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ABSTRACT

Low Earth Orbit (LEO) satellites exhibit high mobility, leading to frequent handover
challenges. Addressing these handover issues is crucial for maintaining seamless and
stable service connections. This paper presents a novel D1 event handover scheme that
integrates Kalman filtering with artificial neural networks(ANN) to enhance handover
performance in Non-Terrestrial Networks (NTN). In the proposed method, Kalman filtering
provides precise UE position estimates and generates smooth trajectory predictions, which
serve as inputs to a neural network. The neural network adaptively adjusts handover
parameters (hysteresis and threshold) and intelligently selects the optimal target cell based
on predicted positions, signal-to-interference-plus-noise ratio (SINR) and network load.
Through modelling and simulation experiments, we demonstrate that the proposed scheme
significantly reduces handover failure rates and ping-pong events. The results show that,
compared to traditional D1 handover mechanisms and RSRP-based handover methods, the
proposed scheme improves handover stability and reliability, offering an effective solution
for intelligent mobility management in dynamic NTN environments.
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1. INTRODUCTION

The evolution of mobile communication is advancing towards the sixth generation (6G), aiming
to overcome the limitations of 5G, which has largely been confined to terrestrial networks.
Recognizing the potential of non-terrestrial networks (NTN), both the international
telecommunication union (ITU) and the 3rd generation partnership project (3GPP) are actively
working on standardization. In this context, satellite communication is gaining significant
attention, particularly with the increasing adoption of low earth orbit (LEO) satellites. These
satellites stand out due to their lower deployment and operational costs, enabled by
advancements in miniaturization and reusable launch technologies. Additionally, LEO satellites
offer reduced signal propagation delays compared to their geostationary orbit (GEO)
counterparts, making them an attractive alternative for communication systems[1][2]. Despite
these advantages, LEO satellites pose unique challenges due to their high velocity and low
altitude, leading to frequent handover events. Unlike GEO satellites, which maintain a fixed
position relative to the earth, LEO satellites require continuous mobility management to maintain
seamless connectivity. As a result, extensive research has been dedicated to optimizing handover
mechanisms in LEO-based communication networks. For instance, previous studies [3] have
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proposed various handover strategies, including optimized satellite selection algorithms and
techniques for integrating terrestrial networks (TN) with NTNs to enhance mobility
management. Additionally, the research [4] has explored the impact of handover parameters
such as time-to-trigger (TTT) and handover margin on system performance. A range of
algorithms [5] [6] has been developed to enhance LEO handover efficiency. Some studies [7] [8]
have reviewed recent trends in handover techniques, while others have focused on event-
triggered mechanisms such as the A4 event for measurement reporting. A novel scheme [9]
introduced a handover-independent mobility management scheme, which leverages an on-
demand, cell-free coverage model to mitigate the cost inefficiencies of traditional cellular
architectures. Another proposed solution [10], the area-based mobility management scheme,
integrates the global positioning system (GPS) to manage handovers in LEO networks,
addressing the high mobility cost and service degradation associated with satellite motion.
Furthermore, NTN mobility solutions [11] have been analyzed under various scenarios,
including urban macro environments and high-speed train networks. To counteract excessive
handovers caused by moving satellite beams, researchers [12] have proposed a fixed-duration
strategy for LEO satellites operating in earth-fixed scenarios. Additionally, machine learning
techniques have been explored [13], such as an auction-based handover algorithm that considers
received signal strength and service duration. Other studies [14] have introduced innovative
architectural solutions, including embedding mobility management functions directly within
satellites to enhance the flexibility of satellite-terrestrial integrated networks.

Ensuring seamless service continuity in NTN requires robust mobility management strategies.
While prior research [15] has addressed many challenges, most existing studies have not fully
accounted for multiple parameters influencing LEO satellite handovers. Notably, NTN
environments do not always exhibit significant signal strength fluctuations, making traditional
reference signal received power (RSRP)-based handovers less effective in certain scenarios.
Consequently, location-based handovers have been proposed as a viable alternative. In this
paper, we introduce a novel D1 event handover scheme that integrates Kalman filtering [16] with
artificial neural networks (ANN) [17] to improve handover performance in non-terrestrial
networks. The proposed method employs Kalman filtering to produce accurate UE position
estimates and smooth trajectory predictions, which are then fed into a neural network. This
network dynamically adjusts handover parameters, such as hysteresis and threshold values, and
intelligently selects the most appropriate target cell based on predicted positions, signal quality,
and network conditions. Through modelling and simulation, we demonstrate that this scheme
effectively reduces handover failure rates and minimizes ping-pong events. Our results show
that, compared to traditional D1 handover and RSRP-based approaches, this scheme enhances
both stability and reliability, providing a robust solution for intelligent mobility management in
dynamic NTN environments. The remainder of this paper is organized as follows: Section Il
provides an overview of the handover in NTN networks., Section Ill describes the proposed
scheme, Section IV covers the simulation and performance evaluation, and Section V concludes
the paper.

2. HANDOVER IN NTN NETWORKS

In traditional terrestrial networks (TN), handover between cells is primarily based on radio signal
strength metrics such as Reference Signal Received Power (RSRP). However, as networks
expand into non-terrestrial networks (NTN), RSRP-based handover mechanisms face significant
challenges. Instead, location-based handover (LBH), which relies on the geographical position of
the user equipment (UE), may offer a more effective solution for NTN environments.

In NTN, satellites provide much larger coverage areas than terrestrial base stations, with a single
satellite beam covering hundreds or even thousands of kilometers. As a result, when a UE moves



Computer Science & Information Technology (CS & IT) 81

between adjacent beams or satellites, the change in RSRP is relatively small, which may lead to
delayed handover triggers or frequent ping-pong effects. Low Earth Orbit (LEO) satellites in
NTN move at high speeds, causing rapid fluctuations in RSRP measurements. Additionally,
environmental factors such as terrain, cloud cover, and urban obstructions impact NTN signals
differently than in TN, further destabilizing RSRP-based handover decisions. NTN systems,
particularly those using Geostationary Earth Orbit (GEO) satellites, experience higher
transmission latency. The delay in reporting RSRP measurements from the UE to the core
network and executing the handover decision may cause incorrect handover timing, leading to
situations where the UE has already entered a new coverage area before the handover is
completed.

Given the limitations of RSRP-based handover in NTN, LBH presents a more effective approach
by leveraging the UE’s geographical position to predict and optimize handover timing.

LBH can utilize GPS or other satellite-based positioning systems to determine the UE’s location
and, in combination with NTN satellite orbit data, predict when the UE will enter a new beam or
satellite coverage area. This predictive capability helps avoid reliance on unstable RSRP
measurements. By analyzing the UE’s movement direction and speed, LBH can determine
whether a handover is truly necessary, rather than reacting to momentary fluctuations in RSRP.
This approach minimizes unnecessary handovers, improving network stability and resource
efficiency. LBH is applicable across various NTN topologies, including GEO, medium earth
orbit (MEO), and LEO satellite systems. Since satellite orbits and beam coverage areas are
predetermined, LBH can be tailored to different NTN deployment architectures, making it a
more universal solution.

Event D1 is a handover trigger mechanism introduced in 3GPP Release 17 for non-terrestrial
networks. Unlike traditional signal-based handover events (e.g., Event A3 used in terrestrial
networks), Event D1 primarily relies on the UE’s geographical position and satellite orbit
information to predict when a handover is needed, ensuring seamless connectivity in NTN
environments.

Event D1 is fundamentally a type of location-based handover since it uses the UE’s location
(e.g., GPS data) and satellite trajectory information rather than RSRP or other radio signal
strength metrics to trigger a handover. This approach addresses key NTN challenges, such as
slow RSRP variations and delayed handover decisions, making the handover process more
precise and efficient. The UE should trigger the measurement report event when both conditions
D1-1 and D1-2 are met.

Event D1-1: MI1 - Hys > Threshl 1)
Event D1-2: MI2 + Hys < Thresh2 2

The UE should stop the measurement report event when either condition D1-3 or D1-4 is met.

Event D1-3: MI1 + Hys < Threshl (3)
Event D1-4: MI2 - Hys > Thresh2 4)

With Event D1, the handover is triggered when the UE is predicted to leave the current coverage
area and enter a new one, avoiding the drawbacks of traditional RSRP-based triggering, such as
late handover initiation or instability in NTN scenarios.
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3. PROPOSED SCHEME

The NTN D1 event handover scenario is characterized by rapidly changing signal conditions and
frequent transitions between cells. Traditional fixed hysteresis and threshold settings often lead
to suboptimal decisions, either triggering handovers too early or too late. In this work, we
propose a novel scheme to dynamically determine optimal hysteresis Hysqp: and threshold
Threshop: Values by leveraging real-time position estimates from Kalman filter and artificial
neural networks model, as shown in Figure 1.
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Figure 2. The architecture of the proposed scheme

The framework aims to minimize unnecessary handovers, reduce ping-pong effects, and improve
overall handover success rates.

The UE’s state vector at time t is defined as

x(t)

_|x®
O =0 )

y ()
where
x(t) and y(t): The position coordinates of the UE in a two-dimensional plane, typically
representing longitude and latitude.

x'(t) and y'(t): The velocity components in the respective axes. These terms indicate how fast
the UE is moving along each direction.

State transition model using Kalman filter:
The evolution of the UE’s state can be expressed as

x(t) = Fx(t—1)+w(t) (6)
where
F is the state transition matrix and w(t) is process noise, typically modeled as zero-mean
Gaussian noise with covariance Q. For a constant velocity model:
The observation model is:

z(t) = Hx(t)+v(t) (7

where:

z(t): Observation vector, typically including position estimates derived from GNSS or other
sources.

H: Observation matrix, mapping the state space to the measurement space.

v(t): Measurement noise,v(t)~N(0,R)
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Choosing optimal values Hysop: and Threshop: is critical to minimizing unnecessary handovers
and avoiding situations where the handover is triggered too late, causing call drops or quality
degradation.

The Kalman filter provides real-time, smoothed estimates of the UE’s position:

Prediction step:

X'(t|t—1) = Fx"(t —1|t—-1) (8)
P(tlt—=1)=FP(t—-11t—-1)FT+Q 9)
Update step:
K(t) = P(t|t —1)HT(HP(t|t—1)HT+R)-1 (10)
X(t|t) = x"(t|t —1)+K(t)(z(t)-Hx(t|t —1)) (11)
Ptlt)y=U—-Kt)H)P(tIt—-1) (12)
Neural network-based parameter optimization and cell Selection Input
Features:
Ptlt)y=U—-K({)H)P(tIt—-1) (13)
X(t[t)
MI1
=| M2
R et (14
Load‘ral‘get

These features include the filtered position estimate, signal-to-interference-plus-noise ratio
(SINR) of serving and target cell, and additional network conditions.
Neural network structure:

Each layer of the neural network transforms the input feature vector znn(t) to produce outputs
representing:

The optimal hysteresis Hysopt.
The optimal threshold Threshp:.
A preference score for each candidate cell.

Output:

The network’s outputs include:
Hysop: and Threshop:: Dynamically adjusted based on realtime conditions.

Peei= [p1,02,-.,0n]: SOftmax probabilities indicating the likelihood of each cell being the optimal
target.

Selection Rule:
The target cell is selected as:

Ctargel = arg miax Di (15)
The optimization of hysteresis and threshold:

Loss Function:

To train the neural network, a loss function is designed to penalize suboptimal hysteresis and
threshold values that lead to poor handover decisions. The loss includes two components:
Handover Success Loss:
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Ensures the chosen Hys,p: and Threshop: lead to a successful handover without excessive delay.
Signal Quality Loss:
Encourages thresholds that maintain good signal quality after the handover.
The total loss £ can be written as:

L = Lsuccess +ALquality (16)
where A is a weighting factor balancing the two objectives.

Gradient-Based Training:

The neural network parameters are updated using gradient descent or a similar optimization
algorithm. The gradients are computed with respect to both Hysqp: and Thresh,,:, ensuring the
network converges to values that improve overall handover performance.

4. PERFORMANCE EVALUATION

In this section, we conducted a series of simulation experiments to evaluate the proposed D1
event handover scheme based on a combination of Kalman filtering and artificial neural
networks (referred to as D1-KFANN). The D1-KFANN method was compared against two
baseline approaches: (1) the traditional D1 handover mechanism with fixed hysteresis and
threshold parameter values, and (2) the RSRP-based handover (RBH) approach. The simulation
parameters are summarized in Table 1. For performance metrics, we employed the average ping-
pong rate and the handover failure rate as the primary indicators, both of which are critical for
evaluating the stability and reliability of the handover process.

Table 1. simulation parameters.

Parameter Values
Satellite altitude 600km
Frequency reuse FR1
Satellite Tx max Gain 35 dBi
Number of beams 11
Background traffic load 35% PRBs
Satellite beam diameter 70km

UE Tx power 28dBm
System Bandwidth 10MHz
Sub-carrier spacing 15kHz

For the traditional D1 handover mechanism, its fixed parameter settings were unable to adapt to
rapidly changing signal conditions, resulting in frequent and unnecessary handovers, which led
to a relatively high average ping-pong rate. The RSRP-based approach, while straightforward
and easy to implement, relied solely on instantaneous signal strength comparisons. This lack of
consideration for the UE’s dynamic behaviour and changing cell coverage caused a notable
number of ping-pong events. In contrast, the proposed method utilized Kalman filtering for
position prediction and employed a neural network to dynamically adjust parameters, enabling it
to adapt to signal fluctuations and significantly reduce unnecessary handovers. As shown in
Figure 2, the proposed method consistently achieves lower Average ping-pongs rates across
various simulation scenarios, highlighting its superior stability and reliability in handover
performance. These findings demonstrate that the Kalman filter and neural network-based D1
handover scheme offers a more robust and effective solution.
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Figure 2. Average ping-pongs rate

The RSRP-based approach, while straightforward, also struggles under fluctuating signal
conditions, as it relies entirely on instantaneous signal comparisons, leading to frequent handover
failures. The traditional D1 approach relies on fixed parameters, making it ill-suited to handle the
rapidly changing signal conditions typical of dynamic NTN environments. This lack of
flexibility in handover decision-making often results in delayed or missed handovers,
particularly when the UE moves quickly or when signal strength deteriorates suddenly.
Consequently, the handover failure rate for this method remains relatively high. The proposed
method, by incorporating Kalman filtering for precise UE position estimation and leveraging
neural networks to dynamically adjust hysteresis and threshold values, achieves more accurate
target cell selection and timely handover decisions. As Figure 3 shows, this method consistently
delivers a lower handover failure rate across various simulation scenarios, demonstrating higher
success rates and more stable performance. These results highlight the reliability and efficiency
of the Kalman filter and neural network-based D1 handover scheme.
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Figure 3. Handover failure rate
5. CONCLUSION

This paper introduced a novel scheme to D1 event handover in non-terrestrial networks by
integrating Kalman filtering and artificial neural networks. The proposed method leverages
Kalman filtering to provide precise, real-time UE position estimates and smooth trajectory
predictions. These estimates feed into a neural network model that dynamically adjusts hysteresis
and threshold parameters while selecting the optimal target cell. By incorporating both predictive
location data and learned patterns from artificial neural networks, this scheme offers significant
improvements in handover stability and reliability. Compared to traditional D1 handover
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mechanisms with fixed hysteresis and threshold settings, as well as RSRP-based handover
methods, the Kalman-filtered neural network scheme achieved lower handover failure rates and
reduced ping-pong events. These results demonstrate that the combination of predictive
modeling and adaptive decision-making can effectively address the unique challenges of
dynamic NTN environments, where mobility patterns and coverage conditions vary rapidly.
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