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Abstract. The need to accelerate LLM (large language models) requires the use of always ad-
vancing compiler technologies. Operator fusion is one of the promising techniques to considerably
improve the throughput of LLMs. This paper discusses the impact of operator fusion on the di-
rect operator performance. The paper compares throughputs between pure CPU implementation,
versus two kernel implementations versus a fused single kernel solution for AvgPool2D fused with
Silu.
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1 Introduction

In recent years the push for and the growth of Large Language Models (LLM)
provided new challenges for processor and compiler developers to improve the
throughput and performance of such models. The main challenge is to stay within
the constraints of already existing hardware. Although hardware accelerators enter
the market in relative rapid succession, companies may not be willing to upgrade
their compute ressources with each new generation of processors and accelerators.
Usually a software upgrade and tool upgrade is much more common and easier to
achieve compared to an actual hardware upgrade. Essentially there are two areas,
which are targeted to improve performance of LLMs. As already mentioned, there
is the improvement of the hardware by utilizing new hardware architectures and
improving existing hardware architectures by adding specific features, which benefit
the processing of neural network workloads. The other area is the improvement by
software tools. Specifically AI compilers are under development, which boost the
performance of exising hardware by utilizing the specific AI accelerating features.
[1] [2] [3] They also need to adapt quickly to support new features of new hard-
ware. These optimizations are often in the area of parallel execution of workloads,
faster data transfer between nodes and faster loading of kernels into the hardware
to name a few. One advanced optimization step in the development process of large
language models (LLM) is the use of fused operators [4]. Operator fusion targets the
shortcomings of using accelerators, which require to upload and download the data
between each operation, by removing some of the intense data transfer operations.

David C. Wyld et al. (Eds): SIGML, CNSA, MoWiN, CCSEIT, NIAI, AIAP – 2025
pp. 133-142, 2025.                -CS & IT CSCP 2025 DOI: 10.5121/csit.2024.150210

https://airccse.org/
https://airccse.org/csit/V15N02.html
https://doi.org/10.5121/csit.2024.150210


This paper specifically provides some measurements of the direct improvement of
operator fusion by comparing operator performance with and without fusion being
applied. Once a set of operators is identified as fuseable, it then can be combined
into one operator and finally mapped to the appropriate fused kernel. This paper
discusses fusion [5] of a AvgPool2D [6] operator with a Silu operator [7]. The follow-
ing sections provide a brief discussion of the underlying idea, then discuss some of
the implementation and test features and environment. Lastly the measured results
of a AvgPool2D fused with a Silu operator are presented and a conclusion is given.

2 Motivation

A neural network workload constitutes of many nodes which mostly are executed
individually or in eager mode. Eager mode means even with accelerating hardware,
each node is executed on an individual basis and therefore the data is loaded in
and out of the accelerator after each operation. A huge amount of data may be
loaded to the accelerator, which then in a very aggressive highly parallel effort,
performs such an operation quickly utilizing the parallel feature of the hardware
accelerator and then load the result of said operation back to the host processor.
A second node is processed in the exact same way, which means that the same or
maybe a reduced or enlarged amount of data is loaded into the accelerator and the
appropriate process is performed again. This neverthless means that data, which
might as well be processed within the same hardware, is uploaded and downloaded
between processing steps despite being already at the correct location or stored
in the correct memory. By fusing nodes the additional upload and download step
of interim results are removed and the appropriate steps are directly performed.
This usually leads to a considerable improvement in throughput and performance
of the exact same model. We can see this specifically in the combination of matrix
multiplication with immediately following activation functions. The optimization
of matrix multiplication and its fusion with activation functions seems to be al-
ready widely discussed [8], [9]. In most publications the overall impact of the fusion
procecss on existing models is meansured, whereas there is little to no discussion
about the impact of each individual contributing node. We think that measuring
the acceleration of individual nodes should be of utmost importance for developers
of original neural network architectures. In this paper we discuss one specific com-
bination of operations, which are very common in the context of Large Language
Models. The first is the AvgPool2D function and the second is the Silu function.
Other publications will follow to discuss other combinations of operations.

3 The Approach

Different solutions were executed to compare the runtime of a AvgPool2D operator
and a Silu operator between CPU and CUDA solutions. A small model with one
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AvgPool2D operator and one Silu operator with flexible shapes is implemented in
C++ to run on a CPU. Then a total of three kernels are developed in CUDA. The
first kernel represents the AvgPool2d operation, the second kernel represents the
Silu operator and the third kernel represents the fused kernel, which constitutes of
the said AvgPool2D operator directly followed by tbe Silu operator implemented
in one CUDA kernel.

3.1 AvgPool2D kernel implementation

The implementation of the AvgPool2D kernel is based on the mathematical repre-
sentation shown in equation 1:

avgPool2D(Ni, Cj , h, w) =
1

kH ∗ kW

kH−1∑
m=0

kW−1∑
n=0

input(Ni, Cj , stride[0]× h+m, stride[1]× w + n)

(1)

The kernel is implemented in CUDA. The inner two loops are implemented on
each of the nodes, which therefore would perform kH ∗ kW operations each. The
outer loops are mapped to the nodes of the CUDA hardware.

3.2 Silu kernel implementation

The Silu kernel is based on the mathematical definition in equation 2:

Silu(x) =
x

1 + e−x
(2)

Each kernel performs the above Silu operation, therefore mulitple of these oper-
ations can be mapped onto the CUDA platform to be executed in parallel. For this
specific exercise there is no further optimization performed and the original Silu
function is used as in Figure 1. Nevertheless it is recognized that there are proposals
to improve the Silu operation considerably by using partial functions with linear
approximations.

In the following sections the results of timing measurements are presented.

4 Results

In this section we show the results when running the individual kernels on CPU,
then we show the combined solution running on CPU. Further we show the perfor-
mance of the two CUDA kernels running back to back on a CUDA platform, and
finally compare that with the fused kernel solution, which shows the real benefit of
performing fusion in the first place.
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Fig. 1. Silu function

4.1 CPU implementation of AvgPool2D

The first result is based on a CPU implementation of AvgPool2D in C++ on a
PC. In Figure 2 we can clearly identify a linear behaviour based on the number of
input elements. The kernel size as well as the stride size are set to eight for each
dimension.

4.2 AvgPool2D in sequence with Silu on CPU

The next implementation combines the AvgPool2D algorithm with Silu. Since it is
performed on the CPU we do not need to make a difference between the sequential
and the parallel execution as well as the combined execution of the two operators.

The Figure 3 shows the result for AvgPool2D with Silu in sequence. The inclu-
sion of Silu hardly contributes to the overall result on CPU.

In Figure 4 a direct comparisong of AvgPool2D without and with Silu is shown.
It is recognized that exercising Silu on a CPU does not significantly change the
overall runtime. In this case, unless we would zoom further in, we do not even see a
difference on this plot. The main explanation is that there is no additional allocation
of memory involved since Silu directly writes back to the same element. Further the
number of elements is reduced now by 64, because the avgPool2D operation uses a
8x8 inner dimensions for our example.

4.3 Performance of AvgPool2D kernel on CUDA

In the following subsections the CUDA results are presented. The first results as
shown in Figure 5 are based on the AvgPool2D cuda kernel. It shows that the par-
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Fig. 2. AvgPool2D on CPU
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Fig. 3. AvgPool2D with Silu on CPU
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Fig. 4. AvgPool2D with/without Silu on CPU

allel execution leads to almost no difference between smaller and larger workloads.
The presented workloads are still small and therefore the major impact comes from
the overhead of engaging with the GPU in the first place. Nevertheless the results
clearly show that the CUDA implementation has a huge impact on the performance.

4.4 Performance of Silu kernel on CUDA

If we only run the Silu kernel Figure 9 shows that for most cases the overhead to
engage with the GPU has a higher impact than performing Silu directly on the
CPU. Nevertheless part of it is misleading since on the CPU we do not count the
impact of the memory allocation, which is already done as part of the AvgPool2D
output matrix memory allocation.

4.5 AvgPool2D and Silu in sequence

To provide some better datapoints Figure 7 shows running the avgPool2D and the
Silu back to back, yet using separate kernels. We can clearly also see that there is
some overhead compared to the prior solution.

The best result is achieved by using the fused kernel. The fused kernel incorpo-
rates avgPool2D and Silu into one kernel and therefore the output of the AvgPool2D
is directly processed. The first result does not need to be copied to the main mem-
ory and back to the kernel memory of the Silu kernel any more. This allows to shave
off a significant portion of the runtime and improve the performance significantly.
Figure 8 shows the result of the fused kernel running on a CUDA capable device.
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Fig. 5. AvgPool2D on CUDA
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Fig. 6. Silu on CUDA
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Fig. 7. AvgPool2D and Silu sequential on CUDA
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Fig. 8. AvgPool2D and Silu fused on CUDA
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5 Conclusion

We conclude that kernel fusion has a significant impact on the performance and
the throughput of a model. Although the fused kernel was not integrated into a
realistic LLM workload this initial research already shows significant progress. The
Figure 9 combines the most significant results. We can see that only when a small
matrix is used, i.e. at or below 128x3096, the CPU solution may be faster.
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Fig. 9. CPU vs CUDA vs fused CUDA

The herein presented results are based on the implementation of a new CUDA
based library, which concentrates solely on fused kernels for AI workloads. The
progress of this work can be followed in the github repository [10].
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