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ABSTRACT 

 
Low Earth Orbit (LEO) satellites exhibit high mobility, leading to frequent handover 

challenges. Addressing these handover issues is crucial for maintaining seamless and 

stable service connections. This paper presents a novel D1 event handover scheme that 

integrates Kalman filtering with  artificial neural networks(ANN) to enhance handover 

performance in Non-Terrestrial Networks (NTN). In the proposed method, Kalman filtering 

provides precise UE position estimates and generates smooth trajectory predictions, which 
serve as inputs to a neural network. The neural network adaptively adjusts handover 

parameters (hysteresis and threshold) and intelligently selects the optimal target cell based 

on predicted positions, signal-to-interference-plus-noise ratio (SINR) and network load. 

Through modelling and simulation experiments, we demonstrate that the proposed scheme 

significantly reduces handover failure rates and ping-pong events. The results show that, 

compared to traditional D1 handover mechanisms and RSRP-based handover methods, the 

proposed scheme improves handover stability and reliability, offering an effective solution 

for intelligent mobility management in dynamic NTN environments.  
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1. INTRODUCTION 
 

The evolution of mobile communication is advancing towards the sixth generation (6G), aiming 

to overcome the limitations of 5G, which has largely been confined to terrestrial networks. 
Recognizing the potential of non-terrestrial networks (NTN), both the international 

telecommunication union (ITU) and the 3rd generation partnership project (3GPP) are actively 

working on standardization. In this context, satellite communication is gaining significant 
attention, particularly with the increasing adoption of low earth orbit (LEO) satellites. These 

satellites stand out due to their lower deployment and operational costs, enabled by 

advancements in miniaturization and reusable launch technologies. Additionally, LEO satellites 
offer reduced signal propagation delays compared to their geostationary orbit (GEO) 

counterparts, making them an attractive alternative for communication systems[1][2]. Despite 

these advantages, LEO satellites pose unique challenges due to their high velocity and low 

altitude, leading to frequent handover events. Unlike GEO satellites, which maintain a fixed 
position relative to the earth, LEO satellites require continuous mobility management to maintain 

seamless connectivity. As a result, extensive research has been dedicated to optimizing handover 

mechanisms in LEO-based communication networks. For instance, previous studies [3] have 
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proposed various handover strategies, including optimized satellite selection algorithms and 
techniques for integrating terrestrial networks (TN) with NTNs to enhance mobility 

management. Additionally, the research [4]  has explored the impact of handover parameters 

such as time-to-trigger (TTT) and handover margin on system performance. A range of 

algorithms [5] [6] has been developed to enhance LEO handover efficiency. Some studies [7] [8] 
have reviewed recent trends in handover techniques, while others have focused on event-

triggered mechanisms such as the A4 event for measurement reporting. A novel scheme [9] 

introduced a handover-independent mobility management scheme, which leverages an on-
demand, cell-free coverage model to mitigate the cost inefficiencies of traditional cellular 

architectures. Another proposed solution [10], the area-based mobility management scheme, 

integrates the global positioning system (GPS) to manage handovers in LEO networks, 
addressing the high mobility cost and service degradation associated with satellite motion. 

Furthermore, NTN mobility solutions [11] have been analyzed under various scenarios, 

including urban macro environments and high-speed train networks. To counteract excessive 

handovers caused by moving satellite beams, researchers [12] have proposed a fixed-duration 
strategy for LEO satellites operating in earth-fixed scenarios. Additionally, machine learning 

techniques have been explored [13], such as an auction-based handover algorithm that considers 

received signal strength and service duration. Other studies [14] have introduced innovative 
architectural solutions, including embedding mobility management functions directly within 

satellites to enhance the flexibility of satellite-terrestrial integrated networks.  

 
Ensuring seamless service continuity in NTN requires robust mobility management strategies. 

While prior research [15] has addressed many challenges, most existing studies have not fully 

accounted for multiple parameters influencing LEO satellite handovers. Notably, NTN 

environments do not always exhibit significant signal strength fluctuations, making traditional 
reference signal received power (RSRP)-based handovers less effective in certain scenarios. 

Consequently, location-based handovers have been proposed as a viable alternative. In this 

paper, we introduce a novel D1 event handover scheme that integrates Kalman filtering [16] with 
artificial neural networks (ANN) [17] to improve handover performance in non-terrestrial 

networks. The proposed method employs Kalman filtering to produce accurate UE position 

estimates and smooth trajectory predictions, which are then fed into a neural network. This 

network dynamically adjusts handover parameters, such as hysteresis and threshold values, and 
intelligently selects the most appropriate target cell based on predicted positions, signal quality, 

and network conditions. Through modelling and simulation, we demonstrate that this scheme 

effectively reduces handover failure rates and minimizes ping-pong events. Our results show 
that, compared to traditional D1 handover and RSRP-based approaches, this scheme enhances 

both stability and reliability, providing a robust solution for intelligent mobility management in 

dynamic NTN environments. The remainder of this paper is organized as follows: Section II 
provides an overview of the handover in NTN networks., Section III describes the proposed 

scheme, Section IV covers the simulation and performance evaluation, and Section V concludes 

the paper.  

 

2. HANDOVER IN NTN NETWORKS 
 

In traditional terrestrial networks (TN), handover between cells is primarily based on radio signal 

strength metrics such as Reference Signal Received Power (RSRP). However, as networks 
expand into non-terrestrial networks (NTN), RSRP-based handover mechanisms face significant 

challenges. Instead, location-based handover (LBH), which relies on the geographical position of 

the user equipment (UE), may offer a more effective solution for NTN environments.  

 
In NTN, satellites provide much larger coverage areas than terrestrial base stations, with a single 

satellite beam covering hundreds or even thousands of kilometers. As a result, when a UE moves 



Computer Science & Information Technology (CS & IT)                                   81 

between adjacent beams or satellites, the change in RSRP is relatively small, which may lead to 
delayed handover triggers or frequent ping-pong effects. Low Earth Orbit (LEO) satellites in 

NTN move at high speeds, causing rapid fluctuations in RSRP measurements. Additionally, 

environmental factors such as terrain, cloud cover, and urban obstructions impact NTN signals 

differently than in TN, further destabilizing RSRP-based handover decisions. NTN systems, 
particularly those using Geostationary Earth Orbit (GEO) satellites, experience higher 

transmission latency. The delay in reporting RSRP measurements from the UE to the core 

network and executing the handover decision may cause incorrect handover timing, leading to 
situations where the UE has already entered a new coverage area before the handover is 

completed.  

 
Given the limitations of RSRP-based handover in NTN, LBH presents a more effective approach 

by leveraging the UE’s geographical position to predict and optimize handover timing.  

 

LBH can utilize GPS or other satellite-based positioning systems to determine the UE’s location 
and, in combination with NTN satellite orbit data, predict when the UE will enter a new beam or 

satellite coverage area. This predictive capability helps avoid reliance on unstable RSRP 

measurements. By analyzing the UE’s movement direction and speed, LBH can determine 
whether a handover is truly necessary, rather than reacting to momentary fluctuations in RSRP. 

This approach minimizes unnecessary handovers, improving network stability and resource 

efficiency. LBH is applicable across various NTN topologies, including GEO, medium earth 
orbit (MEO), and LEO satellite systems. Since satellite orbits and beam coverage areas are 

predetermined, LBH can be tailored to different NTN deployment architectures, making it a 

more universal solution.   

 
Event D1 is a handover trigger mechanism introduced in 3GPP Release 17 for non-terrestrial 

networks. Unlike traditional signal-based handover events (e.g., Event A3 used in terrestrial 

networks), Event D1 primarily relies on the UE’s geographical position and satellite orbit 
information to predict when a handover is needed, ensuring seamless connectivity in NTN 

environments.  

 

Event D1 is fundamentally a type of location-based handover since it uses the UE’s location 
(e.g., GPS data) and satellite trajectory information rather than RSRP or other radio signal 

strength metrics to trigger a handover. This approach addresses key NTN challenges, such as 

slow RSRP variations and delayed handover decisions, making the handover process more 
precise and efficient. The UE should trigger the measurement report event when both conditions 

D1-1 and D1-2 are met.  

 
 Event D1-1:    Ml1 – Hys > Thresh1   (1)  

 Event D1-2:    Ml2 + Hys < Thresh2   (2)  

 

The UE should stop the measurement report event when either condition D1-3 or D1-4 is met.  
 

 Event D1-3: Ml1 + Hys < Thresh1   (3)  

 Event D1-4: Ml2 - Hys > Thresh2   (4)  
 

With Event D1, the handover is triggered when the UE is predicted to leave the current coverage 

area and enter a new one, avoiding the drawbacks of traditional RSRP-based triggering, such as 
late handover initiation or instability in NTN scenarios.  
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3. PROPOSED SCHEME 
 
The NTN D1 event handover scenario is characterized by rapidly changing signal conditions and 

frequent transitions between cells. Traditional fixed hysteresis and threshold settings often lead 

to suboptimal decisions, either triggering handovers too early or too late. In this work, we 

propose a novel scheme to dynamically determine optimal hysteresis 𝐻𝑦𝑠𝑜𝑝𝑡 and threshold 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡 values by leveraging real-time position estimates from Kalman filter and artificial 

neural networks model, as shown in Figure 1.  

 

 
 

Figure 2. The architecture of the proposed scheme  

 

The framework aims to minimize unnecessary handovers, reduce ping-pong effects, and improve 

overall handover success rates.  
 

The UE’s state vector at time t is defined as  

 
where  

𝑥(𝑡) and 𝑦(𝑡): The position coordinates of the UE in a two-dimensional plane, typically 

representing longitude and latitude.  

𝑥˙(𝑡) and 𝑦˙(𝑡):  The velocity components in the respective axes. These terms indicate how fast 
the UE is moving along each direction.  

 

State transition model using Kalman filter:  
 

The evolution of the UE’s state can be expressed as  

 

 𝑥(𝑡) = 𝐹𝑥(𝑡−1)+𝑤(𝑡)  (6)  
where 

F is the state transition matrix and 𝑤(𝑡) is process noise, typically modeled as zero-mean 

Gaussian noise with covariance 𝑄. For a constant velocity model:  
The observation model is:  

 

 𝑧(𝑡) = 𝐻𝑥(𝑡)+𝑣(𝑡)  (7)  

 
where:  

𝑧(𝑡): Observation vector, typically including position estimates derived from GNSS or other 

sources.  

𝐻: Observation matrix, mapping the state space to the measurement space.  

𝑣(𝑡): Measurement noise,𝑣(𝑡)∼𝑁(0,𝑅) 
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Choosing optimal values 𝐻𝑦𝑠𝑜𝑝𝑡 and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡 is critical to minimizing unnecessary handovers 
and avoiding situations where the handover is triggered too late, causing call drops or quality 

degradation. 

 

The Kalman filter provides real-time, smoothed estimates of the UE’s position:  
 

Prediction step:  

xˆ(𝑡|𝑡−1) = Fxˆ(𝑡 −1|𝑡−1)  (8)  

𝑃(𝑡 ∣ 𝑡 −1) = 𝐹𝑃(𝑡 −1 ∣ 𝑡 −1)𝐹⊤+𝑄 
Update step:   

 (9)  

K(𝑡) = P(𝑡|𝑡 −1)H⊤(HP(𝑡|𝑡−1)H⊤+R)−1  (10)  

xˆ(𝑡|𝑡) = xˆ(𝑡|𝑡 −1)+K(𝑡)(z(𝑡)−Hxˆ(𝑡|𝑡 −1))  (11)  

𝑃(𝑡 ∣ 𝑡) = (𝐼 −𝐾(𝑡)𝐻)𝑃(𝑡 ∣ 𝑡 −1)  
Neural network-based parameter optimization and cell Selection Input 
Features:  

 (12)  

𝑃(𝑡 ∣ 𝑡) = (𝐼 −𝐾(𝑡)𝐻)𝑃(𝑡 ∣ 𝑡 −1)   (13)  

 

 
 
These features include the filtered position estimate, signal-to-interference-plus-noise ratio 

(SINR) of serving and target cell, and additional network conditions.  

Neural network structure:  
 

Each layer of the neural network transforms the input feature vector 𝐳NN(𝑡) to produce outputs 

representing:  
 

The optimal hysteresis 𝐻𝑦𝑠𝑜𝑝𝑡.  

The optimal threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡.  

A preference score for each candidate cell.  
 

Output:   

 
The network’s outputs include:  

𝐻𝑦𝑠𝑜𝑝𝑡 and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡: Dynamically adjusted based on realtime conditions.  

𝑝𝑐𝑒𝑙𝑙= [𝑝1,𝑝2,…,𝑝𝑛]: Softmax probabilities indicating the likelihood of each cell being the optimal 

target.  
 

Selection Rule:  

The target cell is selected as:  

 
The optimization of hysteresis and threshold:  

Loss Function:  

To train the neural network, a loss function is designed to penalize suboptimal hysteresis and 

threshold values that lead to poor handover decisions. The loss includes two components:  

Handover Success Loss:   
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Ensures the chosen 𝐻𝑦𝑠𝑜𝑝𝑡 and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡 lead to a successful handover without excessive delay.  

Signal Quality Loss:   

Encourages thresholds that maintain good signal quality after the handover.  

The total loss ℒ can be written as:  

 ℒ = ℒsuccess +𝜆ℒquality  (16)  

where 𝜆 is a weighting factor balancing the two objectives.  

 

Gradient-Based Training:  
The neural network parameters are updated using gradient descent or a similar optimization 

algorithm. The gradients are computed with respect to both 𝐻𝑦𝑠𝑜𝑝𝑡 and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑝𝑡, ensuring the 

network converges to values that improve overall handover performance.  

 

4. PERFORMANCE EVALUATION 
 

In this section, we conducted a series of simulation experiments to evaluate the proposed D1 

event handover scheme based on a combination of Kalman filtering and artificial neural 
networks (referred to as D1-KFANN). The D1-KFANN method was compared against two 

baseline approaches: (1) the traditional D1 handover mechanism with fixed hysteresis and 

threshold parameter values, and (2) the RSRP-based handover (RBH) approach. The simulation 

parameters are summarized in Table 1. For performance metrics, we employed the average ping-
pong rate and the handover failure rate as the primary indicators, both of which are critical for 

evaluating the stability and reliability of the handover process.   

 
Table 1. simulation parameters.  

 

Parameter   Values  

Satellite altitude   600km  

Frequency reuse  FR1  

Satellite Tx max Gain   35 dBi  

Number of beams  11  

Background traffic load   35% PRBs  

Satellite beam diameter   70km  

UE Tx power   28dBm  

System Bandwidth  10MHz  

Sub-carrier spacing   15kHz  

 

For the traditional D1 handover mechanism, its fixed parameter settings were unable to adapt to 

rapidly changing signal conditions, resulting in frequent and unnecessary handovers, which led 

to a relatively high average ping-pong rate. The RSRP-based approach, while straightforward 
and easy to implement, relied solely on instantaneous signal strength comparisons. This lack of 

consideration for the UE’s dynamic behaviour and changing cell coverage caused a notable 

number of ping-pong events. In contrast, the proposed method utilized Kalman filtering for 
position prediction and employed a neural network to dynamically adjust parameters, enabling it 

to adapt to signal fluctuations and significantly reduce unnecessary handovers. As shown in 

Figure 2, the proposed method consistently achieves lower Average ping-pongs rates across 
various simulation scenarios, highlighting its superior stability and reliability in handover 

performance. These findings demonstrate that the Kalman filter and neural network-based D1 

handover scheme offers a more robust and effective solution. 
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Figure 2. Average ping-pongs rate  

 

The RSRP-based approach, while straightforward, also struggles under fluctuating signal 

conditions, as it relies entirely on instantaneous signal comparisons, leading to frequent handover 

failures. The traditional D1 approach relies on fixed parameters, making it ill-suited to handle the 
rapidly changing signal conditions typical of dynamic NTN environments. This lack of 

flexibility in handover decision-making often results in delayed or missed handovers, 

particularly when the UE moves quickly or when signal strength deteriorates suddenly. 
Consequently, the handover failure rate for this method remains relatively high. The proposed 

method, by incorporating Kalman filtering for precise UE position estimation and leveraging 

neural networks to dynamically adjust hysteresis and threshold values, achieves more accurate 
target cell selection and timely handover decisions. As Figure 3 shows, this method consistently 

delivers a lower handover failure rate across various simulation scenarios, demonstrating higher 

success rates and more stable performance. These results highlight the reliability and efficiency 

of the Kalman filter and neural network-based D1 handover scheme.  
 

 
 

Figure 3. Handover failure rate  
 

5. CONCLUSION  
 

This paper introduced a novel scheme to D1 event handover in non-terrestrial networks  by 
integrating Kalman filtering and  artificial neural networks. The proposed method leverages 

Kalman filtering to provide precise, real-time UE position estimates and smooth trajectory 

predictions. These estimates feed into a neural network model that dynamically adjusts hysteresis 

and threshold parameters while selecting the optimal target cell. By incorporating both predictive 
location data and learned patterns from  artificial neural networks, this scheme offers significant 

improvements in handover stability and reliability. Compared to traditional D1 handover 
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mechanisms with fixed hysteresis and threshold settings, as well as RSRP-based handover 
methods, the Kalman-filtered neural network scheme achieved lower handover failure rates and 

reduced ping-pong events. These results demonstrate that the combination of predictive 

modeling and adaptive decision-making can effectively address the unique challenges of 

dynamic NTN environments, where mobility patterns and coverage conditions vary rapidly.  
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