 90, 97
0, 9 84.815 79.702 93, 97

Table 3. Performance of our approach on the reimbursement case study concerning dental bills. Note that
iter. denotes the iterative approach introduced in this paper and the Threshold corresponds to the Value
of Confidence of each rule meaning that rules with a reliability below the threshold are ignored.
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Fig. 4. Illustration of Memory Consumption & Precision shown in Table 3.

0.9 yields a precision of almost 97%, while still predicting correctly about 115 thousand
examples, which corresponds to approximately half of the test examples. This demonstrates
that our approach makes it possible to automatically classify half of the dental bills with
extremely high accuracy and – what is even more important – the resulting predictions
are fully explainable.

Regarding RIPPER, similar improvements are observed: memory consumption is re-
duced by about a third and the precision increases from 86.64% achieved by the classical
method to up to 94% obtained by our iterative approach using a threshold of 0.9. It is
important to note that these experiments have been conducted with the general restric-
tion of learning at most 10 rules for each label in both approaches. However, the classical
method returned only 2-3 rules for 8 of the 10 labels due to the integrated early stopping
according to the description size – a measure of total complexity of the model aiming to
balance between minimization of classification error and minimization of model complex-
ity. Using the same number of rules with our iterative approach, we can correctly classify
75401 examples from 83222 examples where one rule is satisfied. This corresponds to a
precision of 90.60%, independent of the chosen threshold meaning that the generated rules
all have a Value of Confidence of more than 0.9. Nevertheless, we decided to present the
results of the 10 rules learned for each label using our iterative approach in Table 3 and
Figure 4 because on the one hand this shows that the applied early stopping in the classi-
cal approach can sometimes be too restrictive and, on the other hand, it provides deeper
insights into the effect of applying a threshold on the Value of Confidence for the rules
used during evaluation.

In conclusion, our iterative approach outperforms the classical approach also on the
industrial use case concerning both classification accuracy and memory consumption.

Moreover, the derived rules are highly useful, even for non-automated classification of
such medical bills. They contribute to achieving more consistency and transparency in the
decision making, and provide deeper insights into the data, in general.

4.4 Detailed Analysis

As a part of this paper, we have introduced a Value of Confidence that can be used as a
metric for measuring the reliability of a generated rule. This section aims to investigate
the influence of this value on the precision achieved during evaluation (cf. RQ4).
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Data Learner Metric t = 0 t = 0.6 t = 0.7 t = 0.8 t = 0.9

Hatespeech FOIL predicted 4312 3488 3430 3221 3083
correct 3641 3347 3303 3164 3047
accuracy 84, 44% 95, 96% 96, 30% 98, 23% 98, 83%

RIPPER predicted 4201 4201 4190 3951 3932
correct 4084 4084 4075 3904 3886
accuracy 97, 21% 97, 21% 97, 26% 98, 81% 98, 83%

Reuters FOIL predicted 1585 1498 1490 1477 1469
correct 1357 1319 1314 1306 1300
accuracy 85, 62% 88, 05% 88, 19% 88, 42% 88, 50%

RIPPER predicted 1713 1692 1684 1617 1302
correct 1447 1433 1427 1376 1112
accuracy 84, 47% 84, 69% 84, 74% 85, 10% 85, 41%

IMDB FOIL predicted 7560 7545 7545 7185 6434
correct 6263 6252 6252 6009 5454
accuracy 82, 84% 82, 86% 82, 86% 83, 63% 84, 77%

RIPPER predicted 7668 7668 6937 3433 1919
correct 6034 6034 5501 2846 1697
accuracy 78, 69% 78, 69% 79, 30% 82, 90 88, 43%

Table 4. Comparison of the classification outcomes considering only rules satisfying a certain level of
reliability t measured by its Value of Confidence.

For this purpose, we apply thresholds t from 0.6 to 0.9 and consider only rules with
a VoC > t. The corresponding results are shown in Table 4 as well as Figure 5 and 6. In
this context, we only consider fully satisfied rules and do not apply partial matching, as
explained in Section 4.3.

In order to answer question RQ4, we again illustrate for each of the considered textual
benchmark data sets the number of examples where a prediction has been made (i.e., one
rule is completely satisfied) together with the percentage of correctly classified examples.
As expected, the number of classified examples decreases with an increasing threshold and
the associated reduction in the total number of rules. However, as desired, the remaining
rules are obviously more reliable and the percentage of correctly predicted examples con-
sistently increases for both FOIL and RIPPER on each of the considered benchmarks. In
conclusion, the incorporation of a Value of Confidence definitely has a positive impact on
the precision of the made predictions.

5 Conclusion & Future Work

In this paper, we present an extension to classical rule learning methods, making use of
a Value of Confidence as metric of reliability. This novel approach is especially suited for
the application of rule learners on textual input data. However, the iterative approach is
not only beneficial for gaining more control over the applied dictionary, but it has also
shown to be advantageous for nominal data by optimizing the reliability of the generated
rules in each iteration.

By combining the approach introduced in this paper with the two approaches to rule
learning from our previous work, we obtain a framework for explainable classifications
that can be applied in various scenarios handling different types of data in a production
environment.

Concerning future work, we aim to integrate a more sophisticated preprocessing by
applying, for instance, large language models to improve the choice of the dictionary. In
the course of this, we will also investigate different ways of sorting the basic dictionary
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Fig. 5. Illustration of Accuracy regarding FOIL shown in Table 4.

Fig. 6. Illustration of Accuracy regarding RIPPER shown in Table 4.

with the goal of finding the best possible initial dictionary to use in the first iteration of our
approach. Moreover, using computer vision approaches in order to incorporate the position
of words in a document might be another interesting consideration we aim to investigate
in future work because especially in our main use case concerning reimbursement, the
considered bills are mostly standardized and the crucial information is typically located
in a specific area of the document.
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