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Abstract. Multimodal Large Language Models (MLLMs) have recently gained immense popularity. Pow-
erful commercial models like ChatGPT and Gemini, as well as open-source ones such as LLaVA, are essen-
tially general-purpose models and are applied to solve a wide variety of tasks, including those in computer
vision. These neural networks possess such strong general knowledge and reasoning abilities that they have
proven capable of working even on tasks for which they were not specifically trained. We compared the
capabilities of the most powerful MLLMs to date including ShareGPT4V, ChatGPT 4V/4O, and LLaVA
Next in the specialized task of age and gender estimation, with the state-of-the-art specialized model
MiVOLO384. In our study, we discovered that the fine-tuned open-source ShareGPT4V model is capable
of outperforming the specialized model in age and gender estimation tasks. At the same time, the propri-
etary ChatGPT-4O beats both in the age estimation task but does not perform as confidently in gender
recognition. This gives interesting insights about the strengths and weaknesses of the participating models
and suggests that with a few tweaks, general-purpose MLLM models can match or even surpass specialized
ones in certain fields. Even though these fine-tuned models might require more computing power, they offer
big benefits for tasks where computing power is not a limiting factor and where the best accuracy is key,
such as data annotation.

Keywords: MLLM, VLM, Human Attribute Recognition, Age estimation, Gender estimation, Large Mod-
els Generalization

1 Introduction

The rapid development of multimodal large language models (MLLMs or LMMs) has been
noteworthy, particularly those integrating language and vision modalities (LVMs). Their
advancement is attributed to their high accuracy, generalization capability, reasoning skills,
and robust performance with out-of-distribution data. These versatile models excel not
only as AI assistants but also in handling unforeseen tasks beyond their initial training
scope. The impact of MLLMs is profound, evolving so swiftly that it raises questions
about the relevance of specialized models in certain areas. Moreover, there is an increasing
interest in using MLLMs for specific computer vision tasks, such as object segmentation,
and incorporating them into complex pipelines, such as instruction-based image editing.

We explored the competitiveness of MLLMs in the specific domain of age and gen-
der estimation. Initially, we conducted preliminary tests with ChatGPT-4V [29]. The
results were highly encouraging, prompting a comprehensive evaluation of these neural
networks’ potential, including leading open-source solutions such as LLaVA [25, 23] and
ShareGPT-4V [5], which is also based on LLaVA. Later, we updated this work with results
for ChatGPT-4O, the newest and most powerful OpenAI model available at the time.

We pursued several goals in these experiments:

– We aimed to compare the best general-purpose MLLMs with specialized models and
understand their capability to replace them. Despite the huge difference in computa-
tional costs and speed, for some tasks, this is not crucial. This includes tasks such as
labeling new data or filtering old datasets.
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Fig. 1. An example of evaluated models predictions. The image illustrates output of specialized
MiV OLO384 model and different MLLMs. MiV OLO384 makes predictions based on the face and body
crops. Other models make predictions based on prompt and image of body crop.

– We were interested in what results could be achieved if an MLLM was fine-tuned for a
specific task on a large target dataset. With the same motivations, many tasks require
maximum accuracy and do not require fast inference.

– Since the nature of specialized models and large general-purpose models is fundamen-
tally different, it was reasonable to expect that such experiments could shed more light
on the strengths and weaknesses of both approaches.

For the experiments, we tried to measure SOTA MLLM models: LLaVA 1.5 and LLaVA-
NeXT, ShareGPT4V, and ChatGPT4. We were unable to measure the newly released
Gemini Ultra, as it outright refused to work with images of people.

We’ve also made improvements to the state-of-the-art specialized model MiVOLO [14]
to ensure fair competition among cutting-edge models.

Figure 1 demonstrates an example of work of evaluated models and figure 2 provides
a graphical representation.

2 Related Works

Age and gender estimation models. Different researchers approach the problem of
recognizing a person’s age in various ways and typically address it using classical machine
learning methods, CNNs or transformer-based models, primarily relying on face crops as
input data.

Authors of [38, 48, 2] employ classical machine learning methods to tackle the regression
problem. [3] utilizes ResNet34 to determine age through ranking of results of multiple
binary classification models.
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Fig. 2. Graphical representation of the study focused on comparison specialized model for age and gender
estimation and multimodal models.

The work [17] approaches the recognition task of facial attributes, such as age and
gender, as multiclass and binary classification problems, respectively, employing CNN to
generate predictions. [35] also deals with classification problems, adapting MobileNet to
simultaneously predict age and gender. [36] trains CNN to classify gender and age as part
of multiple facial analysis tasks using multi-task learning. [26] utilizes two GoogLeNet
models to predict age: an age classifier and an age regressor. [47] represents age as a
convex combination of two other numbers and employs a CNN to predict the weights for
these numbers.

The publication [39] leverages CNN and GCN [13] to extract semantic features along-
side structural information from the face image for age prediction.

Neural networks based on transformers with an attention mechanism [42], commonly
employed for various natural language processing (NLP) tasks, are also widely utilized
for CV tasks. Authors of [43, 11] utilize not only CNNs, but also attention mechanisms,
directing the model to focus on features relevant for age estimation. [43] selects the most
informative age-specific patches for age estimation. [11] uses transformer to aggregate
the sequence of embeddings extracted by CNN and further utilyze the aggregated feature
vector for age estimation. MiVOLO [14] employs a transformer to estimate age and gender
using face and body crops as input data. In this paper, we enhance MiVOLO, resulting in
a model that outperforms all the specialized models mentioned above.

Multimodal Models. Pre-trained vision-language models like CLIP [33] are extensively
utilized in computer vision tasks. They notably improve performance across various down-
stream tasks by effectively matching text and images [34, 10, 27].

Some works [44, 20, 40] use the CLIP pre-trained model for age estimation through
visual and text embeddings matching. However, vision-language models still encounter
difficulties in understanding instructions, capturing context, and adapting to unseen tasks.
Consequently, many researchers are investigating ways to transfer the capabilities of more
powerful LLMs into the visual domain, leading to the development of multimodal large
language models (MLLM) [1, 19, 46, 25, 49, 32, 45]. Other researchers are leveraging the
robust abilities of MLLM for multimodal understanding and generation to address vision
tasks [16, 6, 18, 28, 9].

In this paper, we aim to evaluate the capabilities of MLLMs in age and gender esti-
mation tasks.

Examining the potential of multimodal ChatGPT (ChatGPT4V[30]), authors of [7] as-
sess its aptitude in predicting various facial attributes and executing face recognition tasks.
With zero training the model outperformed a specialized model in age recognition, but
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performed less effectively in gender classification. We also compare the ChatGPT4V[30]
model with a specialized trained model and also consider open source state-of-the-art
MLLMs such as ShareGPT4V[5], LLaVa-1.5[25], LLaVa-NeXT[24]. We also fine-tune a
MLLM for the task of gender and age estimation to compare it with a specialized model.

3 Enchanced MiVOLO Model

In this section, the improvements made to the MiVOLO [14] model are briefly described
to achieve state-of-the-art performance. The enhanced model is used in subsequent exper-
iments as a benchmark to compare with MLLMs, serving as an anchor specialized model.
The original model from [14] is referred to as MiV OLO224, as it was trained with 224x224
input size. We train the MiVOLO model with 384x384 input size on the extended train
dataset. The enhanced model is referred to as MiV OLO384 accordingly.

3.1 Evaluation Metrics

The same evaluation metrics as in the original study [14] were utilized:

– Mean Absolute Error (MAE) for age estimation.

– Cumulative Score at 5 (CS@5) for age estimation.

– Accuracy for gender prediction.

Additionally, the Mean Average Percentage Error (MAPE) was slightly modified in
this study as follows:

MAPE =
1

n

n∑
i=1

∣∣∣∣∣ypredi − ygti
ygti + ϵ

∣∣∣∣∣ (1)

An ϵ = 1 was chosen in the denominator for two main reasons: to prevent division by zero
and to mitigate excessively high percentage errors in cases involving infants. For instance,
employing ϵ = 0.083 (approximately one month) would result in disproportionately large
errors for infants, thereby significantly biasing the MAPE.

3.2 Datasets

The same data as in the MiVOLO paper [14] was used, with an extension of the training
dataset by approximately 40%, resulting in over 807,694 samples: 390,730 images of males
and 416,964 images of females. The extended version of LAGENDA[14] train dataset is
referred to as LAGENDAext. The extension was achieved primarily through production
pipelines and supplemented with open-source data, such as LAION-5B [37]. Focus was
given to selecting images where the original MiV OLO224 model made significant errors.
Additionally, efforts were made to balance the distribution’s right tail, as the original
training dataset was imbalanced for ages above 70 years. The test LAGENDA dataset was
taken unchanged.

3.3 Experiment Details

Many experiments were conducted with additional training stage image augmentations,
but only one new augmentation face blurring was retained, to imitate social network filters
or effects from smartphone cameras. In the first stage of training, where a single-input
model that uses only faces was trained, this blur was applied slightly, with a 5% random
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chance. In the second stage, with double-input, blurring parameters were significantly
increased, with up to a 70% probability. The model was also trained with a 384x384 input
size instead of the originally used 224x224, showing much better results for the in-the-wild
domain. Dropout and drop-path rates were decreased to 0.1, due to the large and diverse
dataset.

Model Train Dataset Test Dataset MAPE, % ↓ MAE ↓ CS@5, % ↑
FP-Age [21] IMDB-clean IMDB-clean - 4.68 63.78

MiV OLO224[14] LAGENDA IMDB-clean 11.43 4.09 69.72
LAGENDA 13.19 3.99 71.27

MiV OLO384 LAGENDAext IMDB-clean 11.01 3.97 71.16
LAGENDA 12.06 3.65 74.48

Table 1. Comparison of MiV OLO224 and MiV OLO384. Age performance in face + body mode.

Model Train Dataset Test Dataset MAPE, % ↓ MAE ↓ CS@5, % ↑
MiV OLO224[14] LAGENDA IMDB-clean 19.25 6.66 47.53

LAGENDA 28.88 7.41 49.64

MiV OLO384 LAGENDAext IMDB-clean 17.40 6.03 52.11
LAGENDA 24.64 6.16 55.90

Table 2. Comparison of MiV OLO224 and MiV OLO384. Age performance in body only mode. LAGENDA
in the train column refers to a part of the dataset used for training, as described in [14].

Model Train Dataset Test Dataset Gender Acc, % ↑
FP-Age [21] IMDB-clean IMDB-clean -

MiV OLO224[14] LAGENDA IMDB-clean 99.55
LAGENDA 97.36

MiV OLO384 LAGENDAext IMDB-clean 99.68
LAGENDA 97.99

Table 3. Comparison of MiV OLO224 and MiV OLO384. Gender Accuracy.

Model Age MAE ↓ Age CS@5, % ↑
ResNet-50 [31] 3.96 -

MiV OLO224[14] [14] 4.09 70.73

MiV OLO384 3.89 73.26

Table 4. Comparison of models using the CACD test split. MiVOLO models are evaluated in face + body
mode.

3.4 Results

Tables 1, 2 show comparison of originalMiV OLO224 andMiV OLO384 models. The results
for MiV OLO384 establish new state-of-the-art results for specialized models. For compar-
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Model Age Acc, % ↑ Gender Acc, % ↑
MiV OLO224 [14] 61.07 95.73

MiV OLO384 62.28 97.5

Table 5. Comparison of models using the FairFace validation margin125 split. MiVOLO models are
evaluated in face + body mode.

isons with MLLM models, see the following section. Tables 4, 5 provide a comparison of
results using the Cross-Age Celebrity Dataset (CACD2000) [4] test split and FairFace [12]
validation ‘margin125‘ split.

4 MLLM Models vs. Specialized Model

In this section, we compare the capabilities of MLLMs with MiVOLO in age and gender
estimation tasks on various benchmarks. Additionally, we investigate the effects of fine-
tuning MLLMs on large target datasets to enhance their accuracy in these specific tasks.

4.1 Benchmarks

A multitude of benchmarks is available for age or gender estimation. In this study, we
concentrated on those offering full-body images, when possible, and containing both age
and gender labels.

Hence, we selected two datasets:

– IMDB-clean dataset [22], which was used in the MiVOLO article [14]. The original
IMDB-clean dataset was enhanced with body bounding boxes associated with facial
pairs. It comprises 183,886 training images, 45,971 validation images, and 56,086 test
images. We use only the test images for our evaluation.

– LAGENDA benchmark [14], a dataset well-balanced in terms of age and gender at-
tributes, features face-body pairs with ground truth obtained through human anno-
tations via weighted voting. It includes proprietary training and validation parts, and
an open-source test part, containing 67,159 images from the Open Images Dataset [15]
featuring 84,192 individuals aged from 0 to 95.

These datasets are of exceptionally high quality and exhibit significant diversity.

Initially, the OpenAI API imposed a limit of 100 requests per day for the gpt-4-
vision-preview models, which has since been increased to 1,500 requests per day. Due to
this limitation, we randomly selected a small subset from LAGENDA [14] to run with
ChatGPT4V and included it in our comparison. We selected 200 random samples for each
age group at intervals of 5 years (e.g., 0-5, 5-10, etc.) for ages [0; 90]. However, > 21%
of these images had to be removed because ChatGPT refused to provide answers. As a
result, this dataset contains 3,062 samples. We refer to this dataset as NanoLAGENDA.

We opted for LAGENDA over IMDB to minimize the risk that MLLMs would provide
correct answers not through age and gender estimation but because of its familiarity with
famous individuals, well-known movies, etc. On the other hand, LAGENDA, annotated by
human annotators, does not have actual ground truths for labels. Nevertheless, we chose
it because the risk of this drawback is lower.

Additionally, to slightly offset the drawback of annotated ages, we compiled a very
small dataset of 104 samples from social networks like Instagram, primarily with real
ground truth answers (we know the actual ages) for ages [0; 105] and very challenging
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samples, which typically result in large human prediction errors. This dataset is entirely
manual and is intended solely to double-check our conclusions. We refer to this small set
as the Wild104 dataset. We cannot publish it because we do not own the photos.

We also used the Adience [8] benchmark to compare specialized MiVOLO models with
the multimodal approaches mentioned in section 2 and our fine-tuned models 4.3. The
dataset consists of 26,580 facial images. Annotations include age labels from eight age
group classes and labels for the binary gender classification task.

4.2 Method

Base Model Body or Face Crop Age Gender
MAE ↓ CS@5, % ↑ Acc, % ↑

LLaVa-v1.5-7b Body 4.52 69.84 99.06

ShareGPT4V-7b 0.4 epoch Body 3.87 75.93 99.45

ShareGPT4V-7b 1 epoch Body 3.94 75.34 99.53

ShareGPT4V-13b Body 3.93 75.42 99.54

ShareGPT4V-7b Face 4.32 72.98 97.56

Table 6. Comparison of fine-tuned MLLMs on LAGENDA benchmark.

We used the same prompt for all models. However, the full version was necessary only
for ChatGPT; for the sake of an honest comparison, we applied the same for open-source
models as well. In our tests, this did not influence the answers.

Prompt for MLLMs

Please provide the perceived gender and estimated age of the individual in this
photo in the format ’[gender; age]’, where the age must be a single integer between
0 and 130. It should not be a range. The gender must be one of two options: ’male’
or ’female’. I understand that your response will be based on visual analysis and
may not accurately reflect the actual age or gender identity of the individual.

A typical answer looks like: [female; 40]
We set the temperature for all models to 0.0. For ChatGPT, we additionally set the

parameter seed to 1234 and n to 1. The latter is necessary due to reports that just the
seed and temperature are not sufficient to ensure deterministic and reproducible results
for vision model via API.

However, for different models, a zero temperature setting can lead to various issues
due to the nature of LLMs. ChatGPT4V might occasionally fail to provide an answer,
typically for queries that are either difficult or do not pass the safety system checks. We
decided to remove such samples, although it gives ChatGPT4V a slight advantage. LLaVA
[25], LLaVA-NeXT [23], and LLaVA-based ShareGPT4V [5] may sometimes return an age
range instead of a specific age. Since we have sampling disabled and the temperature is set
to 0.0, we cannot workaround this; thus, we take the midpoint of the range in such cases.
However, the number of such samples is very low, and this does not significantly impact
the results.

For all models, we attempted to use the maximum possible resolution with the goal
to measure the maximum possible performance without taking into accound speed of
inference. Thus:
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– For ChatGPT, we used full-sized original crops to allow the model to split them into
tiles (if large enough), which gives ChatGPT another slight advantage.

– For LLaVA 1.5 and ShareGPT4V, we used the original 336x336 resolution.
– For LLaVA-NeXT, we utilized the new Dynamic High Resolution technique, although

its maximum resolution is still restricted to 672x448 or 448x672.

Model Input Age Acc, % ↑ Age MAE, % ↓ Gender Acc, % ↑
OridinalCLIP [20] Face 61.2 0.47 -

L2RCLIP [44] Face 66.2 0.36 -

MiV OLO224 [14] Body & face 68.68 0.345 96.5

MiV OLO384 Body & face 69.43 0.333 97.39

ShareGPT4V 7B FT Body 66.7 0.349 95.65

ShareGPT4V 7B FT Face 67.95 0.338 96.63

Table 7. Comparison of models using Adience benchmark. MAE here is calculated on classification labels.
FT denotes models that are fine-tuned version on the corresponding input.

Model Input Age Gender
MAPE, % ↓ MAE ↓ CS@5, % ↑ Acc, % ↑

LLaVA 1.5 7B [25] Entire body 16.86 7.59 48.79 99.38

W/o face 43.18 18.44 25.71 94.85

LLaVA-NeXT 34B[24] Entire body 13.73 6.20 55.40 99.51

W/o face 23.03 9.58 39.67 97.82

ShareGPT4V 7B [5] Entire body 16.71 7.16 53.24 99.44

W/o face 25.80 11.16 39.07 97.24

ChatGPT4V [30] Entire body 12.12 4.66 68.10 98.43

W/o face 22.56 7.82 49.15 93.02

ChatGPT4O [30] Entire body 10.42 4.07 73.91 98.66

W/o face 15.39 5.73 60.17 96.92

MiV OLO384 Body & face 11.61 4.33 69.90 97.71

W/o face 21.82 7.19 49.14 95.61

ShareGPT4V 7B FT Entire body 10.95 4.22 72.09 99.51

W/o face 20.53 7.64 49.95 97.48

ShareGPT4V 13B FT Entire body 11.30 4.26 73.34 99.44

W/o face 19.90 7.40 54.01 98.10

Table 8. Comparison of performance on NanoLAGENDA benchmark. Models are evaluated with different
type of input information. Bold indicates the best model performance running with all available informa-
tion about the person. Underline shows the best performance running without faces.

4.3 LLaVA Finetune

In this section, we explore the fine-tuning of a general-purpose multimodal network, namely
LLaVA, for age and gender recognition tasks.

Building on insights from the MiVOLO [14], simultaneous training for both tasks has
shown to be advantageous. Consequently, our training approach mirrors the evaluation
methodology described in the preceding section.
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Initially, the only available version for research was LLaVa-v1.5’s training code in open
source, guiding our choice of starting point. Data conversion utilized the same prompt as
for ChatGPT, employing a single crop as the input image. Various experiments using both
whole body and face crops were conducted, with whole body crops yielding marginally
superior results for gender and age recognition tasks.

Further, ShareGPT4V, which is derived from LLaVa code and demonstrates slightly
improved metrics, became the source of checkpoints from the Hugging Face hub, used
with minor modifications to the LLaVa code. The ShareGPT4V training code was not
accessible at the time.

Another experimental direction focused on training for direct gender classification and
age prediction, rather than text prediction, using linear layers along with MSE and cross-
entropy losses, paralleling the approach used for LLaMa sequence classification tasks [41].
This approach is not mentioned in the results due to bad performance.

The optimal hyperparameters identified through our experiments are as follows:

Hyperparameter Value

Learning rate 2× 10−6

LoRA disabled (full fine-tuning)
Per-device train batch size 32
Number of train epochs 1

Checkpoint every 450 iterations
Warmup ratio 0.03

LR scheduler type cosine

Table 6 provides a comparative overview of the fine-tuned MLLMs. Note that the best-
performing model in Table 6 (ShareGPT4V-7b 0.4 epoch) is referred to as ShareGPT4V
7B fine-tuned in subsequent sections, representing the optimal checkpoint achieved.

The finest results were obtained using the ShareGPT4V-7b model trained with whole
body crops. Notably, the best metrics were observed at the 900th iteration checkpoint,
approximately 40% through one epoch, suggesting an early stop with low learning rate
strategy might be beneficial and shows that MLLMs, as generalist models, are easy to
fine-tune with smaller data amount.

Important to mention, that after a few iterations, the training loss stabilizes at around
0.32, and further training steps may lead to overfitting. This is corroborated by the ob-
servation that later iterations yield slightly diminished results. Additionally, extended
training may impair the model’s assistant capabilities, restricting responses to the trained
format. This limitation could potentially be mitigated by diversifying the training data
beyond age estimation tasks. It is also worth noting that testing on the LAGENDA test set
requires approximately 2.5 hours on 8 A6000 NVidia GPUs, a significant duration relative
to the training time of about 11 hours for one epoch. While other iteration intervals may
yield superior results, our study focused on evaluating every 450th iteration to optimize
training time and costs.

Future developments could explore dual-crop inputs (body + face as separate images),
as seen in the original MiV OLO224 model. However, the feasibility of training existing
models with multiple images per input remains an open question.

4.4 Results

The table 7 presents a comparison of specialized MiVOLO models and multimodal ap-
proaches using the Adience benchmark. Following the methodology of [14], we mapped
regression predictions to the nearest intervals (classes).
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Table 8 displays analogous results for a randomly sampled subset of NanoLAGENDA,
including evaluations of ChatGPT4V.

Figure 3 illustrates the relationship between MAE and age for NanoLAGENDA, with
age intervals set at 5-year steps. Interestingly, ChatGPT’s performance closely parallels
that of models trained specifically on our dataset, particularly underperforming in the 25
to 55 age range — a notably common age group in the dataset.

Table 9 reports outcomes for the full-sized LAGENDA and IMDB datasets for appli-
cable models.

Table 10 shows results for the Wild104 benchmark, reaffirming prior findings with
real-world ground truth labels and highlighting a different visual domain.

Fig. 3. Relationship between MAE and age group across different models tested on the NanoLAGENDA
benchmark.

Model Test Dataset Age Gender
MAPE, % ↓ MAE ↓ CS@5, % ↑ Acc, % ↑

MiV OLO384 IMDB-clean 11.01 3.97 71.16 99.68
LAGENDA 12.06 3.65 74.48 97.99

LLaVA-NeXT 34B IMDB-clean 16.04 5.66 59.77 99.15
vanilla [24] LAGENDA 16.97 5.19 62.17 99.47

ShareGPT4V 7B IMDB-clean 12.07 4.40 70.28 99.47
fine-tuned LAGENDA 11.47 3.52 79.66 99.44

Table 9. Comparison of performance on IMDB and LAGENDA benchmarks.

5 Conclusions

This study aimed to assess the efficacy of cutting-edge specialized models in comparison
to MLLMs for age and gender estimation tasks.

Our findings reveal a nuanced view. MLLMs, despite not being explicitly trained for
facial or bodily analyses to deduce personal attributes, exhibit exceptional capabilities.
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Model Age Gender
MAPE, % ↓ MAE ↓ CS@5, % ↑ Acc, % ↑

ChatGPT4V [30] 19.95 7.07 48.08 91.35

ChatGPT4O [30] 16.11 6.07 58.65 91.35

LLaVA-NeXT 34B vanilla [24] 22.16 9.23 42.31 96.15

MiV OLO384 19.82 6.26 53.67 96.17

ShareGPT4V 7B fine-tuned 19.36 7.01 53.85 95.19

ShareGPT4V 13B fine-tuned 18.27 6.79 57.69 97.12

Table 10. Comparison of performance on the Wild104 benchmark.

Fig. 4. Failure case: Through manual analysis of ChatGPT’s gender misclassification, we have discovered
that it sometimes makes mistakes with examples where men have long hair. This is a humorously artificial
illustrative example of such failure cases. Both MiVOLO and the fine-tuned as well as vanilla LLaVA
models remain stable.

Notably, models such as ChatGPT stand out by harnessing vast amounts of visual infor-
mation and training on extensive datasets, demonstrating significant proficiency in tasks
beyond their original design. Our analysis identified ChatGPT-4O as the most precise
MLLM for age estimation across numerous benchmarks, despite encountering challenges
such as occasional refusal to process images with significant losses (> 21% for our data)
and the need for Dynamic High Resolution, which demands a much higher budget. While
this comparison may not be entirely equitable, it highlights the model’s capabilities in
’maximum power mode’. Among open-source alternatives, LLaVA-NeXT 34B leads in
this area. At the same time, the improved specialized model MiV OLO384 surpasses all
general-purpose open-source MLLMs in age estimation. However, for certain data seg-
ments and metrics, fine-tuned specialized versions of LLaVA prove more effective. Such
fine-tuned MLLMs present a promising solution for many tasks where computational cost
is not a primary concern. Compared to the tricky and expert-driven training required for
MiVOLO, fine-tuning an MLLM is considerably simpler, requiring only the same dataset
as the specialized model and minimal expertise. Original hyperparameters and losses can
be used.

The study highlights the superior performance of MLLMs also in gender identification
tasks even without any fine-tuning, surpassing that of specialized models. This emphasizes
the significance of high-level feature recognition and contextual understanding in this task,
where nearly all MLLMs excel. However, ChatGPT-4V and even the newest ChatGPT-
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4O stand out for their subpar performance, possibly due to an overemphasis on certain
features like hair, which might be influenced by its training data or safety mechanisms. For
visualizations, refer to Figure 4. The opaque nature of its development process hampers
definitive conclusions.

Overall, our research indicates that with minor adjustments, open-source MLLMs can
achieve or even surpass the performance of specialized models, suggesting a potential shift
towards versatile, general-purpose networks in computer vision. The flexibility of language
models offers significant advantages for a wide range of applications, especially in scenarios
where computational resources and inference speed are not primary concerns. However, it
is important to note that, for the time being, the computational cost of MLLMs cannot
be directly compared to that of specialized models — the difference can span thousands of
times. Possibly, in the future, Multimodal Tiny Language Models could turn the tables.
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