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Abstract. Human gesture recognition is often implemented in many HRI applications. Building datasets
that involve human subjects, when aiming to capture comprehensive diversity and all possible edge cases
is often both challenging and labor-intensive. While applying the concept of domain randomization to
build synthetic datasets helps address the problem, an innate reality gap always exists that needs to be
mitigated. In this paper, We present and discuss a comprehensive performance comparison of our synth
datasets with real ones and demonstrate the results in this paper.

1 Introduction

In recent years, the application of deep learning and machine learning techniques has
become paramount for various computer vision applications such as object recognition,
localization, and segmentation [34]. A considerable time is often spent by many deep learn-
ing practitioners in finding suitable datasets for their projects, followed by the necessary
pre-processing and data-cleaning processes before applying any of the machine learning
techniques [12, 19].

Furthermore, for human-centric computer vision applications such as hand gesture
recognition, pose detection, and localization, an often challenging step of the process is
obtaining suitable datasets that satisfy the annotation requirements, mainly due to the hu-
man body’s fluidity in shape, having many degrees of freedom with various of joints, unlike
most solid objects [28, 27]. Moreover, annotations can drastically vary with activity and
gesture recognition applications as per project requirements, with different interpretations
conveyed by the same pose or gesture, especially in the case of sign language. As a result,
many machine learning and deep learning practitioners often build and annotate custom
datasets for human-centric computer vision applications according to their requirements.

Common practices for building custom datasets often involve a tedious process of
capturing pictures or videos of poses from either a set of limited subjects under controlled
conditions or the practitioners themselves, usually indoors [32, 30, 43]. As a result, the
custom datasets often lack scale and variability, rendering them impractical for reuse in
other projects depending on complexity, requiring the practitioners to repeat the steps for
newer projects.

While practices such as web scraping from an image search engine or acquiring video
snippets from video-sharing platforms such as YouTube can solve the problem of scale,
the cleaning and annotation process at such a high scale is extremely time-consuming [6],
with practitioners often having tens of thousands of images or video frames to process.
Real et al. [33] presents various stages and numerous challenges in cleaning, selecting, and
annotation of data from YouTube videos for computer vision applications. Depending on
the practitioner, human errors in annotations are also possible, which can cause another
set of problems with the model performance [31, 35].

The recently emerged domain randomization technique addresses the above-mentioned
challenge of annotation and scale by proposing to train the deep learning models with
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Fig. 1. Comparison of model performance trained for accuracy metric with the synthetic train set with
varying mix percentages of real train data with convolution weights trained (top) from scratch with data
augmentation (bottom)from scratch without data augmentation
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Fig. 2. Comparison of model performance for F1 score metric trained with the synthetic train set with
varying mix percentages of real train data with convolution weights trained (top) from scratch with data
augmentation (bottom)from scratch without data augmentation
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simulated data that transfer to real data [38]. The technique emphasizes randomizing
rendering during training while adding variability in the simulation to the extent that the
real world may also appear as just another variation to the simulation. However, there is
also a reality gap [38] problem that accompanies the use of synthetic datasets for training,
when simulators are unable to produce the photo-realistic textures and lighting that match
their real counterparts. Several publications in the recent literature have addressed the
reality gap problem [39, 41, 13, 15, 25], proposing methods to mitigate this problem.

Recent literature has seen an emergence of several synthetic datasets for various com-
puter vision applications such as object recognition [1, 20, 14, 16], gait detection [9], and
semantic segmentation [2, 3]. Pipelines to build synthetic data such as Unity Perception
toolkit [40] were also proposed for many applications.

In our recent work, we have introduced a pipeline for building synthetic image datasets
for hand gesture recognition [7], while introducing three synthetic datasets built using the
pipeline, similar to the Sign Language for Numbers (Digits Dataset) [18], American Sign
Language dataset [22], and HANDS dataset [26] respectively, and discussed the simulation
environment, generation parameters, and synthetic dataset comparison with their real
counterparts. The datasets are publicly available on IEEE Dataport [8].

In this work, we present the comparison of the digits dataset from [7] with its real
dataset counterpart Sign Language for Numbers dataset [18], and discuss the performance
comparisons for gesture recognition.

2 Related Work

The foundational principle of domain randomization[17] has been exploited to study and
publish several human-centric synthetic datasets and respective pipelines over recent years.

The SURREAL dataset introduced by Varol et al. [42], presented a dataset con-
taining more than 6 million frames of synthetic human activity. Their work resulted
from the application of the motion capture data from the CMU motion capture dataset
(http://mocap.cs.cmu.edu/) onto several SMPL-generated human body models [23] and
annotated for semantic segmentation of body parts and human pose estimation. Never-
theless, while off-the-shelf motion capture datasets expedite the data generation process,
custom projects may have difficulty obtaining a dataset with the required custom hand
gestures.

The Sans People generator[10] was introduced by Unity Technologies for generating
various human-centric datasets for computer vision detection, localization, segmentation,
and pose estimation. The generator consists of a unity scene with a virtual background
screen with rapidly changing background wallpapers, and spawning human models with
random poses and obstructive objects with random orientations. Annotated data is gen-
erated and captured during the scene for various computer vision applications. However,
the generator has limitations that make it challenging to confine the human models to a
predefined set of poses.

A synthetic sign language dataset generation pipeline for gesture recognition was dis-
cussed in Miura et al. [24], where they applied a set of sign language poses onto a set of
synthetic human models from the SURREAL dataset. The dataset, however, consists of
only full-body images, while a common practice with hand gesture datasets is to capture
only hand signs. Moreover, the dataset does not use varying background textures to add
variations to the dataset.

A synthetic hand gesture generating tool was introduced by [11], but the dataset
generated is limited to driving scenarios. Furthermore, the tool generates images that
mimic depth and infrared cameras.
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Fig. 3. Comparison of model performance trained for accuracy metric with the synthetic train set with
varying mix percentages of real train data with convolution weights trained (top) with transfer learning
and data augmentation (bottom) with transfer learning without data augmentation
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Fig. 4. Comparison of model performance trained for F1 score metric with the synthetic train set with
varying mix percentages of real train data with convolution weights trained (top) with transfer learning
and data augmentation (bottom) with transfer learning without data augmentation
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Model Real Synthetic Mix 10% Mix 70%
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

VGG19 0.75 0.76 0.12 0.12 0.49 0.48 0.74 0.72
Inception-v3 0.09 0.0 0.09 0.04 0.11 0.10 0.14 0.13
Xception 0.09 0.0 0.11 0.10 0.14 0.11 0.36 0.34

Table 1. Model performance comparison with Data Augmentation and model weights trained from scratch

Lindgren et al.[21] also discussed a framework to learn hand gestures using synthetically
generated training samples, however, the framework only used one humanoid robot model
with depth images for the classification problem.

3 Methods

As mentioned in the introduction, we use the digits dataset from [7] for the classification
problem. Training methods, optimization parameters, performance metrics, and methods
are further discussed here.

We have used VGG19 [36], Inception-v3 [37], and Xception [4] model architectures,
some of the commonly used models for image classification, to perform on both the real
and synthetic datasets for comparison. For each model, the original dense layers of the
architecture are replaced with new dense layers to fit the number of classes in the digits
dataset.

To compare the model performances on the datasets, we have decided to use the
performance against the test set of the real dataset for all the models. The rationale for
this is that the models are trained to work with real-world data, and also help understand
the effect of synthetic data. Furthermore, this method of evaluation on mixed datasets
provides more insight into their effect in addressing the problem of the reality gap for
classification problems. Also, testing all models against one test set helps us evaluate all
the methods fairly.

Each model is set to be trained with and without transfer learning [29]. In the case
of the former, Imagenet weights [5] have been used on the convolutional layers, and the
weights in the convolution layers are set to be frozen for this case. The models are also
trained with and without the presence of data augmentation. Width shift, height shift,
rotation, and sheer variations to the augmentation. However, we did not use vertical
and horizontal flips to the variations, since all images are left-handed in the datasets.
Considering the augmentation and transfer learning variations, we train 4 models per
model architecture, totaling 12 trained models for each dataset. All models use the Adam
optimizer in this study. The learning rate for the optimizer is set to 10−5 and categorical
cross-entropy is used for the loss.

All datasets are set to be split into 60% train, 20% validation, and 20% test sets
respectively. To add more variations to the study, mix ratio datasets were built by mixing
the synthetic dataset with various mix ratios of the real dataset to study their model
performances along with that of the real and synthetic datasets. In this study, the mix
ratios are varied from 10%-70% of the real dataset, with increments of 10%, totaling 7
mix ratio train sets for evaluating the effect of the mixing.

With the addition of the mix train sets, to the real and synthetic datasets, we have
trained a total of 9 training sets, each trained with 12 different models, totaling 108 models
for performance comparison. Various performance trends for the same are shown in the
discussion section.
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Fig. 5. comparison of VGG19 model performance in different cases of data augmentation and transfer
learning (top) Accuracy (bottom) F1 score
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Since the models are trained for classification, the performances are evaluated using
categorical accuracy and F1 score, both commonly used metrics for robust classification
problems. Performance metrics are shown in tables 2-4, discussed in the next section.

4 Discussion

Model performances on the datasets were compared with various parameters, as explained
in this section. We focus on the effect of transfer learning, data augmentation, and the
effect of mixing various percentages of real training data into the synthetic dataset on the
model performances. Performances are measured using the accuracy and F1-score metrics
for all cases.

Model Real Synthetic Mix 10% Mix 70%
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

VGG19 0.62 0.13 0.23 0.20 0.25 0.13 0.51 0.31
Inception-v3 0.80 0.80 0.25 0.24 0.53 0.50 0.72 0.72
Xception 0.85 0.84 0.29 0.25 0.53 0.50 0.76 0.75

Table 2. Model performance comparison with Transfer Learning and Data Augmentation

Figures 1 and 2 shows the performance results of the models with accuracy and F1-
score metrics respectively. As seen in every case, the performance generally improves with
an increasing mix ratio of the real train dataset. It can also be noted that performances
in both metrics show very similar trends. The difference between the lowest and highest
ratios of mixing in all cases was as high as 0.3 for both accuracy and F1-score metrics.
This shows the effect of the reality gap, while also showing that it can be mitigated with
the mixing of the real data into the synthetic train datasets while training the models, to
improve the model performance.

As mentioned in the methods section, all three models were trained with and without
transfer learning. For consistency, only the weights in the convolution layers of the models
were frozen in the case of transfer learning for every model, while the dense layers were
unfrozen in all cases. Imagenet weights are used for all transfer learning cases.

From figures 1 and 2, it can be observed that VGG19 model architectures show signif-
icantly better performance compared to that of Inception-v3 and Xception architectures
when their weights are trained from scratch. Both accuracy and F1 score differences were
as high as 0.3 for every mix ratio.

Data augmentation’s effect on performance shows improvement in performance in all,
if not most cases. This is true for every case of the mix ratio in the train set, as seen from
comparing the plots in figures 1, 2, 3, and 4 respectively. The difference in performance
was as high as 0.1 for both metrics with the addition of data augmentation to the training
process. Hence we can recommend data augmentation to be used while training for better
results. Another interesting observation was that data augmentation’s effect on improving
performance was considerably higher than increasing the mix ratio, especially in cases
with low model performance. This is true irrespective of transfer learning employed.

Furthermore, plots from figures 5, 6, and 7 show the model performances of VGG19,
Inception-v3 and Xception models for all cases. It can be seen that the mix model per-
formance at 40% - 60% of the real data mixed into the synthetic data, is close to that
of the 70% mix model performance. This shows that the smaller datasets can add more
generalization and performance when mixed and trained with synthetic data.
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Fig. 6. comparison of Inception-v3 model performance in different cases of data augmentation and transfer
learning (top) Accuracy (bottom) F1 score
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Fig. 7. comparison of Xception model performance in different cases of data augmentation and transfer
learning (top) Accuracy (bottom) F1 score
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Model Real Synthetic Mix 10% Mix 70%
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

VGG19 0.58 0.09 0.22 0.16 0.26 0.13 0.44 0.16
Inception-v3 0.74 0.74 0.25 0.24 0.45 0.43 0.62 0.63
Xception 0.80 0.78 0.28 0.25 0.40 0.39 0.67 0.63

Table 3. Model performance comparison with Transfer Learning and without Data Augmentation

Model Real Synthetic Mix 10% Mix 70%
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

VGG19 0.88 0.89 0.15 0.14 0.56 0.56 0.75 0.72
Inception-v3 0.09 0.0 0.08 0.03 0.17 0.15 0.22 0.20
Xception 0.09 0.0 0.09 0.08 0.21 0.17 0.24 0.24

Table 4. Model performance comparison without data augmentation and model weights trained from
scratch

Tables 2-4 show the model performances on the real test set when trained with the
synthetic dataset and with 10% and 70% mix ratios with real dataset with combinations
of augmentation and transfer learning.

An interesting case to observe was that both Inception-v3 and Xception models per-
formed very poorly even when trained with real datasets, even when all the weights were
trained from scratch. Interestingly, the corresponding models trained with mixed datasets
performed much better than that of models trained with real data in the same case.

In all cases, it has been found that training the model with synthetic train set alone
yielded poor results compared to that of the models trained with real train set. However,
even in the case of 10% mix ratio, the model performance improves significantly. As ex-
pected, with a higher mixed ratio, the performance is closer to that of the real dataset.It
has been observed that while both transfer learning and data augmentation has positive
effects on model performance, the effect of transfer learning is much more significant.

5 Conclusion

In this paper, a performance comparison of various models was demonstrated against
the digits dataset and its real counterpart. While keeping the optimization parameters
constant, the effect of data augmentation and transfer learning varied for each comparison.
It has been shown that training with only the synthetic dataset results in poor performance
on the real test set. However, transfer learning with imagenet weights has been shown to
greatly improve the model performance trained on just synthetic dataset. Yet, at the same
time, data augmentation has not been shown to improve the performance in this case. Most
of the performance differences can be attributed to the reality gap that can be observed
between the synthetic and real datasets. The performance difference can also be attributed
to the images in synthetic dataset not being photo-realistic. Better performance may be
achieved if more realistic models are used to build the synthetic datasets.

We have also discussed the possibility of addressing the reality gap by mixing various
ratios of real data into our dataset and evaluating the model performances. Results show
that real data mixing causes a significant performance increase compared to training the
models with only synthetic datasets. Moreover, a higher mix ratio correlates to model
performances close to that of the models trained with real datasets. However, acceptable
performance results were achieved even when close to 50% of the real data was mixed
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into the synthetic data for training, showing the positive effects of using this method with
smaller datasets.

We can conclude that the models trained with our synthetic dataset are not suitable
for real-world applications directly. We have shown that training models with real datasets
mixed into the synthetic dataset makes them suitable for real-world applications. Thus,
our method of building synthetic hand gesture datasets is shown to be very useful in
cases where the existing real datasets are considerably small to generalize the real-world
problem. Mixing the synthetic dataset with smaller datasets can help with building models
that can better generalize images when deployed in the real world.

References

1. Chafic Abou Akar, Jimmy Tekli, Daniel Jess, Mario Khoury, Marc Kamradt, and Michael Guthe.
Synthetic object recognition dataset for industries. In 2022 35th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), volume 1, pages 150–155, 2022.

2. William S. Armstrong, Spencer Drakontaidis, and Nicholas Lui. Synthetic data for semantic image
segmentation of imagery of unmanned spacecraft, 2022.

3. Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool. Learning semantic segmentation from
synthetic data: A geometrically guided input-output adaptation approach. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1841–1850, 2019.

4. François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.

5. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

6. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision (IJCV), 2015.

7. Pranav Vaidik Dhulipala, Samuel Oncken, Steven Claypool, and Stavros Kalafatis. Synthetic datasets
for hand gesture recognition. In Proceedings of IEMTRONICS 2024: International IoT, Electronics
and Mechatronics Conference, Volume 1, chapter 3. Springer, 2024.

8. Pranav Vaidik Dhulipala, Samuel Oncken, Steven Claypool, and Stavros Kalafatis. Synthetic Hand
Gesture Datasets: Digits and ASL, 2024. Dataset available at IEEE Dataport https://dx.doi.org/
10.21227/fje6-1t56.

9. Huanzhang Dou, Wenhu Zhang, Pengyi Zhang, Yuhan Zhao, Songyuan Li, Zequn Qin, Fei Wu, Lin
Dong, and Xi Li. Versatilegait: a large-scale synthetic gait dataset with fine-grainedattributes and
complicated scenarios. arXiv preprint arXiv:2101.01394, 2021.

10. Salehe Erfanian Ebadi, You-Cyuan Jhang, Alex Zook, Saurav Dhakad, Adam Crespi, Pete Parisi,
Steve Borkman, Jonathan Hogins, and Sujoy Ganguly. Peoplesanspeople: A synthetic data generator
for human-centric computer vision. 2021.

11. Amr Gomaa, Robin Zitt, Guillermo Reyes, and Antonio Krüger. Synthogestures: A novel framework
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