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Abstract. This paper presents PolyIPA, a novel multilingual phoneme-to-grapheme con-
version model designed for multilingual name transliteration, onomastic research, and infor-
mation retrieval. The model leverages two helper models developed for data augmentation:
IPA2vec for finding soundalikes across languages, and similarIPA for handling phonetic no-
tation variations. Evaluated on a test set that spans multiple languages and writing systems,
the model achieves a mean Character Error Rate of 0.055 and a character-level BLEU score
of 0.914, with particularly strong performance on languages with shallow orthographies.
The implementation of beam search further improves practical utility, with top-3 candi-
dates reducing the effective error rate by 52.7% (to CER: 0.026), demonstrating the model’s
effectiveness for cross-linguistic applications.

1 Introduction

Although text-to-speech and speech-to-text models nowadays are mostly end-to-end, there
are still many use cases for intermediate representations using phonetic alphabets such as
IPA. This is particularly evident in multilingual speech recognition systems, where IPA
tokens enable the transfer of phonetic representations between different languages. In
low-resource language scenarios, as little as 10 hours of target language data combined
with IPA-based training from other languages can significantly reduce ASR error rates. A
practical example of this approach can be seen in bilingual systems such as the Mandarin
/ Taiwanese speech recognition system, which achieved 92.55% word accuracy using the
Tong-yong Phonetic Alphabet (TYPA).

Recent advances in multilingual grapheme-to-phoneme (G2P) conversion have demon-
strated significant progress through various neural architectures and approaches. The
Transformer-based ByT5 model has shown remarkable success in handling approximately
100 languages simultaneously, offering improved phone error rates through joint learning
and zero-shot prediction capabilities. Such byte-level representation models have proven
particularly effective, achieving 16.2-50.2% relative word error rate improvements over
character-based counterparts while maintaining smaller model sizes for languages with
diverse writing systems.

Neural transducer models utilizing explicit edit actions and trained with imitation
learning have also demonstrated competitive performance, particularly when adapted to
use substitution edits and trained with weighted finite-state transducers. The combination
of multilingual Transformers with self-training ensembles has yielded impressive results
across 15 languages, achieving a 14.99 word error rate and a 3.30 phoneme error rate.
Furthermore, models incorporating global character vectors (GCVs) with bidirectional
recurrent neural networks have shown promise, achieving over 97. 7% syllable accuracy in
Japanese, Korean, Thai and Chinese.

This research is focused on the reverse problem, phoneme-to-grapheme (P2G) con-
version. Despite the well-established nature of grapheme-to-phoneme (G2P) conversion
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in speech technologies, its reverse direction, phoneme-to-grapheme (P2G) conversion, has
received significantly less research attention in the field. However, recent studies have
demonstrated the value of P2G systems in various applications, particularly in improving
end-to-end ASR systems and addressing the challenge of out-of-vocabulary words.

2 Problem Statement and Contributions

The main focus of this paper is the development of the P2G model that is usable in the
use cases of transliteration and information retrieval, as well as onomastic research. The
goal is to achieve approximately correct transcription of the phonetic encoding in the
target language, assisting in multilingual transliterations and translation tasks, sound-like
retrieval, and finding similarly sounding proper names across the world languages.

This paper leverages existing work on developing G2P datasets and models. The contri-
butions, besides simply reversing the direction of the task, are extensive data augmentation
by developing two helper models:

– Embedding model IPA2vec used to find soundalikes across languages
– Sequence-to-sequence model similarIPA used to cover phonetic notations variations

across different training data source

An additional contribution is fine-tuning the model by extending the G2P data set
with phonetic transliteration of proper names that are underrepresented in available dic-
tionaries, even though proper names dominate vocabulary [14].

3 Data Collection and Preparation

3.1 Data Sources

The largest dataset available, WikiPron represents a foundational multilingual resource
containing 1.7 million pronunciations in 165 languages [15]. The data is provided in IPA
format with clear transcription guidelines for contributors. CharsiuG2P dataset offers a
transformer-based solution that supports 100 languages, built on the ByT5 architecture
[32]. The Montreal Forced Aligner Dictionary Collection provides extensive pronunciation
data formatted specifically for speech alignment tasks [17], but is useful for other tasks as
well. PWESuite serves as an evaluation framework for phonetic word embeddings, offering
tasks such as sound similarity correlation and cognate detection [33].

Based on analysis of language representation versus language sizes, several language-
specific sources were also included. KaamelDict stands as the largest Persian G2P dictio-
nary with over 120,000 entries [6], that unifies multiple phonetic representation systems
and provides detailed phoneme-to-IPA mapping. Thai G2P [22] focuses on Thai language
specifics. Several other language-specific resources include: Rulex for Russian [23], Ice-
PronDict for Icelandic [7], German IPA Dictionary [5].

3.2 Data Cleaning and Normalization

Data sources utilizing non-IPA transcription systems, such as X-SAMPA [28] and ARPA-
BET [12], were converted to standard International Phonetic Alphabet (IPA) notation.
Particular attention was paid to the accurate conversion of extended and language-specific
symbols, including tonal markers. The language names and codes from all sources were
standardized using ISO-639-1 language codes when available or ISO-639-3 codes when
necessary. Datapoints with unidentified languages, comprising 0.03% of the dataset, were

144                                                  Computer Science & Information Technology (CS & IT)



excluded. Multiple phonetic transcriptions for a single grapheme within one language were
retained.

The initial dataset comprised 20,987,451 unique language-grapheme-phoneme triples.
All strings underwent NFC normalization, case lowering, and deduplication. To address
invalid transliterations identified in the source data, we implemented a validation function
to verify that the phonetic transcriptions contained only valid symbols of the extended IPA
alphabet. This cleaning process resulted in 20,087,067 triples. Further refinement involved
removing entries where the detected script did not correspond to the official script of
the respective language, eliminating both romanized versions of non-Latin languages and
various noise elements. The final data set contained 19,648,870 data points.

3.3 Data Augmentation

Soundalikes by IPA2VEC model To address the identified gaps in phonetic pattern
coverage across languages, we implemented a data augmentation approach based on pho-
netic similarity mining using a Siamese neural network architecture.

The training data set was constructed using the large-scale cognate lexical database
[3], filtering for entries that existed in our phonetic dictionary. For each positive pair in the
database, we generated one random negative example, resulting in 2,364,433 word pairs.
Each pair was annotated with a feature edit distance score following the methodology
proposed by [18]. The dataset was split into training, development, and test sets in a
98:1:1 ratio.

To generate phonetic embeddings, we implemented a Siamese neural network archi-
tecture utilizing ByT5 [31] as the shared encoder. The model was trained using cosine
similarity loss with mean pooling of token embeddings over 30 epochs, achieving final
training and evaluation losses of 0.00075 and 0.00072 respectively.

The data augmentation process employed a two-stage similarity search approach:

1. Initial candidate generation using approximate nearest neighbor search via FAISS
(Johnson et al., 2019), retrieving 10,000 closest matches per entry

2. Refinement through precise feature edit distance calculation [18], with a distance
threshold of 5.

Applied to the training dataset, this process generated 1.1 million phonetically sim-
ilar pairs, from which ones where variants already existed in the original sources were
eliminated. The number of examples generated by this method was 927,351.

SimilarIPA model The second data augmentation approach addressed the variations
in IPA transcription practices between different sources and annotation traditions. These
variations are particularly evident when combining multiple phonetic data sets with dif-
ferent transcription conventions.

We generated additional training data by leveraging cases where multiple IPA tran-
scriptions existed for the same language-grapheme pair in our dataset. For each language-
grapheme pair with multiple valid IPA transcriptions, we extracted all possible combina-
tions to create IPA-to-IPA transformation pairs. This process yielded 4.4 million pairs,
which were split into training sets (98%), evaluation sets (1%) and test sets (1%).

For modelling these transformations, we employed the T5.1 architecture (Raffel et al.,
2020), which has demonstrated strong performance in sequence-to-sequence tasks. We first
trained a custom SentencePiece vocabulary of 32K tokens [13], on the training data to get
vocabulary optimized for phonetic character sequences. The T5.1 small model was then
trained from scratch for five epochs.
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The model achieved an evaluation loss of 0.21 and a Character Error Rate (CER)
of 0.06. These metrics are considered satisfactory for the purpose, especially given the
inherent many-to-many nature of the task — when a grapheme has more than two valid
IPA transcriptions, each input can correspond to multiple valid outputs.

The trained model was then applied to generate alternative IPA transcriptions for
the entire dataset. For each IPA transcription in our corpus, we generated up to three
alternative representations, filtering out any generations with a character error rate (CER)
greater than 0.15 compared to the input to ensure quality. Variants that already existed
in collected sources were excluded. The total number of examples generated in this way
was 5,526,352.

These alternative transcriptions and soundalikes generated by the IPA2VEC model
helped bridge the gaps between different transcription conventions and provided addi-
tional training data that captured legitimate variations in how the same sounds can be
represented in IPA. This augmentation proved particularly valuable for languages where
the original dataset contained relatively rigid or source-specific transcription patterns,
helping the final P2G model to become more robust to input variations.

In the future research, this augmentation process should be improved firstly by develop-
ing better metrics for phonetic similarity. Although the issue of measuring the perception
of sound similarity is highly subjective and controversial in the phonetic community [8], it
seems that if the language background of the subject is taken into consideration it could
be improved [2]. So we hypothesize that the development of a unified model that would,
for a given IPA string and language, generate IPA rendering of similar sounding words for
a typical speaker of a given language would significantly improve the data augmentation
process and the quality of the final model.

3.4 Accent and Tone Reduction

The final augmentation process included careful handling of the IPA transcriptions through
multiple normalization steps. First, a validation function was implemented to ensure the
quality of phonetic transcriptions. This function performed several checks:

– Basic validation of input type and format
– Removal of diacritical marks and tone indicators using Unicode normalization
– Filtering of special symbols while preserving valid IPA characters through regex pattern

matching
– Verification using the ipapy library’s IPA validation

This cleaning was particularly important for handling variations in transcription prac-
tices across different data sources, where the same sound might be annotated with different
diacritical marks or tone indicators. After this normalization, the data set retained the
core phonetic information while reducing noise from inconsistent transcription practices.

3.5 Language and Script Handling

Data preparation included special handling for languages that use multiple scripts. Lan-
guages like Chinese (zh) and Serbian (sr), which can be written in different scripts, were
encoded with script-specific language codes (e.g., zh Hani for Chinese in Han charac-
ters, sr Latn for romanized Serbian). This distinction was crucial for training the model
to handle script-specific transcription patterns. Each IPA transcription was prefixed with
a language-script code in the format <{lang code}> or <{lang code} {script}> when
necessary.
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3.6 Dataset Splitting and Upsampling

The dataset was split into training and test sets using a stratified sampling approach to
ensure representative coverage across languages. The key characteristics of the splitting
process included:

– A fixed test and evaluation set size of 5,000 examples
– Stratification by ISO language code to maintain language distribution
– Balanced sampling to prevent over-representation of high-resource languages

The upsampling strategy was integrated directly into the training data generation pro-
cess, with several key components working in concert. First, a length filter was applied to
ensure that all examples remained under 40 tokens, maintaining computational efficiency
and model stability. During generation, the system produced multiple variants of each
training example:

1. added clean versions of IPA transcriptions by removing special symbols and diacritics
if it is different from the original

2. incorporated phonetically similar transcriptions identified by the similarity models
3. repeating original examples to maintain proper distribution balance

This dynamic generation approach allowed flexible data augmentation while avoiding
explicit storage of the augmented data set. The process checked for duplicates against an
index of existing training data to prevent redundancy, effectively increasing the diversity
of training examples while preserving the natural distribution of phonetic patterns across
languages.

The final size of the training dataset contained 79,320,217 examples, which were pre-
tokenized and saved to a parquet file for efficient training.

4 Experimental Setup

The model was trained using the Seq2SeqTrainer from the Hugging Face Transformers
library, with optimized training configurations for the P2G task. The core configuration
included:

– Model Architecture: Two variants were tested - ByT5-small and MT5-small [31], with
ByT5 showing superior performance for byte-level processing of multilingual text

– Maximum Sequence Length: 64 tokens
– Learning Rate: 4e-5 with a linear warm-up over 1000 steps
– Weight Decay: 0.01 for regularization
– Batch Size: 96 per device with gradient accumulation steps of 4
– Training Duration: 3 epochs
– Gradient Clipping: Maximum gradient norm of 1.0 to prevent exploding gradients

The training used a custom DataCollator for efficient batch processing and a Par-
quetIterableDataset for memory-efficient handling of the large augmented data set (79.3M
examples). Training was tested with both ByT5-small and MT5-small models. As the ini-
tial validation metrics of ByT5 were improving much more quickly than those of the small
MT5 model, corroborating research by [15], only training of the ByT5 model was continued
for three epochs. It should be noted that, due to the repetition of original examples from
the IPA dictionary in train DS, as described before, it would correspond to approximately
10 epochs without repetition.

The training metrics progressed steadily, with:
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– Training loss decreasing from 4.13 to 0.075 over three epochs
– Evaluation loss following a similar trajectory, dropping from 3.9413 to ∼0.073
– Character Error Rate (CER) improving from 0.9531 to 0.039

Although the obtained evaluation metrics are satisfactory, especially considering that
the training set contains multiple output sequences for the same language-phoneme com-
bination, an initial informal evaluation showed that in some cases the model learned
grapheme representations of phonemes from other languages, as the most probable output
sequence did not reflect the phonetics of the target language but rather existing examples
from other languages. A typical example is the rendering of the voiced labiodental frica-
tive “v” in German. Although it should be rendered as “w”, sometimes the most probable
sequence was rendered using “v”, which represents the sound “f”. The proper outputs
sometimes appeared in the second or later positions of the most probable sequences. To
account for this, an additional augmentation of the data set was performed.

4.1 Fine-tuning Model for Proper Names

The augmentation process began with a comprehensive phonetic analysis of common
proper names across world languages. The initial data set consisted of the one million most
frequent proper names from global language sources, as collected by Mondonomo Nomo-
graph DB [14]. These names were processed through the trained phoneme-to-grapheme
model, each token for 20 randomly selected languages, using a random function weighted
by language size. For each input, the model generated 30 candidate sequences using a
beam search with 90 beams (3 times the number of requested outputs) and early stop-
ping to ensure diverse yet high-quality predictions. This process created a comprehensive
dictionary mapping each language-grapheme combination to its possible IPA realizations.

The generated outputs were then analysed using a feature-based distance metric from
the panphon library, which evaluates phonetic similarity based on articulatory features.
For each generated sequence, the system calculated its phonetic distance from the original
input and retained only one alternative demonstrating high phonetic similarity (distance
less than 1% of the maximum possible feature difference). The process utilized parallel
processing with chunked data processing (1 million rows per chunk) to efficiently handle
the large volume of comparisons. Special care was taken to normalize the IPA strings by
removing diacritical marks and special symbols before distance calculation to ensure con-
sistent comparison. The distance calculation was implemented using the Jandrec-Traversky
feature edit distance algorithm, which provides a more nuanced measure of phonetic sim-
ilarity compared to simple character-based metrics. The total number of new examples
generated by this method was 482,475.

This data-driven approach served two purposes:

1. It identified phonetically plausible alternative transcriptions for common proper names,
effectively expanding the model’s understanding of cross-linguistic name adaptation
patterns

2. It helped validate and filter the model’s non-primary predictions, ensuring that alter-
native suggestions maintained phonetic coherence within each target language’s sound
system

By focusing on proper names, which often exhibit unique phonetic adaptation pat-
terns when moving between languages, this augmentation strategy enhanced the model’s
capability to handle the specific challenges of name transliteration and cross-linguistic
adaptation.
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These data were added to the existing training dataset, shuffled, and the model was
trained for two additional epochs with the new dataset. The evaluation and test data sets
were kept the same. The evaluation metrics after training (on the unchanged evaluation
dataset) after the two epochs were 0.063 evaluation loss and 0.031 CER. The improvements
could be attributed either to the extended data set or to the extended training or both,
but the additional data definitively did not hinder the quality of previous training, as
measured by the initial evaluation data set1.

5 Results

The evaluation methodology employs multiple complementary metrics to assess the model’s
performance in phoneme-to-grapheme conversion across different languages. The primary
metrics include Character Error Rate (CER), Character Level BLEU Score, and Top N
Word Error Rate (WER), providing a comprehensive assessment of the model’s accuracy
and generation quality.

The character error rate (CER), calculated using the Levenshtein distance normalized
by the reference length [16], serves as our primary metric for measuring transcription ac-
curacy. This metric is particularly suitable for phoneme-to-grapheme conversion tasks, as
it operates at the character level and captures insertion, deletion, and substitution errors
[20]. Additionally, we compute character-level BLEU scores using SacreBLEU [24], treat-
ing individual characters as tokens to evaluate the model’s ability to preserve character
sequences in the transliteration process. This approach has been shown to be effective in
previous transliteration studies [19].

To evaluate the performance of the model with beam search generation, we implement a
top-N evaluation strategy similar to that used in machine translation studies [30]. For each
input sequence, the model generates N candidate outputs (N=1,3,5), and we calculate the
WER for each candidate, recording both the best score and its position on the beam. This
approach helps assess the model’s ability to generate multiple valid transliterations, which
is particularly important for languages with multiple acceptable grapheme representations
for the same phoneme sequence.

The evaluation is stratified by language to account for the varying complexity of
phoneme-to-grapheme mapping across different writing systems. For each language, we
calculate the mean performance metrics along with their standard deviations, weighted
by the number of test samples. This stratification helps identify language-specific patterns
and potential biases in the performance of the model, similar to the approach used in the
evaluation of multilingual NLP [9].

5.1 Overall Performance

The model demonstrates strong performance in the majority languages, with:

– Mean Character Error Rate (CER): 0.055 (±0.167)
– Mean Character-level BLEU: 0.914 (±0.212)
– Exact Match Accuracy: 0.830 (±0.376)
– Top-3 WER: 0.026 (±0.115)

The high exact match rate and low CER indicate that the model successfully learns
phoneme-to-grapheme mappings for most languages.

1 The latest model is published to HF PolyIPA) and deployed to https://nelma.mondonomo.ai integrated
with the IPA dictionary for common names.
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Fig. 1. Distribution of Character Error Rates across all languages

5.2 Orthographic Depth Analysis

Performance correlates strongly with orthographic depth, a concept developed by [11] in
their Orthographic Depth Hypothesis. Languages can be classified along a continuum from
shallow (transparent) to deep (opaque) orthographies:

Shallow Orthographies (High Performance)

– Finnish (CER: 0.002): Known for nearly perfect grapheme-phoneme correspondence
– Spanish (CER: 0.000): Highly regular orthography
– Turkish (CER: 0.000): Consistent letter-sound relationships
– Croatian (CER: 0.000): Transparent orthographic system

Deep Orthographies (More Challenging)

– English (CER: 0.067): Complex historical influences [27]
– French (CER: 0.120): Multiple grapheme-phoneme mappings
– Chinese (CER: 0.522): Morphosyllabic writing system

5.3 Language Family Performance

High-Performing Language Families

1. Uralic Family:
– Hungarian (CER: 0.000)
– Finnish (CER: 0.002)
Reflects Abercrombie’s (1967) observation about phonemic writing systems

2. Turkic Family:
– Turkish (CER: 0.000)
– Uzbek (CER: 0.019)
Demonstrates success with agglutinative languages
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Fig. 2. Top-1 Performance Comparison (Top 20 languages by sample count))

Challenging Language Families

1. Sino-Tibetan:

– Chinese (CER: 0.522)

Consistent with Share’s (2008) analysis of non-alphabetic writing systems

2. Celtic:

– Manx (CER: 0.296)

– Scottish Gaelic (CER: 0.115)

Reflects historical orthographic complexity noted by [26]

5.4 Script Analysis

Performance patterns align with [21]’s Universal Writing System Constraint:

1. Latin script languages: Strong performance

2. Syllabic scripts (Thai, Khmer): Moderate performance

3. Logographic scripts: Lower performance

4. Alphabetic non-Latin: Good performance

5.5 Beam Search Analysis

The beam search results demonstrate:

1. Top-1 and Top-3 performance differences

2. Language-specific benefits from larger beam sizes

3. Correlation with orthographic depth
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Fig. 3. Top-3 Performance Comparison (Top 20 languages by sample count))

5.6 Error Pattern Analysis

Common error patterns align with the [29] typology of orthographic complexity:

1. Character substitutions in phonetically similar sounds
2. Diacritic mark variations
3. Higher error rates in:

(a) Non-phonemic orthographies
(b) Complex writing systems
(c) Limited training data case

6 Discussion

The experimental results demonstrate both the capabilities and limitations of our multilin-
gual phoneme-to-grapheme conversion approach. The model achieves strong performance
across most languages, particularly those with shallow orthographies, while revealing sys-
tematic challenges that align with theoretical expectations from linguistic research.

6.1 Performance Analysis

The performance of the model exhibits clear patterns correlated with the linguistic char-
acteristics of the target languages. Languages with shallow orthographies consistently
show excellent results (CER ¡ 0.005), supporting the Orthographic Depth Hypothesis
[10]. Finnish, Spanish, Turkish, and Croatian languages, all languages with highly reg-
ular grapheme-phoneme correspondence, achieve near-perfect accuracy. This aligns with
previous findings in cross-linguistic studies of writing systems [25].

However, significant challenges arise with deeper orthographies. English and French
show moderate error rates (CER of 0.067 and 0.120 respectively), reflecting their com-
plex historical influences on spelling conventions. The most challenging cases appear in
logographic writing systems, particularly Chinese (CER: 0.522), where the relationship
between phonemes and graphemes is fundamentally different from alphabetic systems.
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6.2 Error Analysis

Detailed error analysis reveals several systematic patterns:

1. Phonetic Proximity Errors: The most common substitution errors occur between
phonetically similar sounds, particularly within the same manner or place of articula-
tion. This suggests that the model has learned meaningful phonetic relationships, but
sometimes struggles with fine-grained distinctions.

2. Script-Specific Challenges: Performance varies significantly between writing sys-
tems, with Latin-based scripts showing the highest accuracy, followed by other alpha-
betic systems, syllabaries, and finally logographic scripts. This hierarchy aligns with
Perfetti and Liu’s [21] Universal Writing System Constraint.

3. Resource Effects: Languages with limited training data show a higher variance in
performance, indicating the importance of quantity and quality of data in model train-
ing.

6.3 Beam Search Analysis

The implementation of beam search significantly improves the model’s practical utility.
Although the accuracy of the top-1 provides strong results for many languages (mean
CER: 0.055), including the top-3 candidates reduces the effective error rate by 52 7%
(to CER: 0.026). This improvement is particularly pronounced in languages with multiple
valid grapheme representations for the same phoneme sequence.

6.4 Limitations

Several limitations warrant acknowledgment:

1. The model’s performance degrades significantly for languages with complex morphophono-
logical rules that are not captured in the training data.

2. The current approach does not explicitly handle tone languages, treating tonal markers
as diacritics rather than integral phonological features.

3. The model occasionally produces phonologically valid but historically incorrect translit-
erations for proper names, particularly when crossing language families.

6.5 Cultural and Ethical Considerations

The development and deployment of automated name transliteration systems raises impor-
tant cultural and ethical considerations, particularly regarding proper names and under-
represented languages. Names often carry deep cultural, religious, and personal significance
that transcends their phonetic representation. Our analysis reveals several key challenges
in this domain.

Cultural Identity Preservation The preservation of cultural identity through accurate
name transliteration remains a critical concern. Names in many cultures carry meaning
beyond their phonetic value, often incorporating references to family history, cultural
traditions, or religious significance [1]. The current model architecture, while phonetically
accurate, may not fully capture these cultural dimensions. This limitation is particularly
evident in cases where names undergo significant transformation during transliteration,
potentially losing cultural markers or significance.
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Data Representation and Power Dynamics The training data distribution reflects
historical power dynamics in global language use. Despite our efforts to include diverse
language sources, the dataset shows inherent biases toward well-documented, majority
languages. This imbalance risks perpetuating existing inequities in cross-cultural commu-
nication and potentially marginalizing naming conventions from underrepresented com-
munities [4].

Standardization vs. Cultural Variation The standardization inherent in automated
systems may inadvertently promote the homogenization of naming practices. While our
model achieves high accuracy in phonetic conversion, it may not adequately account for
the intentional variations in name spellings that communities use to maintain cultural dis-
tinctiveness. This is particularly relevant for indigenous communities and minority groups
who have historically resisted linguistic assimilation.

To address these concerns, we propose several recommendations:

1. Development of community-driven validation mechanisms that allow cultural groups
to review and correct automated transliterations

2. Integration of cultural metadata to preserve name meanings and contexts alongside
phonetic conversions

3. Creation of specific evaluation metrics that consider cultural accuracy alongside pho-
netic accuracy

4. Implementation of user interfaces that clearly communicate the limitations of auto-
mated transliteration and provide options for manual override

These considerations are particularly important as transliteration technology becomes
more widely adopted, potentially influencing how names are recorded and transmitted
across cultural boundaries. Future work should prioritize the development of more cultur-
ally aware systems that can balance phonetic accuracy with cultural preservation.

The current limitations of our approach extend beyond technical constraints to include
several cultural and ethical challenges:

– Training Data Biases: Despite efforts to create a balanced dataset, our training data
inherits historical biases in documentation and standardization of naming practices.
Languages with extensive written records and standardized transliteration systems are
overrepresented, while indigenous and minority naming systems may be underrepre-
sented or absent.

– Cultural Context Loss: The model’s focus on phonetic accuracy may not capture
important cultural contexts and meanings embedded in names. This limitation is par-
ticularly acute for names with religious or cultural significance that require preservation
of specific orthographic features regardless of pronunciation.

– Naming Convention Diversity: Our current approach may not adequately handle
diverse naming conventions, such as patronymics, matronymics, or clan-based naming
systems that follow different structural patterns from those dominant in our training
data.

– Script-Specific Cultural Practices: Some writing systems incorporate cultural
practices around name representation that go beyond phonetic representation, such
as the use of specific characters for names in Chinese or the inclusion of honorific
markers in Japanese names.

These limitations highlight the need for continued development of culturally sensitive
approaches to automated name transliteration.
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7 Future Work

Based on our findings and analysis, we identify several promising directions for future
research.

7.1 Model Architecture Improvements

1. Phonetic Similarity Models: Development of a unified model that would, for a given
IPA string and language, generate IPA rendering of similar sounding words for a typical
speaker of a given language.

2. Script-Specific Encoders: Developing specialized encoding layers for different writing
systems could better capture script-specific features and improve performance across
various orthographies.

3. Morphological integration: Incorporating morphological analysis could help handle
complex derivational and inflectional patterns that affect grapheme selection.

7.2 Data Enhancement

1. Targeted Data Collection: Expanding the training data for underrepresented lan-
guages and scripts, particularly focusing on languages with complex orthographic sys-
tems.

2. Generating synthetic data: Expanding the training data using well performing .
3. Comprehensive Data Cleaning: Implementation of more thorough cleaning proce-

dures to address errors primarily arising from Wiktionary parsing issues.
4. Historical Pattern Mining: Incorporating historical linguistics data to better handle

etymology-based spelling patterns, especially for proper names and borrowed words.

7.3 Feature Engineering

1. Phonological Feature Integration: Explicitly modelling phonological features could
improve the handling of sound changes across language boundaries.

2. Prosodic Modelling: Developing better representations for suprasegmental features
such as tone and stress.

3. Enhanced Phonetic Similarity Metrics: Improving metrics for measuring phonetic
similarity by incorporating language-specific perceptual factors, as suggested by recent
research on cross-linguistic phonetic perception [2].

7.4 Evaluation Framework

1. Language-Specific Metrics: Developing evaluation metrics that account for system-
atic differences in writing systems and acceptable variation in transliteration.

2. User Studies: Conducting human evaluation studies to assess the practical utility of
the model’s outputs in real-world applications.

3. Cross-Linguistic Validation: Expanding evaluation to include more systematic test-
ing of cross-linguistic name adaptation patterns.
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