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Accurate pricing and authentication of diamonds are essential for ensur-
ing market transparency and consumer confidence. This study applies
machine learning (ML) techniques to predict diamond prices and classify
diamonds as lab-grown or natural based on attributes such as cut, color,
clarity, and carat weight, etc. A unified framework combining regression
for price prediction and classification for origin determination is devel-
oped with robust model evaluation. The proposed models achieve a mean
absolute error of $ 554.32 in price prediction and an F-1 score of 98.66 % in
origin classification. The study also explores the varying linear relationship
between the variables in predicting diamond price using local linear regres-
sion. These findings provide valuable insights for the gemstone industry,
offering a practical and interpretable approach to automated diamond
valuation and authentication.
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1 Introduction

The diamond industry plays a significant role in the global economy, with its value
determined by a combination of physical attributes and market factors. Accurately
predicting diamond prices is critical not only for maintaining transparency in the trade
but also for ensuring consumer trust and industry integrity. Similarly, distinguish-
ing natural diamonds from their lab-grown counterparts has become increasingly
important as synthetic diamonds gain popularity due to their affordability and ethical
appeal. In this context, machine learning (ML) has emerged as a powerful tool to
address these challenges, offering precise, scalable, and interpretable solutions for
diamond valuation and authentication.
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1.1 The Importance of Predicting Diamond Prices

Diamond prices are influenced by multiple factors, such as carat weight, cut, color,
clarity, and market demand. Traditional pricing methods often rely on domain exper-
tise and existing guidelines, such as the Rapaport Diamond Report, which provides
pricing benchmarks. However, these methods are limited by their inability to adapt to
dynamic market conditions and individual diamond characteristics. Accurate price
prediction not only helps customers in making informed purchasing decisions but
also helps jewelers maintain fair pricing, ensuring a balanced market. Predictive mod-
eling can also enhance transparency in the trade, reducing the risks of overpricing or
undervaluing diamonds (Khanna et al., 2020; Choudhary and Narayanan, 2021).

1.2 The Need to Distinguish Natural Diamonds from Lab-Grown
Diamonds

The rise of lab-grown diamonds presents a unique challenge. While natural diamonds
are formed over billions of years under high-pressure and high-temperature conditions
deep within the Earth’s crust, lab-grown diamonds are created in controlled envi-
ronments using methods such as chemical vapor deposition (CVD) or high-pressure
high-temperature (HPHT) synthesis (Arslan et al., 2019). Although lab-grown dia-
monds possess similar physical and chemical properties to natural diamonds, their
origin significantly impacts their market value and ethical appeal.

For customers, distinguishing between the two is critical for ensuring authenticity,
as lab-grown diamonds are generally less expensive and are marketed as sustainable
alternatives to natural diamonds. For industry stakeholders, accurate classification is
essential for preserving the integrity of supply chains and maintaining compliance
with regulations such as the Kimberley Process Certification Scheme (KPCS) (Singh
etal., 2021).

1.3 Role of Machine Learning in Addressing These Challenges

Machine learning offers a powerful approach to solving these dual challenges by
leveraging large datasets to uncover complex patterns and relationships. For price
prediction, ML algorithms such as regression models, decision trees, and ensemble
methods can analyze a diamond’s attributes to predict its value with high precision,
outperforming traditional heuristic methods (Kumar et al., 2022). For classification,
ML can effectively differentiate natural and lab-grown diamonds by identifying subtle
variations in attributes, spectral properties, or other measurable features (Patel et al.,
2021).

1.4 Uncovering Deeper Insights with Local Linear Regression

While global models provide an overarching understanding of diamond pricing, they
may overlook subtle, context-specific variations in feature importance. To address this,
we incorporate local linear regression, a technique that captures localized relationships
between features and target variables. This approach enables the analysis of how the
effects of key attributes—such as carat weight, cut, and clarity—vary across different
subsets of the data. For instance, the impact of carat weight may differ for small versus
large diamonds, reflecting diminishing returns or market-specific preferences. By
plotting the variation of regression coefficients with respect to attribute values, local



Computer Science & Information Technology (CS & IT) 207

linear regression provides a nuanced view of pricing dynamics, revealing thresholds
and interaction effects that global models might miss (Wang et al., 2020).

1.5 Novel Contributions of This Work

This study contributes to the topic of diamond price prediction and classification of
diamond origin by:

1. We propose a multi-task learning framework that integrates price prediction and
origin classification, addressing two critical challenges in a cohesive manner.

2. By employing local linear regression, we uncover how the importance of diamond
attributes varies contextually, providing actionable insights for stakeholders.

3. Evaluating the economic and ethical implications of mispricing and misclassifi-
cation, providing a holistic perspective on the challenges faced by the diamond
industry

The remainder of this paper is organized as follows: Section 2 reviews related
work on diamond pricing and classification. Section 3 describes the dataset and
preprocessing techniques. Section 4 outlines the proposed methodology, including
model architectures and evaluation metrics. Section 5 presents experimental results
and discusses their implications. Finally, Section 6 concludes the study and highlights
future research directions.

2 Literature Review

The challenges of diamond pricing and classification have been studied in various
domains, including economics, material science, and computer science. This section
reviews existing literature on both diamond price prediction and distinguishing be-
tween natural and lab-grown diamonds, highlighting the limitations of traditional
approaches and the potential of machine learning (ML) techniques.

2.1 Diamond Pricing

The valuation of diamonds has traditionally relied on expert-driven approaches, such
as the Rapaport Diamond Report, which provides industry benchmarks for pricing
based on attributes like carat, color, clarity, and cut. However, these methods often fail
to account for non-linear interactions between features or adapt to market fluctuations
(Khanna et al., 2020).

Machine learning has been increasingly adopted to address these limitations. Re-
gression models, such as linear regression and support vector regression (SVR), have
been used to predict diamond prices by learning the relationships between features
(Goyal et al., 2019). More advanced models, including random forests and gradient
boosting algorithms like XGBoost, have demonstrated superior accuracy by capturing
complex, non-linear patterns (Patel et al., 2021).

Neural networks have also been applied to diamond pricing, leveraging their ability
to model high-dimensional data. For instance, Wang et al. (2020) employed a deep
neural network (DNN) to predict diamond prices, achieving significant improvements
over traditional methods. Despite these advances, the interpretability of neural net-
works remains a challenge, which has prompted the adoption of explainable AI (XAI)
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techniques. These methods provide insights into how individual features influence
predictions, enhancing trust and usability for stakeholders (Singh and Verma, 2022).

2.2 Distinguishing Natural and Lab-Grown Diamonds

The increasing availability of lab-grown diamonds has intensified the need for reliable
classification systems. Traditional gemological methods, such as visual inspection and
spectroscopy, are often subjective and time-consuming. Advances in spectroscopy;,
including Raman and infrared techniques, have improved detection accuracy but
require expert interpretation and expensive equipment (Arslan et al., 2019).

Machine learning has emerged as a cost-effective and scalable alternative. Super-
vised learning methods, such as logistic regression and decision trees, have been
applied to classify diamonds based on physical and spectral features (Kumar et al.,
2021). Ensemble methods, like random forests and AdaBoost, have shown improved
robustness in handling noisy and imbalanced data (Choudhary et al., 2021).

Deep learning techniques have also gained traction in this domain. Convolutional
neural networks (CNNs) have been employed to analyze high-resolution images
of diamonds, extracting subtle features that differentiate natural from lab-grown
specimens (Patel et al., 2021). Similarly, recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks have been used to process sequential spectral
data, further improving classification accuracy (Garg et al., 2020).

Despite their promise, these methods face challenges in interpretability and gen-
eralization. To address these, recent studies have explored hybrid approaches that
combine traditional spectroscopy with ML algorithms to achieve higher accuracy and
reliability (Sharma and Gupta, 2022). Explainable Al techniques, such as SHAP and
LIME, have also been integrated to provide actionable insights into the classification
process, aiding gemologists and industry stakeholders (Singh et al., 2022).

2.3 Gap this study addresses

While significant progress has been made in both diamond pricing and classification,
existing studies often address these challenges in isolation. Few works have explored
a unified framework that integrates price prediction and origin classification, despite
their interconnected nature in real-world applications. Additionally, there is limited
research on leveraging interpretability techniques to enhance the practical usability of
ML models in the diamond industry.

This study addresses these gaps by:

1. Proposing a multi-task learning framework that simultaneously predicts dia-
mond prices and classifies their origin

2. Incorporating advanced feature engineering and domain-specific insights to
improve model accuracy and interpretability.

3. Evaluating the economic and ethical implications of predictive inaccuracies, pro-
viding a comprehensive perspective on the role of ML in the diamond industry.

3 Dataset Used

The dataset used in this study(Kaggle 2024), sourced from the publicly available
Diamond Online Marketplace dataset on Kaggle, comprises detailed information
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about diamonds, including their physical attributes, quality grades, and prices. This
dataset provides a comprehensive foundation for exploring the dual challenges of
price prediction and origin classification in the diamond industry. Below, we describe
the dataset’s structure, variables, and preprocessing steps.

Dataset Overview: The dataset consists of 6,485 entries and includes the following
attributes for each diamond.

—_

. Shape: Geometric shape of the diamond.

. Cut: Quality grade of the diamond’s cut.

. Color: Diamond color grade from D to H.

. Clarity: Clarity grade based on imperfections.

. Carat Weight: Weight of the diamond in carats.

. Length/Width Ratio: Proportion of length to width.

. Depth %: Diamond depth as a percentage of its width.

. Table %: Width of the top facet as a percentage.

O 0 NI o U1 ks W N

. Polish: Surface finish quality of the diamond.

—_
=)

. Symmetry: Precision of the diamond’s shape.

—_
—_

. Girdle: Thickness of the diamond’s edge.

—_
N

. Culet: Size of the bottom facet.

—_
@

. Length: Length of the diamond in millimeters.

—_
S

. Width: Width of the diamond in millimeters.

—_
a1

. Height: Height of the diamond in millimeters.

—
(o)}

. Price: Price of the diamond in US dollars ($).

—_
N

. Type: Certification or origin type of the diamond.

18. Fluorescence: UV fluorescence level of the diamond

To ensure the dataset’s suitability for machine learning models, several preprocessing
steps were undertaken. The dataset had a very small percentage of missing values for
some of the columns, which were replaced by the mean value of those columns. Shape,
Cut, Color, Clarity, Polish, Girdle, Symmetry, Culet were one-hot encoded to convert
their categories into numeric features, enabling compatibility with ML algorithms. A
synthetic binary target variable, indicating whether a diamond is "natural” or "lab-
grown," was added to the dataset, based on the variable "Type” from the dataset. This
classification is necessary for the origin classification task.
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4 Methodology

This section details the machine learning (ML) methodologies employed to predict
diamond prices (regression) and classify diamonds as natural or lab-grown (classi-
fication). We also describe how local linear regression was used to uncover deeper
insights into the relationships between diamond attributes and their pricing. Notewor-
thy to add, the true diamond origin(lab-grown vs natural) was not used as an input
variable to predict its price and the price was not used as an input variable to predict
the diamond’s origin.

4.1 Machine Learning Algorithms for Price Prediction (Regression)

To predict diamond prices, we utilized the following machine learning algorithms:

1.

Linear Regression (Baseline): Linear regression establishes a baseline by model-
ing the relationship between diamond attributes and price using a linear function.

7= PBo+ Pix1+Poxa+ -+ Buxy +€

where 7 is the predicted price, £; are the features, f; are the coefficients, and € is
the error term. While simple and interpretable, it assumes a linear relationship
that may not hold for complex attributes like cut and clarity.

Decision Tree Regression: Decision trees split the data into subsets based on
feature thresholds, capturing non-linear relationships. The tree structure is
grown by minimizing a cost function, typically the mean squared error (MSE).

1& .
MSE = = Y (yi — 9;)?

ni3

. Random Forest Regression: An ensemble of decision trees that reduces overfitting

by averaging predictions from multiple trees, increasing accuracy and robustness.

Gradient Boosting Regressor : Gradient Boosting builds sequential decision
trees, optimizing residual errors iteratively. This method is highly effective for
capturing complex relationships.

. Neural Network (MLP): A multi-layer perceptron (MLP) is a feedforward neural

network with one or more hidden layers. It learns non-linear mappings from
inputs to outputs by minimizing a loss function using backpropagation.

AdaBoost Regressor: Adaptive Boosting combines weak learners (e.g., shallow
decision trees) iteratively, focusing on minimizing errors from previous iterations.
It is efficient for datasets with diverse feature interactions.

Support Vector Regressor (SVR): SVR aims to fit a hyperplane that maximizes the
margin within an € -insensitive tube around the target variable. It is well-suited
for high-dimensional feature spaces.

K-Nearest Neighbors (KNN): KNN predicts the target variable based on the
average of k-nearest neighbors in the feature space. While simple, it can struggle
with high-dimensional data.
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9. XGBoost, LightGBM, and CatBoost: These gradient-boosting frameworks offer
optimized, scalable implementations for decision tree-based models. XGBoost
is highly efficient with advanced regularization techniques. LightGBM focuses
on speed and memory efficiency using histogram-based learning. CatBoost is
specifically designed for categorical data, reducing preprocessing effort.

4.2 Machine Learning Algorithms for Origin Classification

1. Logistic Regression: A linear model for binary classification, predicting the
probability of a diamond being lab-growth.

1
Py =1Jx) = TR ———

2. Decision Tree Classifier: Similar to regression, it recursively partitions the data
to maximize information gain or Gini index.

3. Random Forest Classifier: An ensemble method that constructs multiple decision
trees and outputs the mode of their predictions. It is robust to noisy data and
imbalances in class distribution.

4. Gradient Boosting Classifier (XGBoost): Similar to its regression counterpart,
this algorithm sequentially builds decision trees, minimizing classification error
while handling complex feature interactions effectively.

5. AdaBoost Classifier: Combines weak classifiers to improve predictive perfor-
mance, focusing on samples that are harder to classify.

6. K-Nearest Neighbors (KNN): Assigns a class label based on the majority vote of
the k-nearest neighbors in the feature space.

7. Neural Network (MLP): A feedforward network optimized for binary classifica-
tion using a sigmoid activation function in the output layer.

8. XGBoost, LightGBM, and CatBoost: These algorithms provide powerful gradient-
boosting techniques optimized for classification tasks, leveraging fast computa-
tion and advanced regularization.

4.3 Local Linear Regression for Uncovering Insights

Local linear regression is a non-parametric method that models the relationship be-

tween predictors and the target variable in a localized region of the dataset. Unlike

global regression, which fits a single model to the entire dataset, local regression adapts

to local structures, enabling a deeper understanding of context-specific variations.
Local linear regression minimizes a weighted least squares criterion:

minzn:Kh(x —x;) - (yi — Bo — P1(x — xi))2
ﬁOxﬁl i=1

where:

1. Kj, is the kernel function with bandwidth /, determining the weights assigned
to observations.
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2. (x — x;) is the distance between a query point x and data point x;
3. y; are the observed responses.

The estimated coefficients Bo(x) and B1(x) are computed for each local region,
providing insights into how predictors influence the response at different points in
the dataset.

The bandwidth h controls the smoothness of the local regression model. A small i
results in a model that closely fits the data but risks overfitting. A large h smoothens
the model but may underfit the data. The optimal bandwidth was selected using
cross-validation, maximizing R? on a validation set:

R2—1— i (i — i)
Yiti(yi—9)?

Local linear regression was applied to analyze how key attributes (e.g., carat, cut,
clarity) influence diamond prices across different regions of the dataset. For example,
the coefficient of carat was plotted against its values, revealing diminishing returns for
larger diamonds. and the effect of cut quality on price was explored for varying ranges
of carat, providing context-specific insights. The coefficients derived from local linear
regression were plotted against the predictor values, uncovering threshold effects, i.e.
significant price jumps at specific attribute thresholds (e.g., carat weight crossing 1.0
carats) and dynamic importance of how the impact of attributes like clarity or color
varies depending on carat size or other conditions.

This methodological approach combines predictive accuracy with interpretability,
providing actionable insights for stakeholders while advancing the use of ML and
local regression in the diamond industry.

5 Results

The results of the regression and classification tasks provide significant insights into
the strengths and limitations of various machine learning models applied to diamond
price prediction and origin classification. For regression, the performance of the
models was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R? score, as shown in Table 1 while classification models were assessed
using Accuracy, Precision, Recall, F1 Score, and ROC AUC, as shown in Table 2.

5.1 Results for the regression modeling to predict diamond price

The results of the regression modeling reveal clear differences in performance across
various machine learning models. Linear Regression struggled to accurately capture
the complexity of the data, with a high Mean Absolute Error (MAE) of 1,285.41 and
a Root Mean Squared Error (RMSE) of 1,996.71, leading to an R? of only 0.56. This
highlights its limitations in modeling the non-linear relationships inherent in the
diamond dataset. Decision Tree Regressor showed modest improvements, achieving
an MAE of 752.29 and an R? score of 0.63, although overfitting may have affected its
performance.

Ensemble methods, particularly Random Forest, significantly outperformed simpler
models. Random Forest achieved an MAE of 559.69, RMSE of 1,241.08, and an R?
score of 0.83, effectively capturing the non-linearities in the data. Gradient Boosting
delivered slightly lower performance, with an MAE of 797.58 and an R? score of (.78,
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Model Mean Absolute Error | Root Mean Squared Error | R? Score
Linear Regression 1,285.41 1,996.71 0.56
Decision Tree 752.29 1,837.92 0.63
Random Forest 559.69 1,241.08 0.83
Gradient Boosting 797.58 1,408.97 0.78
AdaBoost 1,493.14 2,004.17 0.56
Support Vector Regressor 1,757.31 2,949.73 0.04
K-Nearest Neighbors 917.32 2,133.65 0.50
Neural Network (MLP) 918.60 1,707.29 0.68
XGBoost 6044.22 1,160.24 0.85
LightGBM 554.32 1,171.13 0.85
CatBoost 571.13 1,144.63 0.86

Table 1: Performance metrics for regression models.

indicating its sensitivity to hyperparameter tuning. LightGBM and CatBoost emerged
as the strongest performers, achieving MAEs of 554.32 and 571.13, respectively, and
RMSEs close to 1,150, with R? scores of 0.85 and 0.86. These models demonstrated
their ability to handle complex interactions between features and provided robust
predictions.

Neural Network (MLP) and XGBoost also performed well, with MLP achieving an
MAE of 918.60 and R? of 0.68, while XGBoost attained a competitive MAE of 604.22
and R? of 0.85. On the other hand, models such as AdaBoost and Support Vector
Regressor struggled, with high errors and R? scores of 0.56 and 0.04, respectively,
reflecting their inefficiency in capturing the intricate patterns in this dataset. K-Nearest
Neighbors also performed poorly, with an MAE of 917.32 and an R? score of 0.50, likely
due to its sensitivity to high-dimensional data.

Overall, the results highlight the superiority of ensemble methods like Random
Forest, XGBoost, LightGBM, and CatBoost in addressing the complexity of diamond
pricing. These models not only demonstrated robust performance but also highlighted
the importance of using advanced algorithms capable of capturing non-linear relation-
ships and interactions among features. Their ability to outperform simpler methods
makes them ideal choices for predictive modeling in this domain.

5.2 Results for the classification model to predict diamond origin

For classification, the task of determining whether a diamond is natural or lab-grown
demonstrated the strength of ensemble models and boosting techniques. Logistic
Regression performed well, achieving an accuracy of 96.68 % and an F1 Score of 96.80
%, establishing a strong baseline for comparison. Decision Tree Classifier improved on
this baseline with an accuracy of 97.15 %, benefiting from its ability to model non-linear
decision boundaries. However, as seen in regression, ensemble methods like Random
Forest outperformed standalone trees, achieving an accuracy of 98.23 % and an F1
Score of 98.29 %. Gradient Boosting also demonstrated competitive results, with an
accuracy of 97.61% and an F1 Score of 97.70%.

Boosting frameworks, once again, proved to be the most effective. XGBoost achieved
the highest classification accuracy of 98.61% and an F1 Score of 98.66%, closely followed
by CatBoost (Accuracy: 98.46%, F1 Score: 98.51%) and LightGBM (Accuracy: 98.38%,
F1 Score: 98.43%). These models consistently demonstrated their ability to capture
subtle patterns and interactions in the data, making them ideal for classification tasks.
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Model Accuracy | Precision | Recall | F1 Score | ROC AUC
Logistic Regression 0.9668 09644 | 0.9716 | 0.9680 0.9963
Decision Tree 0.9715 0.9703 | 0.9746 | 0.9725 0.9713
Random Forest 0.9823 0.9793 | 0.9866 | 0.9829 0.9990
Gradient Boosting 0.9761 0.9719 | 0.9821 | 0.9770 0.9981
AdaBoost 0.9614 0.9641 | 0.9612 | 0.9626 0.9948
K-Nearest Neighbors 0.9421 0.9598 | 0.9269 | 0.9431 0.9795
Neural Network (MLP) | 0.9784 09791 | 0.9791 | 0.9791 0.9985
XGBoost 0.9861 0.9866 | 0.9866 | 0.9866 0.9990
LightGBM 0.9838 0.9836 | 0.9851 | 0.9843 0.9990
CatBoost 0.9846 0.9836 | 0.9866 | 0.9851 0.9992

Table 2: Performance metrics for classification models.

Neural Networks also delivered impressive results, with an accuracy of 97.84% and
an F1 Score of 97.91%, showcasing their capability to model the complexity of the
problem.

K-Nearest Neighbors and AdaBoost struggled compared to other methods, with
lower accuracies of 94.21% and 96.14%, respectively. Their performance limitations
may stem from challenges in handling the dataset’s high dimensionality and class
distribution.

These results highlight the dominance of gradient boosting methods, particularly
XGBoost, in both regression and classification tasks. XGBoost’s ability to efficiently
model non-linear relationships, combined with its scalability and regularization tech-
niques, made it the standout performer across the board. Similarly, CatBoost and
LightGBM showcased their capabilities, particularly in handling categorical features
and imbalanced data.

5.3 Insights regarding variation of coefficients from Local Linear
Regression

Local linear regression was applied to the dataset to capture dynamic, context-specific
relationships between predictor variables and diamond pricing. The method was
tuned using cross-validation, and the highest R? score of 0.845 on the test data was
achieved with a bandwidth of 2.25. This model was subsequently used to generate
predictions and compute local coefficients for both the training and test datasets.

To uncover deeper insights, scatter plots were created for each variable, where the
x-axis represented the variable’s values, and the y-axis depicted the corresponding
local linear regression coefficients. These scatter plots enabled an in-depth analysis
of how the influence of individual variables, such as "carat,” "depth," "length," and
"LWRatio," varied across their respective ranges. The insights derived from these
plots revealed non-linear relationships and thresholds that affect diamond pricing,
providing actionable data for more precise pricing strategies. Below are the details of
the scatter plot and insights for each of the variables.

1.) Varying coefficients for the variable ‘Carat’

The local linear regression analysis for the "carat" variable reveals a dynamic
relationship between carat weight and diamond pricing. The coefficients are highest
for smaller carat values, reflecting a steep price increase near key thresholds like 1
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Figure 1: Variation of the coefficient of local linear regression for the variable ‘Carat Weight” with the

value of ‘Carat Weight’

carat, where consumer demand peaks. As carat values increase, the coefficients taper
off, indicating diminishing returns—larger diamonds still command higher prices,
but the incremental price increase per carat decreases. Outliers at certain carat values
may highlight market anomalies or premium pricing for rare sizes. This analysis
underscores the non-linear impact of carat weight on pricing, offering valuable

insights for tailored pricing strategies.

2.) Varying coefficients for the variable "LWRatio”
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Figure 2: Variation of the coefficient of local linear regression for the variable 'LWRatio’(length to width

ratio) with the value of 'LWRatio’

The local linear regression analysis for the "LWRatio" variable again highlights its
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dynamic influence on diamond pricing. At lower LWRatio values, coefficients exhibit
high variability, suggesting niche or rare proportions that impact pricing inconsistently.
In the standard range (1.4 to 2.2), coefficients stabilize near zero, indicating minimal
impact as diamonds in this range are more market-standard. Beyond 2.2, coefficients
trend downward, reflecting diminishing desirability for elongated proportions. These
insights reveal how LWRatio affects pricing differently across ranges, helping identify
thresholds that drive market preferences.

3.) Varying coefficients for the variable ‘Depth’
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Figure 3: Variation of the coefficient of local linear regression for the variable "Depth’ with the value of
"Depth’

The local linear regression analysis for the "Depth" variable shows varying influence
on diamond pricing. For depths below 60 %, coefficients fluctuate widely, indicating
inconsistent pricing effects for shallow diamonds. Between 60 % and 70 %, coefficients
stabilize near zero, suggesting that depth has a minimal, consistent impact within
this standard range. Beyond 70 %, coefficients trend upward, reflecting a positive
influence potentially tied to specific cuts enhancing brilliance. These insights highlight
key thresholds where depth affects pricing, offering guidance for understanding its
market impact.

4.) Varying coefficients for the variable ‘Length’

The local linear regression analysis for the "Length" variable reveals its increasing
impact on diamond pricing as length grows. At shorter lengths (below 5 mm),
coefficients show high variability, reflecting inconsistent effects due to niche or
rare proportions. In the standard range (5-10 mm), coefficients stabilize and trend
upward, indicating a consistent positive contribution to price. For lengths exceeding
10 mm, the influence becomes more significant, with higher coefficients reflecting the
premium associated with longer diamonds. This analysis highlights length’s dynamic
role in pricing and its growing importance in larger size ranges.
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Figure 4: Variation of the coefficient of local linear regression for the variable "Length’ with the value of

5.) Varying coefficients for the variable "Width’

"Length’

The local linear regression analysis for the "Width" variable shows a dynamic
relationship with diamond pricing. At smaller widths, coefficients are highly variable,
indicating inconsistent pricing effects influenced by niche cuts or proportions. In
the standard width range, coefficients stabilize, reflecting a more predictable impact
on price. For larger widths, the influence becomes more pronounced, suggesting a
positive correlation with price due to associations with larger, high-value diamonds.

This analysis underscores width’s variable importance across different ranges.

20,000.00

15,000.00

10,000.00

5,000.00

-5,000.00

Local linear regression coefficient
°
8

-10,000.00

-15,000.00

-20,000.00

Width Value

Figure 5: Variation of the coefficient of local linear regression for the variable "Width’ with the value of
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6.) Varying coefficients for the variable "Height’
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Figure 6: Variation of the coefficient of local linear regression for the variable "Height” with the value of
"Height’

The local linear regression analysis for the "Height" variable indicates varying
effects on diamond pricing. At lower heights, coefficients exhibit significant variability,
reflecting inconsistent contributions tied to unique cuts or proportions. In the
mid-range, coefficients stabilize, suggesting a minimal and predictable impact on
price. For higher values, coefficients trend upward, indicating a stronger positive
correlation likely associated with larger, premium diamonds. This highlights height’s
shifting influence across different ranges. The complete code used for this analysis,
including building regression models, building classification models and performing
local linear regression can be found

6 Conclusion & Future Work

This study demonstrated the effectiveness of machine learning models, particularly
ensemble and boosting methods like XGBoost, CatBoost, and LightGBM, in predicting
diamond prices and classifying their origin as natural or lab-grown. Local linear
regression added significant value by uncovering the dynamic relationships between
key features and pricing, providing nuanced insights that global models often overlook.
Features such as carat, depth, length, and width showed varying impacts across their
ranges, reflecting consumer preferences and market thresholds.

While the results are promising, the study has limitations, including the use of a
single dataset, which may not fully capture regional or temporal market variations.
Additionally, the computational expense of local linear regression poses challenges for
large-scale applications. Future research should focus on expanding datasets, refining
features, and integrating these methods into practical tools for the diamond industry.
There is also a need to explore broader economic and ethical implications of automated
pricing and authentication systems to ensure transparency and trust in their real-
world adoption. This work provides a foundation for more precise and interpretable
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approaches to diamond valuation, paving the way for further advancements in this
domain.
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