
Acceleration of CUDA Kernels through

Fusion

Measurements for AvgPool2D and ReLU

Andreas Falkenberg

Dr Falkenberg Technology Consulting Inc.
Escondido, California 92026

Abstract. Acceleration of LLMs (large language models) requires the use of always advancing
compiler technologies. The fusion of operators is one of the promising techniques to considerably
improve the throughput of LLMs. This paper discusses the impact of operator fusion on the
direct operator performance. The paper compares throughputs between pure CPU implementation,
versus two kernel implementations versus a fused single kernel solution for AvgPool2D fused with
ReLU.

Keywords: AvgPool2D, ReLU, Kernel, AI, LLM, GPU, CPU

1 Overview

One advanced optimization step in the development process of large language mod-
els (LLM) is the use of fused operators. Operator fusion is one of the techniques,
which allow a considerable improvement of the throughput of an LLM running
on accelerator hardware. It targets the shortcomings of using accelerators, which
require to upload and download the data between each operation. This process is
considerably shortend by the use of operator fusion. This paper specifically provides
some measurements of the direct improvement of operator fusion by comparing op-
erator performance with and without fusion being applied. In the paper the results
of AvgPool2D operator fused with the ReLU operator is presented.

2 Introduction

In recent years the push for and the growth of Large Language Models (LLM)
provided new challenges for processor and compiler developers to improve the
throughput and performance of such models. The main challenge is to stay within
the constraints of already existing hardware. Although hardware accelerators enter
the market in relative rapid succession, companies may not be willing to upgrade
their compute ressources with each new generation of processors and accelerators.
Usually a software upgrade and tool upgrade is much more common and easier to

David C. Wyld et al. (Eds): SIGML, CNSA, MoWiN, CCSEIT, NIAI, AIAP – 2025
pp. 169-178, 2025. -CS & IT CSCP 2025 DOI: 10.5121/csit.2024.150213

https://airccse.org/
https://airccse.org/csit/V15N02.html
https://doi.org/10.5121/csit.2024.150213

achieve compared to an actual hardware upgrade. Essentially there are two areas,
which are targeted to improve performance of LLMs. First there is the improvement
of the hardware by utilizing new hardware architectures and improving existing
hardware architectures by adding specific features, which benefit the processing of
neural network workloads. The other area is the improvement by software tools.
Specifically AI compilers are under development, which boost the performance of
exising hardware by utilizing the specific AI accelerating features. [1] [2] [3] They
also need to adapt quickly to support new features of new hardware. These op-
timizations are often in the area of parallel execution of workloads, faster data
transfer between nodes and faster loading of kernels into the hardware to name
a few. One newer optimization technique is the fusion of multiple neural network
nodes into one single node. Thereby a set of operators are identified as fuseable,
combined into one operator and finally mapped to the appropriate fused kernel.
This paper discusses fusion [4] of a AvgPool2D [5] operator with a ReLU oper-
ator [6]. The following sections provide a brief discussion of the underlying idea,
then discuss some of the implementation and test features and environment. Lastly
measured results are presented and a conclusion is given.

3 Motivation

A neural network workload constitutes of many nodes which mostly are executed
individually or in eager mode. Eager mode means even with accelerating hardware,
each node is executed on an individual basis and therefore the data is loaded in
and out of the accelerator after each operation. A huge amount of data may be
loaded to the accelerator, which then in a very aggressive highly parallel effort,
performs such an operation quickly utilizing the parallel feature of the hardware
accelerator and then load the result of said operation back to the host processor.
A second node is processed in the exact same way, which means that the same or
maybe a reduced or enlarged amount of data is loaded into the accelerator and
the appropriate process is performed again. The neverthless means that data which
might as well be processed within the same hardware is uploaded and downloaded
between processing steps albeit being already at the correct location or stored in
the correct memory. By fusing nodes the additional upload and download step
of interim results are removed and the appropriate steps are directly performed.
This usually leads to a considerable improvement in throughput and performance
of the adapted model. We can see this specifically in the combination of matrix
multiplication with immediately following activation functions. The optimization
of matrix multiplication and its fusion with activation functions seems to be already
widely discussed [7], [8]. In many publications only the overall impact on existing
models is discussed [9], whereas there is little to no discussion about the impact
of the individual contributing node, which is of utmost importance for developers
of original neural network architectures [10] . In this paper we discuss one specific

170 Computer Science & Information Technology (CS & IT)

combination of operations, which are very common in the context of Large Language
Models. The first is the AvgPool2D function and the second is the ReLU function.
Other publications will follow to discuss other combinations of operations.

4 The Approach

Different solutions were executed to compare the runtime of a AvgPool2D operator
and a ReLU operator between CPU and CUDA solutions. A small model with one
AvgPool2D operator and one ReLU operator with flexible shapes is implemented in
C++ to run on a CPU. Then a total of three kernels are developed in CUDA. The
first kernel represents the AvgPool2d operation, the second kernel represents the
ReLU operator and the third kernel represents the fused kernel, which constitutes of
the said AvgPool2D operator directly followed by tbe ReLU operator implemented
in one CUDA kernel.

4.1 AvgPool2D kernel implementation

The implementation of the AvgPool2D kernel is based on the mathematical repre-
sentation shown in equation 1:

avgPool2D(Ni, Cj , h, w) =
1

kH ∗ kW

kH−1∑
m=0

kW−1∑
n=0

input(Ni, Cj , stride[0]× h+m, stride[1]× w + n)

(1)

The kernel is implemented in CUDA. The inner two loops are implemented on
each of the nodes, which therefore would perform kH ∗ kW operations each. The
outer loops are mapped to the nodes of the CUDA hardware.

4.2 ReLU kernel implementation

The ReLU kernel is based on the mathematical definition in equation 2:

ReLU(x) = max(x, 0) (2)

Each kernel performs the above ReLU operation, therefore multiple of these
operations can be mapped onto the CUDA platform to be executed in parallel. For
this specific exercise there is no further optimization performed and the original
ReLU function is used as in Figure 1. Nevertheless it is recognized that there are
proposals to improve the ReLU operation considerably by using partial functions
with linear approximations.

In the following sections the results are measured and presented.

Computer Science & Information Technology (CS & IT) 171

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

x

R
eL

U
(x
)

Fig. 1. ReLU function

5 Results

In this section we show the results when running the individual kernels on CPU,
then we show the combined solution running on CPU. Further we show the perfor-
mance of the two CUDA kernels running back to back on a CUDA platform, and
finally compare that with the fused kernel solution, which shows the real benefit of
performing fusion in the first place.

5.1 CPU implementation of AvgPool2D

The first result is based on a CPU implementation of AvgPool2D in C++ on a
PC. In Figure 2 we can clearly identify a linear behaviour based on the number of
input elements. The kernel size as well as the stride size are set to eight for each
dimension.

5.2 AvgPool2D in sequence with ReLU on CPU

The next implementation combines the AvgPool2D algorithm with ReLU. Since it
is performed on the CPU we do not need to make a difference between the sequential
and the parallel execution as well as the combined execution of the two operators.

The Figure 3 shows the result for AvgPool2D with ReLU in sequence. The
inclusion of ReLU hardly contributes to the overall result on CPU.

In Figure 4 a direct comparison of AvgPool2D without and with ReLU is shown.
It is recognized that exercising ReLU on a CPU does not significantly change the

172 Computer Science & Information Technology (CS & IT)

0 500 1,000 1,500 2,000 2,500 3,000

0

0.5

1

1.5

2

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 2. AvgPool2D on CPU

0 500 1,000 1,500 2,000 2,500 3,000

0

0.5

1

1.5

2

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 3. AvgPool2D with ReLU on CPU

Computer Science & Information Technology (CS & IT) 173

overall runtime. The main explanation is that there is no additional allocation of
memory involved since ReLU directly writes back to the same element. Further the
number of elements is reduced now by 64, because the AvgPool2D operation uses
a 8x8 inner dimensions for our example.

0 500 1,000 1,500 2,000 2,500 3,000

0

0.5

1

1.5

2

dx

se
c

onlyAvgpool2D

withReLU

Fig. 4. AvgPool2D with/without ReLU on CPU

5.3 Performance of AvgPool2D kernel on CUDA

In the following subsections the CUDA results are presented. The first results as
shown in Figure 5 are based on the AvgPool2D cuda kernel. It shows that the par-
allel execution leads to almost no difference between smaller and larger workloads.
The presented workloads are still small and therefore the major impact comes from
the overhead of engaging with the GPU in the first place. Nevertheless the results
clearly show that the CUDA implementation has a huge impact on the performance.

5.4 Performance of ReLU kernel on CUDA

If we only run the ReLU kernel Figure 9 shows that for most cases the overhead to
engage with the GPU has a higher impact than performing ReLU directly on the
CPU. Nevertheless part of it is misleading since on the CPU we do not count the
impact of the memory allocation, which is already done as part of the AvgPool2D
output matrix memory allocation.

174 Computer Science & Information Technology (CS & IT)

0 500 1,000 1,500 2,000 2,500 3,000
5 · 10−2

0.1

0.15

0.2

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 5. AvgPool2D on CUDA

0 500 1,000 1,500 2,000 2,500 3,000

2

3

4

·10−2

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 6. ReLU on CUDA

Computer Science & Information Technology (CS & IT) 175

5.5 AvgPool2D and ReLU in sequence

To provide some better datapoints Figure 7 shows running the AvgPool2D and the
ReLU back to back, yet using separate kernels. We can clearly also see that there
is some overhead compared to the prior solution.

0 500 1,000 1,500 2,000 2,500 3,000
5 · 10−2

0.1

0.15

0.2

0.25

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 7. AvgPool2D and ReLU sequential on CUDA

The best result is achieved by using the fused kernel. The fused kernel incor-
porates AvgPool2D and ReLU into one kernel and therefore the output of the
AvgPool2D is directly processed. The first result does not need to be copied to
the main memory and back to the kernel memory of the ReLU kernel any more.
This allows to shave off a significant portion of the runtime and improve the per-
formance significantly. Figure 8 shows the result of the fused kernel running on a
CUDA capable device.

6 Conclusion

We conclude that kernel fusion has a significant impact on the performance and
the throughput of a model. Although the fused kernel was not integrated into a
realistic LLM workload this initial research already shows significant progress. The
Figure 9 combines the most significant results. We can see that only when a small
matrix is used, i.e. at or below 128x3096, the CPU solution may be faster.

The herein presented results are based on the implementation of a new CUDA
based library, which concentrates solely on fused kernels for AI workloads. The
progress of this work can be followed at [11]

176 Computer Science & Information Technology (CS & IT)

0 500 1,000 1,500 2,000 2,500 3,000
5 · 10−2

0.1

0.15

0.2

dx

se
c

dy = 512

dy = 1024

dy = 1536

dy = 2048

dy = 2560

dy = 3072

Fig. 8. AvgPool2D and ReLU fused on CUDA

0 500 1,000 1,500 2,000 2,500 3,000

0

0.5

1

1.5

2

dx

se
c

CPU

CUDA

CUDAfused

Fig. 9. CPU vs CUDA vs fused CUDA

Computer Science & Information Technology (CS & IT) 177

References

1. Alwani, Manoj and Chen, Han and Ferdman, Michael and Milder, Peter, Fused-layer CNN
accelerators, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016.

2. Cai, Xuyi and Wang, Ying and Zhang, Lei, Optimus: An Operator Fusion Framework for Deep
Neural Networks, ACM Trans. Embed. Comput. Syst. , Association for Computing Machinery,
Jan. 2023.

3. Liu, Zihan and Leng, Jingwen and Chen, Quan and Li, Chao and Zheng, Wenli and Li, Li and
Guo, Minyi, DLFusion: An Auto-Tuning Compiler for Layer Fusion on Deep Neural Network
Accelerator, 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), 2020.

4. Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Alexandre V. Evfimievski and Prithvi-
raj Sen,On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML,
https://arxiv.org/abs/1801.00829, 2018.

5. Fanyi Wang and Haotian Hu and Cheng Shen, BAM: A Balanced Attention Mechanism for
Single Image Super Resolution, https://arxiv.org/abs/2104.07566, 2021.

6. Abien Fred Agarap, Deep Learning using Rectified Linear Units (ReLU),
https://arxiv.org/abs/1803.08375, 2019.

7. Acharya, Aravind and Bondhugula, Uday and Cohen, Albert, Effective Loop Fusion in Polyhe-
dral Compilation Using Fusion Conflict Graphs. ACM Transactions on Architecture and Code
Optimization, Association for Computing Machinery (ACM), Sep. 2020.

8. Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu and Li Shen, Deep Model Fusion: A
Survey, https://arxiv.org/abs/2309.15698, 2023.

9. Wang, Jianan and Shi, Yang and Chen, Zhaoyun and Wen, Mei, CORF: Bridging the Gap
of Complex Operator Fusion for Faster DNN Inference, 2022 IEEE 24th Int Conf on High
Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th
Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems
& Application (HPCC/DSS/SmartCity/DependSys), 2022.

10. Wei Niu, Jiexiong Guan, Yanzhi Wang , Gagan Agrawal and Bin Ren, DNNFu-
sion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion,
https://arxiv.org/abs/2108.13342, 2021.

11. Andreas Falkenberg, Fused Operators in CUDA, https://github.com/afalkenberg/AIFusionCuda,
2024.

Authors

Andreas Falkenberg is the CEO and founder of Dr Falkenberg Technology Con-
sulting Inc. He received his PhD in Computer Science from TU Dortmund in 1998
and a second PhD in Telecommunication Systems from University of Glamorgan
in 2007. His research interests are in kernel development for large language models,
compiler design and embedded system development.

178 Computer Science & Information Technology (CS & IT)

 . This article is published under the Creative Commons
Attribution (CC BY) license.
© 2025 By AIRCC Publishing Corporation

https://airccse.org/

