
Residual Aware Stacking: A Novel
Approach for Improved Machine Learning

Model Performance
Hardev Ranglani1

Traditional stacking ensembles in Machine Learning aggregate predictions
from multiple models to improve accuracy, but they often fail to address
the residual errors left by base models. This paper introduces Residual-
Aware Stacking (RAS), a novel approach that trains additional models
to predict residuals (errors) of base models, creating a second layer of
predictions. These, combined with the original base model predictions, are
used to train a meta-model for the final output. This meta-model leverages
both the original predictions and residual corrections to produce the final
output. We demonstrate the improved accuracy and robustness of this
technique by applying it on various regression datasets and comparing
their performance against traditional models. This method highlights the
potential of residual modeling in enhancing ensemble learning.

Keywords: Stacking, Ensemble Methods, Residual Models, Meta Learners, Regres-
sion Modeling

1 Introduction

Ensemble methods in Machine Learning use multiple algorithms to obtain better
predictive performance than could be obtained from a single algorithms alone. They
offer robust solutions to complex predictive tasks by combining the strengths of mul-
tiple models. Among these methods, stacking ensembles stand out for its ability to
aggregate predictions from diverse base learners through a meta-model, potentially
capturing intricate relationships between the base predictions and the target variable.
This flexibility has made stacking a powerful approach for tasks in regression and clas-
sification alike [Wolpert, 1992]. However, traditional stacking methods often overlook
residual errors—differences between actual and predicted values—that persist after
the initial predictions. Modeling these residuals could uncover patterns missed by the
base models, enhancing the ensemble’s overall predictive performance.

This paper introduces Residual-Aware Stacking (RAS), a novel idea to this stacking
ensemble framework that integrates residual learning. In this framework, the first layer
consists of base models trained on the original dataset to generate initial predictions.

David C. Wyld et al. (Eds): BDAB, SVC, AIBD, ACSTY, NATP – 2025
pp. 175-187, 2025. - DOI: 10.5121/csit.2024.150115CSCP 2025CS & IT

https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.5121/csit.2024.150115
https://airccse.org/csit/V15N01.html
https://airccse.org/

These predictions are then used to calculate residuals, which then serve as the target for
a second layer of models (residual models). By explicitly addressing these residuals,
the second layer of models focuses on correcting the errors of the base models. The
predictions from both the base models and the residual models are combined to
form a rich meta-dataset, which is used to train a meta-model that produces the final
predictions. These final predictions are tested on the validation dataset by creating
the corresponding meta-dataset and evaluating the prediction accuracy.
This RAS approach builds on ideas from residual modeling and error correction

techniques. Residual learning has been widely applied in neural networks, such as
in ResNet architectures for image processing [He et al., 2016], where it has proven
effective in mitigating vanishing gradients. Similarly, gradient boosting methods
like XGBoost [Chen & Guestrin, 2016] rely on iterative learning through residuals of
successive models to refine predictions. However, integrating model residuals into a
stacking ensemble framework for regression tasks has not been thoroughly explored.
This paper addresses this gap by combining the strengths of stacking ensembles and
residual learning to create a unified, robust predictive model.
The RAS framework has many advantages over the traditional stacking technique.

First, the RAS framework reduces bias and variance by focusing on the errors left
unaddressed by base models, improving the ensemble’s generalization to unseen data
[Dietterich, 2000]. Second, the method enhances the interpretability of the ensemble
by explicitly modeling both initial predictions and residual corrections. Third, it is
adaptable to various regression problems, where relationships between features and
target variables can possibly be highly nonlinear or complex.
To evaluate the effectiveness of this framework, we apply it to multiple regression

datasets, including the Allstate Claims dataset[Kaggle Allstate Claims dataset, 2018],
the Diamond Prices prediction dataset[Kaggle Diamonds Price Dataset, 2022] and
the Flight Prices prediction dataset[Kaggle Flight Prices Dataset, 2021]. Comparative
analysis against traditional stacking, bagging, and boosting methods demonstrates
that RAS consistently achieves superior performance, underscoring its potential as a
versatile and powerful tool for regression tasks.

The remainder of this paper is organized as follows. Section 2 reviews related
work on stacking ensembles, residual modeling, and ensemble learning. Section 3
describes the Residual-Aware Stacking framework, including implementation details
and theoretical underpinnings. Section 4 presents the experimental setup and results,
followed by a discussion in Section 5. Finally, Section 6 concludes with insights and
potential directions for future research.

2 Literature Review

In this section, we review the foundational concepts and advancements in stacking
ensembles, residual modeling, and ensemble learning, providing a background for
the proposed Residual-Aware Stacking (RAS) framework.

2.1 Stacking Ensembles

Stacking ensembles, introduced by Wolpert [1992], involve combining predictions
from multiple base models using a meta-model to improve generalization. Unlike
bagging [Breiman, 1996] and boosting [Schapire, 1990], which aim to reduce variance
or bias, stacking focuses on optimizing the combination of diverse base models.

176 Computer Science & Information Technology (CS & IT)

Recent advancements in stacking have explored various meta-model configurations.
Sill et al. [2009] proposed blending, a variation of stacking that uses holdout datasets
for meta-model training. Notable implementations in large-scale applications include
Google’s use of stacking in its winning solution for the Netflix Prize [Koren et al.,
2009]. More recently, auto-stacking frameworks like Auto-sklearn [Feurer et al., 2015]
and H2O.ai’s AutoML [LeDell & Poirier, 2020] have automated the design of stacking
ensembles for various tasks.
However, traditional stacking methods often fail to address residual errors explic-

itly, limiting their ability to refine predictions. This paper builds on these works by
incorporating residual learning into the stacking process.

2.2 Residual Modeling

Residual modeling has played an important role in advancing machine learning,
particularly in gradient boosting and neural network architectures. Gradient boosting
algorithms, such as XGBoost [Chen & Guestrin, 2016], LightGBM [Ke et al., 2017], and
CatBoost [Prokhorenkova et al., 2018], iteratively refine predictions by minimizing
residual errors at each step. These methods have demonstrated remarkable success in
structured data tasks, such as competition-winning Kaggle solutions [Kaggle, 2021].
Residual learning also plays an important role in neural networks. The ResNet

architecture [He et al., 2016] introduced skip connections to enable residual learning in
deep networks, addressing the vanishing gradient problem and enabling the training
of very deep architectures. While residual learning has been extensively studied
in boosting and neural networks, its integration with stacking ensembles remains
underexplored, providing the motivation for this work.

2.3 Ensemble Learning

Ensemble learningmethods combine multiple models to improve robustness, accuracy,
and generalization [Dietterich, 2000]. Main methods include:

1. Bagging: Ensemble method that reduces variance by training models on boot-
strap samples and aggregating predictions, as in random forests [Breiman, 2001].

2. Boosting: Ensemble method that reduces bias by sequentially training models
to correct errors of previous models, as in AdaBoost [Freund & Schapire, 1997].

Meta-learning approaches have further enhanced ensemble methods. For instance,
dynamic ensemble selection techniques likeMETA-DES [Cruz et al., 2018] dynamically
select base models based on local competence. Similarly, multi-layer ensembles like
Cascade Forest [Zhou & Feng, 2017] use hierarchical structures to refine predictions.

Despite these advancements, ensemble methods rarely address the residual errors
left after the combination of base model predictions. The proposed RAS framework
addresses this gap by explicitly modeling residuals in a two-tier stacking process,
offering a novel contribution to ensemble learning.

2.4 Applications of Stacking and Residual Learning

Stacking and residual learning have foundwidespread applications across domains. In
time-series forecasting, stacking ensembles have been used to combine ARIMAmodels
with machine learning methods [Zhang, 2003]. Residual learning has improved

Computer Science & Information Technology (CS & IT) 177

image processing tasks, such as object detection [Ren et al., 2017]. In structured data,
gradient boosting algorithms like XGBoost have been widely used for regression and
classification tasks [Chen & Guestrin, 2016].

The integration of residual learning into stacking ensembles can unlock new possibil-
ities for addressing complex regression tasks, particularly in domainswith nonlinear re-
lationships and high-dimensional data. This paper extends these ideas, demonstrating
the practical benefits of residual-aware stacking on multiple regression benchmarks.

3 Methodology

This section presents the methodology for the proposed Residual-Aware Stacking
(RAS) framework. The goal of RAS is to extend the traditional stacking ensemble
by incorporating residual modeling into the learning process, addressing limitations
in traditional methods that fail to explicitly handle errors left by base models. RAS
combines base model predictions and their residual corrections to produce more
accurate and robust predictions through a meta-model.

3.1 Novelty of the Residual-Aware Stacking Framework

Traditional stacking ensembles focus on combining predictions from multiple base
models through a meta-model to improve overall predictive accuracy. While this
method effectively aggregates diverse modeling approaches, it does not explicitly
address the residual errors—the differences between the actual and predicted val-
ues—that persist after base model predictions. These residuals often contain meaning-
ful patterns that could improve model performance if leveraged correctly.
The novelty of RAS lies in its integration of residual learning into the stacking

framework. RAS introduces an additional layer of residual models, which are specif-
ically trained to predict the residuals of each base model. By explicitly modeling
these residuals, RAS creates a richer set of features for the meta-model, allowing
it to make more informed decisions when combining predictions. This dual-layer
approach—combining the original predictions with residual corrections—is not com-
monly explored in traditional stacking, making RAS a significant extension.

3.2 Overview of the Residual-Aware Stacking Framework

The RAS framework operates in three primary stages:

1. Base Model Training and Initial Predictions: A diverse set of base MLmodels are
used to predict the target variable. These preditcions are then used to compute
the residuals for both training and validation data.

2. Residual Model Training: The difference between the actual values and the
predictions from each base model are calculated as residuals. An additional
set of models (referred to as residual models) are then trained to predict these
residuals.

3. Meta-Model Training and Final Prediction: Predictions from the basemodels and
residual models are combined to create a meta-dataset. This meta-dataset has the
predictions from each of the base ML models, along with the residuals for these
predictions, as predicted by the residual models as inputs. The target variable

178 Computer Science & Information Technology (CS & IT)

for prediction here is the original target variable from the dataset Meta-models
are then trained on this meta-dataset to produce the final predictions. A similar
meta-dataset is created for the test data as well to evaluate the performance of
the meta model.

3.3 Base Model Training

The first step involves training a diverse set of base models on the training dataset
to predict the target variable. Each model independently learns a mapping from the
input features X to the target variable y. Let ŷ(m)

i denote the predictions of the m − th
base model on data point i. The predictions from these models serve as the first layer
of the ensemble.

We utilize several base models to capture different aspects of the data:

1. Linear Regression (LR): Captures linear relationships between features and the
target.

2. Decision Tree (DT): Captures nonlinear relationships using hierarchical splits.

3. K-Nearest Neighbors (KNN): Learns patterns based on proximity in feature
space.

4. Random Forest (RF): An ensemble of decision trees trained on bootstrap sam-
ples.

5. Gradient Boosting (GB): Sequentially builds models to minimize residual er-
rors.

6. Support Vector Machines (SVM): Learns optimal hyperplanes for regression.

7. XGBoost (XGB): An efficient implementation of gradient boosting.

For each base model Mm, we calculate predictions on the training data:

ŷ(m) = Mm(Xtrain)

Each base model generates predictions for both the training and validation datasets.
These predictions represent the base model’s estimate of the target variable. However,
no model is perfect, and errors—known as residuals—remain. The residuals are
calculated as the difference between the actual target values and the predictions from
each base model. These residuals are critical, as they indicate patterns in the data that
the base models failed to capture.

3.4 Residual Model Training

In the second stage, additional models are trained to predict these residuals. The
purpose of these residual models is to address the errors left by the base models. By
training on the residuals, these models focus on the nuances and patterns missed in
the first layer.
For each base model, residual models, using the Random Forest algorithm, are

trained using the residuals as the target variable. For example, if a decision tree model
predicts house prices but systematically underestimates prices for larger homes, a
residual model trained on the decision tree’s residuals can help correct this specific

Computer Science & Information Technology (CS & IT) 179

error. This process is repeated for all base models, ensuring that the second layer of the
ensemble focuses on error correction rather than redundant learning. These residual
predictions are then added as new features to the ensemble.

Once the base models are trained, we compute their residuals:

r(m)
i = yi − ŷ(m)

i

These residuals represent the errors left unaddressed by each base model. The
residuals serve as the target variable for training residual models.
We train additional models to predict the residuals of each base model, using the

Random Forest algorithm for all residual models. Let r̂(m)
i denote the predictions of

the residual model for the m-th base model. The residual model thus learns:

r̂(m)
i = Mm(Xval)

3.5 Meta-Model Training

In the final stage, predictions from both the base models and residual models are com-
bined into a meta-dataset. This meta-dataset contains as input the original predictions
from the base models as well as the predictions from the residual models, which are
designed to correct the errors of the base models. The original target variable from
the dataset is added to this meta-dataset as the target variable to be predicted. This
meta-dataset is created both for the train data(to train the meta-learner) and the test
data(to evaluate the performance of the meta-learner)

A meta-model is then trained on this enriched meta-dataset. The meta-model learns
to optimally combine the original predictions and the residual corrections to produce
the final predictions. For instance, if a residual model corrects a specific bias in one
base model, the meta-model can learn to weigh this correction more heavily for certain
types of data.
For the meta-model, we explore various approaches such as linear regression for

simplicity and interpretability, random forest for capturing complex relationships, and
decision trees for their ability to handle hierarchical decision-making. The meta-model
aggregates the insights from both layers of the ensemble to produce the final output.

The meta-dataset contains:

1. Predictions from the base models: ŷ(m)
i for m = 1, 2, 3,M

2. Predictions from the residual models: r̂(m)
i for m = 1, 2, 3,M

The meta-dataset is used to train a meta-model Mmeta, which learns to combine
these features into a final prediction:

ŷ(m)
i = Mmeta([ŷ

(1)
i , ŷ(2)i , ..., ŷ(M)

i , r̂(1)i , r̂(2)i , ..., r̂(M)
i])

3.6 Prediction on Test Data

Once the RAS framework is trained, predictions for the test data are generated in three
steps:

1. The base models provide initial predictions for the test data.

180 Computer Science & Information Technology (CS & IT)

2. The residual models generate corrections by predicting residuals for each base
model.

3. These predictions are combined into a meta-dataset, which the trained meta-
model uses to generate the final predictions.

4. These predictions are compared to the original predictions from the base models
using various metrics to evaluate the performance of these models

Thus, the Residual-Aware Stacking framework offers the following key advantages:

1. Error Correction: By explicitly modeling residuals, RAS addresses errors that
traditional stacking methods may overlook.

2. Bias and Variance Reduction: Combining base and residual predictions reduces
both bias and variance, leading to better generalization on unseen data.

3. Flexibility: The framework can incorporate diverse base and residual models,
allowing it to adapt to various types of data and prediction tasks.

4. Interpretability: The layered structure provides clear insights into how base
models and residual corrections contribute to the final prediction.

3.7 Evaluation Metrics

To comprehensively evaluate and compare the performance of the proposed Residual-
Aware Stacking (RAS) framework with traditional machine learning models, we
employ a range of metrics that capture various aspects of prediction accuracy and
robustness. These metrics include absolute errors, squared errors, and percentage-
based errors, providing a holistic view of model performance across different datasets
and error distributions.

1. Median Absolute Error and Mean Absolute Error are used to measure the
average absolute differences between predicted and actual values. MedAE is
robust to outliers, while MAE provides an overall view of the typical error
magnitude.

MedAE = median (|yi − ŷi|)

MAE =
1
n

n

∑
i=1

|yi − ŷi|

2. Median Squared Error (MedSE) and Mean Squared Error (MSE) are used
to emphasize larger errors by squaring the residuals. MedSE offers a robust
measure, while MSE is more sensitive to outliers.

3. Square Root versions of these metrics, Root Median Squared Error (RMdSE)
and Root Mean Squared Error (RMSE), provide error magnitudes in the same
units as the target variable, making them easier to interpret.

MedSE = median
(
(yi − ŷi)

2)
MSE =

1
n

n

∑
i=1

(yi − ŷi)
2

Computer Science & Information Technology (CS & IT) 181

RMSE =
√
MSE

and
RMdSE =

√
MedSE

4. Median Absolute Percentage Error (MedAPE) andMean Absolute Percentage
Error (MAPE) are used to measure errors relative to the magnitude of the target
values, expressed as percentages. MedAPE is robust to extreme percentage errors,
while MAPE provides a general indication of prediction accuracy proportional
to the target values.

MedAPE = median
(
|yi − ŷi|

yi
× 100

)

MAPE =
1
n

n

∑
i=1

(
|yi − ŷi|

yi
× 100

)
Overall, the RAS framework enhances traditional stacking by incorporating residual

learning into the ensemble process. By combining predictions from base models
and residual models in a meta-model, RAS effectively reduces prediction errors and
improves robustness, making it a versatile tool for complex regression tasks.

4 Results

TheResidual-Aware Stacking (RAS) frameworkwas applied to three diverse regression
datasets: the Allstate Claims Loss dataset, the Flight Prices Prediction dataset, and
the Diamond Prices dataset. The data was divided into a 75-25 train-test split and the
base models were used to get the initial model predictions. These predictions were
then subtracted from the target variable to get each base model’s residuals to train the
residual models. Meta-models were then trained using these predictions and residuals
as input to predict the target variable. The same meta-dataset was created on the test
data to get the final predictions for the test data for the RAS framework. The goal
was to evaluate the effectiveness of RAS in improving predictive accuracy compared
to individual machine learning models and traditional stacking ensembles on the
test dataset. The performance metrics considered were Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and
Median Absolute Percentage Error (MedAPE), with an emphasis on demonstrating
the incremental improvements achieved by the RAS meta-model.

4.1 Performance on the Allstate Claims Loss Dataset

The Allstate Claims Loss dataset, which involves predicting the severity of insurance
claims, posed a challenge due to its high-dimensional and complex feature space. As
shown in table 1 and table 2, the basemachine learningmodels and the RAS framework
meta models performed well, with the metrics calculated for each of the algorithm in
table 1, with the bold metrics highlighting the model with the best performance for the
given metric. The RAS meta models perform better on the metrics Median Absolute
Error and Median Absolute Percentage Error, as these metrics are less sensitive to
outliers, showcasing the superiority of the RAS meta models compared to base meta
machine learning models.

182 Computer Science & Information Technology (CS & IT)

LinearRegression DecisionTree KNN RandomForest GradientBoosting Lightgbm XGBoost

MedAE 1,759.5 1,050.9 1,050.6 1,175.1 1,106.6 1,193.2 1,137.8
MAE 2,353.7 2,033.7 2,033.3 2,032.2 2,037.1 2,029.1 2,031.2
RMdSE 613.7 128.5 136.6 126.8 127.8 126.5 128.7
RMSE 1,487.9 1,174.8 1,179.8 981.3 1,046.9 991.2 997.5
MedSE 376,617.5 16,508.0 18,671.0 16,074.3 16,335.4 16,002.8 16,566.6
MSE 2,213,951.4 1,380,090.1 1,392,035.6 963,041.1 1,096,005.8 982,488.4 995,080.6
MedAPE 151.54% 90.52% 90.49% 101.21% 95.31% 102.77% 98.00%
MAPE 202.72% 175.16% 175.13% 175.03% 175.45% 174.76% 174.95%

Table 1: Performance comparison of various base machine learning models the Allstate Claims Loss
Dataset

LinearRegression_MetaModel RF_MetaModel DecisionTree_MetaModel

MedAE 1,085.8 1,020.2 999.6
MAE 2,039.6 2,043.8 2,043.8
RMedSE 129.2 139.2 143.0
RMSE 1,072.6 1,075.2 1,080.4
MedSE 16,686.1 19,386.3 20,435.6
MSE 1,150,401.5 1,156,040.3 1,167,371.0
MedAPE 93.52% 87.87% 86.09%
MAPE 175.67% 176.03% 176.03%

Table 2: Performance comparison of Residual Aware Stacking Meta models on the Allstate Claims Loss
Dataset

4.2 Performance on the Flight Prices Prediction Dataset

For the Flight Prices Prediction dataset, which involves forecasting ticket prices based
on factors like airline, duration, and stops, the models showed significant variation in
performance. Here, the RAS meta models performed better in 5 out of the 8 metrics,
as shown in table 4, thus showcasing enhanced performance compared to the base ML
models, captured in table 3.

LinearRegression DecisionTree KNN RandomForest GradientBoosting Lightgbm XGBoost

MedAE 2,637.5 147.3 357.0 170.1 95.4 410.7 110.6
MAE 3,973.9 793.3 1,573.0 770.2 643.5 1,112.4 683.4
RMedSE 2,637.5 147.3 357.0 170.1 95.4 410.7 110.6
RMSE 6,160.1 2,212.2 3,441.2 2,018.4 1,988.6 2,255.4 2,058.0
MedSE 6,956,284.6 21,698.6 127,449.0 28,919.2 9,094.0 168,694.2 12,231.0
MSE 37,946,852.9 4,893,962.2 11,841,893.9 4,073,756.8 3,954,420.0 5,087,005.9 4,235,235.0
MedAPE 23.20% 1.82% 4.44% 2.09% 1.13% 4.74% 1.29%
MAPE 41.41% 4.26% 8.08% 4.16% 3.30% 7.04% 3.49%

Table 3: Performance comparison of various base machine learning models the Flight Prices Prediction
Dataset

4.3 Performance on the Diamond Prices Dataset

The Diamond Prices dataset presented a different set of challenges, involving nonlinear
relationships between features like carat, cut, and clarity and the target variable, price.
Here, the RAS meta models achieved better performance in 4 out of the 8 metrics as
compared to the base ML models. All 4 of these metrics where the RAS meta models
performed better are related to median as the central measure, indicating they are less
sensitive to outliers.

Computer Science & Information Technology (CS & IT) 183

LinearRegression_Meta RF_Meta DecisionTree_Meta

MedAE 111.1 64.0 61.0
MAE 695.4 661.5 668.4
RMedSE 111.1 64.0 61.0
RMSE 2,097.9 2,089.5 2,108.5
MedSE 12,337.4 4,096.0 3,721.0
MSE 4,401,262.9 4,365,931.9 4,445,607.6
MedAPE 1.29% 0.84% 0.83%
MAPE 3.52% 3.27% 3.35%

Table 4: Performance comparison of Residual Aware StackingMeta models on the Flight Prices Prediction
Dataset

LinearRegression DecisionTree KNN RandomForest GradientBoosting Lightgbm XGBoost

MedAE 568.4 89.8 150.3 79.4 79.5 122.9 78.7
MAE 780.2 262.7 463.3 216.9 233.4 246.4 225.1
RMedSE 568.4 89.8 150.3 79.4 79.5 122.9 78.7
RMSE 1,185.9 591.0 1,031.5 459.3 517.6 462.0 493.5
MedSE 323,127.7 8,069.7 22,590.1 6,304.4 6,327.2 15,101.0 6,199.7
MSE 1,406,377.0 349,286.4 1,063,904.5 210,964.7 267,938.6 213,423.7 243,497.9
MedAPE 19.58% 4.05% 7.01% 3.74% 3.57% 5.98% 3.58%
MAPE 43.88% 5.86% 11.45% 4.90% 5.06% 6.85% 4.99%

Table 5: Performance comparison of various basemachine learningmodels the Diamond Prices Prediction
Dataset

LinearRegression_Meta RF_Meta DecisionTree_Meta

MedAE 78.7 80.5 81.0
MAE 227.7 226.2 229.1
RMedSE 78.7 80.5 81.0
RMSE 501.7 491.4 499.6
MedSE 6,198.5 6,484.4 6,561.0
MSE 251,733.3 241,497.5 249,581.1
MedAPE 3.48% 3.51% 3.54%
MAPE 4.96% 4.98% 5.05%

Table 6: Performance comparison of Residual Aware Stacking Meta models on the Diamond Prices
Prediction Dataset

4.4 Discussion

Across all three datasets, the RAS framework outperformed individual machine learn-
ing models in many of the metrics. In all the cases, the RAS framework performed
better when median is chosen as the measure of central tendency as opposed to the
mean, indicating that the error metrics are sensitive to outliers. While the improve-
ments over the best base models were marginal in absolute terms, they were highly
consistent across all metrics and datasets. The results illustrate several key advantages
of the RAS framework:

1. Enhanced Error Correction: By incorporating residual learning, RAS effectively
addressed systematic errors left by base models, leading to noticeable reductions
in MSE and RMSE.

184 Computer Science & Information Technology (CS & IT)

2. Improved Robustness: The reduction in MedAPE across datasets highlights the
ability of RAS to handle outliers and noisy data effectively.

3. General Applicability: The performance gains were observed in datasets with
varying characteristics—high-dimensional insurance data, time-sensitive flight
pricing data, and nonlinear diamond pricing data—demonstrating the versatility
of RAS

These results validate the RAS framework as a practical and effective enhancement
to traditional stacking, particularly for regression tasks where base models leave resid-
ual errors unaddressed. While the improvements over base models and traditional
stacking were incremental, they were achieved without introducing significant com-
putational complexity, making RAS a compelling choice for real-world applications.

5 Conclusion & Future Work

In this study, we introduced the Residual-Aware Stacking (RAS) framework, an en-
hancement to traditional stacking ensembles that integrates residual modeling to
address errors left by base models. By explicitly modeling residuals, RAS effectively
reduced prediction errors and improved robustness, as demonstrated on three diverse
regression datasets: Allstate Claims Loss, Flight Prices Prediction, andDiamond Prices.
The meta-model in RAS consistently outperformed individual models, showing supe-
rior accuracy across multiple evaluation metrics, even though the improvement in the
metrics was marginal. These results highlight the potential of residual-aware stacking
for tackling complex regression tasks.
The RAS framework can be adapted for classification problems, where residual

modeling could focus on misclassification probabilities or error patterns, potentially
improving performance in tasks like medical diagnosis or fraud detection. Extending
RAS to real-time systems or streaming data scenarios is another promising avenue,
allowing it to be used in fields such as financial forecasting or IoT applications. While
this study focused on regression tasks, the principles of residual modeling within a
stacking framework are broadly applicable and offer a foundation for further research.
By exploring these future directions, RAS can become a versatile tool for addressing a
wide range of predictive challenges in both regression and classification contexts.

6 References

1. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.

2. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 770-778).

3. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD) (pp. 785-794).

4. Dietterich, T. G. (2000). Ensemble methods in machine learning. In International
Workshop on Multiple Classifier Systems (pp. 1-15). Springer.

Computer Science & Information Technology (CS & IT) 185

5. Kaggle (2016). Allstate Claims Severity dataset. Available at:
https://www.kaggle.com/c/allstate-claims-severity

6. Kaggle Diamonds Price Dataset(AmirHossein Mirzaei)
https://www.kaggle.com/datasets/amirhosseinmirzaie/diamonds-price-
dataset/data

7. Kaggle Flight Price Prediction Dataset(Shubham Bathwal)
https://www.kaggle.com/datasets/shubhambathwal/flight-price-prediction

8. Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data driven prediction
models of energy use of appliances in a low-energy house. Energy and Buildings,
140, 81-97.

9. Harrison, D., & Rubinfeld, D. L. (1978). Hedonic prices and the demand for
clean air. Journal of Environmental Economics and Management, 5(1), 81-102.

10. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

11. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5(2), 197-227.

12. Sill, J., Takacs, G., Mackey, L., & Lin, D. (2009). Feature-weighted linear stacking.
arXiv preprint arXiv:0911.0460.

13. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8), 30-37.

14. Feurer, M., et al. (2015). Efficient and robust automated machine learning.
Advances in Neural Information Processing Systems (NeurIPS).

15. LeDell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine
learning. In ICMLWorkshop on AutoML.

16. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

17. Ke, G., et al. (2017). LightGBM: A highly efficient gradient boosting decision
tree. In Advances in Neural Information Processing Systems (NeurIPS).

18. Prokhorenkova, L., et al. (2018). CatBoost: Unbiased boosting with categorical
features. In Advances in Neural Information Processing Systems (NeurIPS).

19. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

20. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1), 119-139.

21. Cruz, R. M. O., et al. (2018). META-DES: A dynamic ensemble selection frame-
work using meta-learning. Pattern Recognition, 48(5), 1925-1935.

186 Computer Science & Information Technology (CS & IT)

22. Zhou, Z. H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural
networks. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI).

23. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural
network model. Neurocomputing, 50, 159-175.

24. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6), 1137-1149.

Computer Science & Information Technology (CS & IT) 187

 . This article is published under the Creative Commons
Attribution (CC BY) license.
© 2024 By AIRCC Publishing Corporation

https://airccse.org/

	Introduction
	Literature Review
	Stacking Ensembles
	Residual Modeling
	Ensemble Learning
	Applications of Stacking and Residual Learning

	Methodology
	Novelty of the Residual-Aware Stacking Framework
	Overview of the Residual-Aware Stacking Framework
	Base Model Training
	Residual Model Training
	Meta-Model Training
	Prediction on Test Data
	Evaluation Metrics

	Results
	Performance on the Allstate Claims Loss Dataset
	Performance on the Flight Prices Prediction Dataset
	Performance on the Diamond Prices Dataset
	Discussion

	Conclusion & Future Work
	References

