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ABSTRACT 
 
Compositional Zero-Shot Learning (CZSL) aims to recognize subtle differences in meaning 

or the combination of states and objects through the use of known and unknown concepts 

during training. Existing methods either focused on prompt configuration or on using 

prompts to tune the pre-trained Vision-Language model. However, these methods faced 

challenges in accurately identifying subtle differences in meaning or combining states with 

objects. To jointly eradicate the above issues and construct an efficient and effective CZSL 

technique, we suggest a method to improve attribute recognition performance by utilizing 

diverse Prompt Learning with an Inter/Intra-Modality Fusion Synthesizer in scene 
understanding involving subtle semantic differences and multiple objects. 
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1. INTRODUCTION 
 
When encountering a new thing, such as a blue cat, people often attempt to name it despite the 

challenge of linking “blue” and “cat”' together. Compositional Zero-Shot Learning (CZSL) aims 

to recognize and distinguish new concepts. In addition, a detailed textual analysis is needed to 
understand the semantic differences. Then, it leverages visual information for matching. Previous 

researches [19], [10], [14], and [26] have focused on connecting attributes with object 

information to improve prediction accuracy for the final pair. After emerging CLIP [2], 
researchers use a compatible encoder and prompt, leading to better performance. [16], [22], [9] 

use soft prompts for pair labels, compared to hard prompts.  

 

A recent paper, DFSP [7], applies a pairing prompt that combined a soft and hard prompt 
composed of learnable tokens and ``a photo of [state] [object]." However, it struggles to capture 

subtle language differences using fixed prompts for pairs. Therefore, we develop a method for a 

better understanding of the connection and semantic differences of vision and language using 
hard and soft prompts. We conjecture those techniques are too simple to capture all the 

complexities in visuals and text, and aimed to develop a better method to understand the 

connection between vision and language for CZSL. We propose a learning method that applies 

hard and soft prompts to understand semantic differences. 
 

Instead of using just pair prompts, we suggest separating them into attribute, object, and pair 

prompts. In addition, we compared all possible prompt forms, i.e., hard, hard & soft, and soft 
prompt in Table III. The features are updated through the suggested Modal Fusion Synthesizer 
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Block (MFSB) to better understand complex intrinsic relationships. Decomposed text and image 
features based on separated prompts can be helpful rich information to understand complex 

scenes. We introduce Inter & Intra-modal fusion and Separated Prompts to improve CZSL with 

prompt learning techniques. 

 
Compared to DFSP [7], hard prompts are only applied for pairs, and the decomposed state and 

object prompts are in a soft form. It failed to grasp the subtle differences in Figure 3.There was a 

need for a prompt that focused on states and objects not covered by the current pair prompt. The 
proposed method uses visual representations for various conditions, with separate state and object 

settings. Our model outperforms traditional methods, with a significant improvement over 

baselines. The main contributions are:1) A suggested framework called Modal Fusion Synthesize 
Block (MFSB) uses the most optimal detached prompts: Pair, Object, and Attribute.2) Compared 

various Modality Fusion and refined features using Separated prompts and Cross-Attention. 3) 

Several experiments demonstrate that MFSB with Separated Prompts outperforms CZSL 

benchmarks. 
 

2. RELATED WORKS 
 

2.1. Compositional Zero-Shot Learning 
 

Compositional Zero-shot Learning (CZSL) improves traditional zero-shot learning by identifying 

new unseen classes during training. The model can learn new classes by generalizing to unseen 
attribute combinations with algorithm [1], ALE. CZSL is necessary because new classes keep 

appearing, making it impractical to retrain models for each one. OAD is [20] and others [29], [14], 

[21] suggested decomposing the encoder and decoder for each state, object, and pair with seen 
and unseen feature.DFSP [8] others [12], [9] use fusion prompt with visual and linguistic content 

before predicting. The paper demonstrated the importance of utilizing different types of prompts, 

such as pair, object, and state, to identify the optimal form, as well as enhancing performance 

through modal fusion techniques 
 

2.2. Prompt-based Learning 
 

The prompt has been utilized as a tool for fine-tuning in NLP [24]. Multiple prompt-based 

learning researches are done, for example, Visual Prompt [6] suggests the way to use the prompt 

in the computer-vision field. Red circle [22] has shown a remarkable visual prompt in fine-tuning 
with only the insertion of the red circle. Those modify prompts for the model instead of adjusting 

the entire architecture, which is more efficient. In CLIP [3] fine-tuning tasks, previous works 

adjusted the prompts to guide the model toward image classification goals. Prompt tuning can 
quickly adjust pre-trained models to diverse tasks without extra training. However, the research 

concerning the identification of an optimal prompt for CZSL is currently lacking, indicating the 

importance of this study. 

 

3. PROPOSED METHOD 
 

3.1. Preliminaries 
 

Compositional Zero-Shot Learning (CZSL) is the task of recognizing seen and unseen 

compositions for state and object. The baseline is DFSP [8], which implemented the 
decomposing and fusing module for each vision and text feature. To obtain a text feature, DFSP 

only uses a hard prompt that contains both state and object information as an input of the CLIP 

text encoder. DFSP [8] simply fused image and text features using a prompt to narrow the gap for 
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unseen. However, it was not enough to understand the subtle differences in visual and textual 
levels with only a simple pair prompt. [8] The use of single fusion methods in conjunction with 

paired data may present limitations in bridging the modality gap when attempting to comprehend 

language without separation. 

 
Thus, ours is divided in order to enhance clarity and understanding. Also, hard prompts and soft 

prompts possess distinct perspectives and characteristics, separate prompts are utilized to extract 

various types of linguistic features in order to enhance the understanding of these prompts, as 
shown in Table III. Our methodology is inspired by Human-Object Interaction techniques [26], 

[7], which compose a prompt using a bounding box and category features as a prompt, leading to 

a better performance. Therefore, we improve the feature diversity that covers subtle differences 
for unseen domains by using multiple prompts that cover different types of information, leading 

to a better understanding of subtle joint representation. 

 

As a primitive setting, we define a state set (A = {𝑠0, 𝑠1, …, 𝑠𝑛}) and an object set (O = {𝑜0, 𝑜1, 

…, 𝑜𝑛 }). Based on these two sets, a composition set 𝐶 = 𝐴 × 𝑂 with size 𝑛 × 𝑚  and 

subsets of the composition set 𝐶, 𝐶𝑠  ∩ 𝐶𝑜 = ∅ . The training set is represented as 𝑇 =
{(𝑥𝑖 ,  𝑐𝑖)|𝑥 ⊂ 𝑋, 𝑐 ⊂ 𝐶𝑠}, with input image X and seen composition label set 𝐶𝑠. 

 

 
 

Figure 1.  Overall Structure 

 

The description of MFSB includes both Inter-modality fusion, Intra-modality fusion, and 

distinguished text prompts for each element. Visual features are represented in circular form, 
while textual features are depicted in diamond form. Using the Inter-modality fusion modality, 

the textual content can strengthen awareness of each visual feature, object, and state. Through the 

Intra-modality fusion modality, the output of the Inter-modality fusion modality can exchange the 

same type of feature content but has common points. In visual, a different object but the same 
state is inserted as key and value, and in textual, the object that is most relevant to state labels is 

inserted as key and value. The order of process is Inter first, and then Intra-modality fusion. 
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3.2. Hard Pair Prompt 
 

As used in DFSP [8], hard pair prompt is denoted as: 𝑃𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 = {𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜𝑓, 𝑥𝑠 , 𝑥𝑜}. 

 

The prompt set is written as 𝑃𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑, which is composed of state and object vocabulary, 𝑥𝑡

𝑠 , 𝑥𝑡
𝑜 . v 

and t are image and text vector, which passed 𝐸𝑣 image encoder, 𝐸𝑡 text encoder, and ||·|| norm 

calculation. Then, we compute the similarity score for the pair classes: 𝑝𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 =

𝑠𝑖𝑚(𝑣𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 , 𝑡𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑)where𝑠𝑖𝑚(∙,∙)is a cosine similarity between vision and language vectors. 

 

After matching vision-language followed by the softmax function to obtain p, the cross-entropy 

loss is used to train the model:𝐿𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 = 𝐶𝐸(𝑝𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑 , 𝑦 = (𝑠, 𝑜)) 

 

3.3. Soft Separated Prompts 
 

Unlike previous CZSL [20], [27] studies, soft prompts have been applied to understand specific 

content to diverse features in CZSL [18], [8]. CoOp [30] has also improved recognition results by 
replacing hard with soft prompts. Additionally, we hypothesize that the pair prompt alone is not 

enough to extract information from a complex scene. Upon presenting the soft separated prompt, 

it has been confirmed that soft yielded better outcomes, while hard prompt has shown the best 

performance for a pair in Table III. In ours, the decomposition strategy for only state and object 
prompt differentiates information about individual elements, exchanging each information for 

detailed understanding, referring to Table IV The soft separated prompt combines visual and 

language data for objects and visual and textual features for attributes. 
 

3.3.1. Soft Attribute Prompt 

 

It is composed of learnable vectors and labels, and the prompt set is denoted as: 𝑃𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡 =

{𝑥0, 𝑥1, … , 𝑥𝑝, 𝑥𝑠}, and 𝑥0, … , 𝑥𝑝  is a prefix content, and 𝑥𝑠  is a state vocabulary. From the 

above, the matching scores are:𝑝𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

= 𝑠𝑖𝑚(𝑣𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

, 𝑡𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

). Based on extracted language and 

image features being matched, the class probability of Separated Attribute Prompt is p and cross-

entropy loss is measured with the target attribute class and denoted as: 𝐿𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡 = 𝐶𝐸(𝑝𝑎𝑡𝑡𝑟

𝑠𝑜𝑓𝑡 , 𝑦 =
(𝑠)). 
 

3.3.2. Soft Object Prompt 

 

It is composed of learnable vectors and labels, and the prompt set is denoted as: 𝑃𝑜𝑏𝑗
𝑠𝑜𝑓𝑡 =

{𝑥0, 𝑥1, … , 𝑥𝑝, 𝑥𝑜}, and 𝑥0, … , 𝑥𝑝 is a prefix content, and 𝑥𝑜 is an object vocabulary. Then the 

matching score is: 𝑝𝑜𝑏𝑗
𝑠𝑜𝑓𝑡 = 𝑠𝑖𝑚(𝑣𝑜𝑏𝑗

𝑠𝑜𝑓𝑡 , 𝑡𝑜𝑏𝑗
𝑠𝑜𝑓𝑡) .  From the above, the cross-entropy loss is 

measured with the target object class, and denoted as: 𝐿𝑜𝑏𝑗
𝑠𝑜𝑓𝑡 = 𝐶𝐸(𝑝𝑜𝑏𝑗

𝑠𝑜𝑓𝑡 , 𝑦 = (𝑜)). 

 

3.4. Modal Fusion Synthesizer Block (MFSB) 
 

MFSB improves state and object features by combining and breaking down text and images 
through two types of fusion. First, combine vision and text features through fusion: Inter-

modality fusion. Secondly, same-type fusion, Intra-modality fusion. The best choice for refining 

a feature is to first focus on Table V, Inter- and then Intra-modality fusion. It guides object, 
attribute, and pairing information in fusion and decomposition stages and improves 
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understanding of information processingover time. In each fusion expression, 𝑎 and 𝑏 alternate 

betweenvision and text, and 𝑣 and 𝑡 are images and text vectors, respectively. 

 

3.4.1. Inter-Modality Fusion 

 
In the Inter-modality fusion, cross-attention mechanisms combine decomposed text and visual 

features to merge previously separate text and image features. The visuals and text are enhanced 

to complement each other, and denoted as: 
 

𝑣𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐴(𝑣𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑 , 𝑡𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 , 𝑡𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑), 𝑡𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐴(𝑡𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑 , 𝑣𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 , 𝑣𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑), 

𝑣𝑎
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐴(𝑣𝑎

𝑠𝑜𝑓𝑡
, 𝑡𝑏

𝑠𝑜𝑓𝑡
, 𝑡𝑏

𝑠𝑜𝑓𝑡
), 𝑡𝑎

𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐴(𝑡𝑎
𝑠𝑜𝑓𝑡

, 𝑣𝑏
𝑠𝑜𝑓𝑡

, 𝑣𝑏
𝑠𝑜𝑓𝑡

). 

 
It includes a process where text and visual features are matched for cross-attention. If the query 

feature is visual, the key and value must be textual. Then, the output is used as an input for the 

Inter-modality fusion modality. 
 

3.4.1.1. Refined Pair Prompt Features 

 

Since hard pair prompt is being used, so the hard pair textual feature𝑡𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑  incorporateswith 

visual feature𝑣𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑  through MFSB’s Inter-modality fusion. After fusion and decomposition of 

the{𝑠𝑡𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡} set, a refined pair prompt feature with updated information iscreated. Then, 

the matching score with the ground-truth pairis𝑝𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝑠𝑖𝑚(𝑣𝑝𝑎𝑖𝑟

ℎ𝑎𝑟𝑑 , 𝑡𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑), and calculated cross-

entropy inter-pair loss is: 𝐿𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐸 (𝑝𝑝𝑎𝑖𝑟

𝑖𝑛𝑡𝑒𝑟, 𝑦 = (𝑠, 𝑜)). 

 

3.4.1.2. Refined Attribute Prompt Features 

 

Similar with above, soft attribute prompt is being used, so the soft attribute textual feature 𝑡𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

 

incorporates with visual feature 𝑣𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

throughMFSB’s Inter-modality fusion. After fusion and 

decomposition, a refined attribute prompt feature is created. The matching score with the ground-

truth attribute is:𝑝𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝑠𝑖𝑚(𝑣𝑎𝑡𝑡𝑟

𝑠𝑜𝑓𝑡 , 𝑡𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡). Then, we calculate cross-entropy inter-attribute loss 

as: 𝐿𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐸 (𝑝𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟 , 𝑦 = (𝑠)). 

 

3.4.1.3. Refined Object Prompt Features 

 

As mentioned, soft object prompt is being used, so the soft object textual feature 

𝑡𝑎𝑡𝑡𝑟
𝑠𝑜𝑓𝑡

incorporates with visual feature 𝑣𝑜𝑏𝑗
𝑠𝑜𝑓𝑡

through MFSB’s Inter-modality fusion. After fusion 

and decomposition, a refinedobject prompt feature is created. From the above, the matching score 

with the ground-truthobject is𝑝𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟 = 𝑠𝑖𝑚(𝑣𝑜𝑏𝑗

𝑠𝑜𝑓𝑡 , 𝑡𝑜𝑏𝑗
𝑠𝑜𝑓𝑡 ). We then calculate cross-entropy inter-

object loss as: 𝐿𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟 = 𝐶𝐸 (𝑝𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟, 𝑦 = (𝑜)). 

 

3.4.2. Intra-Modality Fusion 

 
For the Intra-modality fusion modality, the output of Inter-modality fusion modality features is 

being used as an input. And those are denoted as: 

 

𝑣𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑣𝑝𝑎𝑖𝑟

𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑝𝑎𝑖𝑟

𝑖𝑛𝑡𝑒𝑟), 𝑡𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑡𝑝𝑎𝑖𝑟

𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑝𝑎𝑖𝑟

𝑖𝑛𝑡𝑒𝑟 ), 

𝑣𝑎
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑣𝑎

𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑏
𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑏

𝑖𝑛𝑡𝑒𝑟), 𝑡𝑎
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑡𝑎

𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑏
𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑏

𝑖𝑛𝑡𝑒𝑟 ).  
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In this case, the inter-fused feature is used for cross-attention with matching key and value 

features of the same type. For example, when a visual feature of an object is queried, the key and 

value are attributes of the visual feature. 

 

3.4.2.1. Intra-Modality Fusion #1. ATTR ← OBJ 

 

Intra-modality fusion #1) applies a cross-attention [5], CA.As a query, inter-fused soft attribute 

prompt visual feature 𝑣𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟is inserted and inter object prompt feature 𝑣𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟is used as keyand 

value. In text-level, inter attribute prompt textual feature𝑡𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟and inter soft object textual feature 

𝑡𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟  are applied. Fromthese, attribute information can be redeemed by using relatedobject 

content as a reference. Those are described as: 

 

𝑣𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑣𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟), 𝑡𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑡𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟 ). 

 

The matching score between vision and language is 𝑝𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝑠𝑖𝑚(𝑣𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑟𝑎 , 𝑡𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑟𝑎).. We calculate 

cross-entropy intra-attribute loss is: 𝐿𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐸 (𝑝𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑟𝑎 , 𝑦 = (𝑠)). 

 

3.4.2.2. Intra-Modality Fusion #2. OBJ ← ATTR 

 
Intra-modality fusion #2) also utilizes CA, but vice-versa. Asa query, inter-fused soft object 

prompt visual feature 𝑣𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟isinserted and inter attribute prompt feature 𝑣𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟  is used as keyand 

value. In text-level, inter object prompt textual feature 𝑡𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟 and inter soft attribute textual 

feature 𝑡𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟  are applied. Thoseare described as: 

 

𝑣𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑣𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟 , 𝑡𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟), 𝑡𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐴(𝑡𝑜𝑏𝑗

𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑎𝑡𝑡𝑟
𝑖𝑛𝑡𝑒𝑟 , 𝑣𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟 ). 

 

The matching score between vision-language is 𝑝𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎 = 𝑠𝑖𝑚(𝑣𝑜𝑏𝑗

𝑖𝑛𝑡𝑟𝑎 , 𝑡𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎) , and calculated 

cross-entropy intra-object loss is: 𝐿𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎 = 𝐶𝐸 (𝑝𝑜𝑏𝑗

𝑖𝑛𝑡𝑟𝑎 , 𝑦 = (𝑜)). 

 

 
 

Figure 2.  Matching Structure for loss in each feature element 
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3.5. Total Loss 
 

To understand how visual and textual prompts relate, the total loss is calculated by combining 

multiple losses. The types of loss in this paper are 1) Hard Pair, 2) Soft Attr & Obj, 3) Inter-fused 

Pair & Attr & Obj, 4) Intra-fused Pair &Attr & Obj. 𝐿𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

indicates an existing loss from 

DFSP,baseline. 𝐿𝑎𝑡𝑡𝑟
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

 and 𝐿𝑜𝑏𝑗
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

 are added additionally basedon 𝐿𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

 format. 

 

The total loss is: 
 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

× 0.1 + (𝐿𝑎𝑡𝑡𝑟
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡

+ 𝐿𝑜𝑏𝑗
ℎ𝑎𝑟𝑑+𝑠𝑜𝑓𝑡) × 0.01 

                 + (𝐿𝑝𝑎𝑖𝑟
ℎ𝑎𝑟𝑑 + 𝐿𝑎𝑡𝑡𝑟

𝑠𝑜𝑓𝑡 +  𝐿𝑜𝑏𝑗
𝑠𝑜𝑓𝑡) ×  𝛼 

                 + (𝐿𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑒𝑟 + 𝐿𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑒𝑟 +  𝐿𝑜𝑏𝑗
𝑖𝑛𝑡𝑒𝑟) ×  𝛽 

                 + (𝐿𝑝𝑎𝑖𝑟
𝑖𝑛𝑡𝑟𝑎 +  𝐿𝑎𝑡𝑡𝑟

𝑖𝑛𝑡𝑟𝑎 +  𝐿𝑜𝑏𝑗
𝑖𝑛𝑡𝑟𝑎 ) × 𝛾, 

 

where α, β, and γ are hyper-parameters set as 0.2. 

 

4. EXPERIMENTS 
 

4.1. Dataset and Details 

 
We used three challenging benchmark datasets: MIT-States [4], UT-Zappos [28], and C-GQA 

[13] in Closed and Open world settings. MIT-States has 53,753 images with 245objects and 115 

attributes. MIT-States [4] has 300 unseen and1262 seen labels for validation, and 400 unseen 

labels for the test set. The dataset has 50,025 shoe images labeled under 12categories and 16 
attributes. In a closed-world scenario, there are 15 unseen validation instances, 18 unseen test 

instances, and 83 seen labels. The C-GQA [13] dataset has 39,298 images with 870 object labels 

and 453 attribute labels. Metrics assess accuracy for both seen and unseen compositions. 
Accuracy is measured on seen and unseen categories in both Seen (S) and Unseen (U) data. The 

Harmonic Mean(HM) metric estimates total accuracy. The AUC metric measures the balance of 

true positive and false positive rates at varying decision thresholds. Our method is implemented 

with PyTorch [19] 1.12.1 and Adam [2] optimizer is utilized for optimization. Each three 
challenging datasets is trained for20 epochs, and both image and text encoder are based on pre-

trained CLIP [3] Vit-L/14 model with 1 × NVIDIA RTX 4090GPU. 

 
Table 1.  Open-World Setting Results 

 
 

Method 

MIT-States UT-Zappos CGQA 

S U HM AUC S U HM AUC S U HM AUC 

AoP[16] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - - 

LE+[12] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08 

TMN[21] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - - 

SymNet[27] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43 

CompCos[9] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 - - - - 

CGE[11] 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.1 2.0 3.4 0.5 

Co-CGE[10] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5 

KG-SP[23] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78 

CSP[17] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20 

DFSP[8] 47.4 18.1 19.1 6.7 63.5 53.8 41.2 26.4 35.6 6.5 9.0 1.95 

Ours 49.33 19.01 20.35 7.33 65.24 55.0 43.21 29.27 39.20 7.25 11.26 2.90 
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Quantitative results on three challenging benchmark datasets in Open-World Setting. Our final 

model with Seen(S), Unseen(U), AUC, and HM shows the best performance in most of the 

classes. 

 
Table 2.  Closed-World Setting Results 

 
 

Method 

MIT-States UT-Zappos CGQA 

S U HM AUC S U HM AUC S U HM AUC 

AoP[16] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7 

LE+[12] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8 

TMN[21] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1 

SymNet[27] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1 

CompCos[9] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6 

CGE[11] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.7 25.3 17.2 5.1 

Co-CGE[10] 31.1 5.8 6.4 1.1 62.0 44.3 40.3 23.1 32.1 2.0 3.4 0.5 

SCEN[25] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 25.4 17.5 5.5 

CSP[17] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2 

DFSP[8] 46.9 52.0 37.2 20.6 63.3 66.4 45.1 32.1 35.6 29.3 24.3 8.7 

Ours 48.99 52.31 38.4 21.59 65.28 67.03 47.6 35.01 37.85 30.97 25.6 10.1 

 

Quantitative results on three challenging benchmark datasets in Closed-World Setting. Our final 

model with Seen(S), Unseen(U), AUC, and HM shows the best performance in most of the 
classes. 

 

4.2. Results 
 

We compare our method DFSP [8] with previous compositional zero-shot learning techniques, 

including AoP [16] and LE+ [12] TMN [21], SymNet [27], Comp-Cos [9], CGE [11],Co-CGE 

[10], SCEN [25], KG-SP [23], and CSP [17]. We investigate various fusion methods including 
Separated Prompts and Modal Fusion Synthesizer Block (MFSB), including inter-and intra-

fusion modality. Table I and Table II show that our method performs better on MIT-States [4], 

UT-Zappos [28],and CGQA [13] datasets. Ours outperforms in AUC scores of5.4% on MIT-
States [4], 36.0% on UT-Zappos [28], and 10.5%on CGQA [13], surpassing by 4.3%. Also, there 

is a 6.8%increase in the harmonic mean on the MIT-States [4] dataset compared to other methods. 

Also, it shows high accuracy on both seen and unseen datasets in these experiments. 
 

Based on the results, the inter- and intra-fusion with Separated prompts are the most effective 

for prompt composition in both Open and Closed world settings. Improving image and text 

features through different fusion types and focusing on attribute or object recognition can yield 
better results than a basic fusion approach in the language branch. The results show that our 

method improves model performance for compositional zero-shot learning on three challenging 

datasets. 
 

4.3. Ablation Study 
 
Ablation studies aim to demonstrate the effectiveness of proposed methods and identify the best 

prompt for CZSL. Table 3 identifies the best prompt combination, and Table 4compares the 

components of the prompt. Table 5 demonstrates the comparison of fusion techniques. Every 
experiment is conducted with the MIT-States dataset in the Open- world setting. 
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Table 3.  Ablation study #1 

 
Methods S U HM AUC 

Hard+Soft {Pair}, Hard {Obj}, Hard {Attr} 48.76 18.23 19.21 6.60 

Hard+Soft {Pair}, Hard {Obj}, Soft {Attr} 49.20 18.37 19.90 7.17 

Hard+Soft {Pair}, Hard {Obj}, Hard+Soft {Attr} 42.48 16.94 17.64 5.57 

Hard+Soft {Pair}, Soft {Obj}, Hard {Attr} 48.91 18.31 19.48 6.85 

Hard+Soft {Pair}, Soft {Obj}, Soft {Attr} 48.87 18.79 20.23 7.29 

Hard+Soft {Pair}, Soft {Obj}, Hard+Soft {Attr} 42.73 17.97 18.76 6.10 

Hard+Soft {Pair}, Hard+Soft {Obj}, Hard {Attr} 46.12 17.83 18.35 6.46 

Hard+Soft {Pair}, Hard+Soft {Obj}, Soft {Attr} 48.28 18.46 20.02 7.08 

Hard+Soft {Pair}, Hard+Soft {Obj}, Hard+Soft {Attr} 48.03 18.49 20.08 7.04 

Hard {Pair}, Hard {Obj}, Hard {Attr} 47.42 17.00 19.13 6.83 

Hard {Pair}, Hard {Obj}, Soft {Attr} 48.61 18.59 20.23 7.24 

Hard {Pair}, Hard {Obj}, Hard+Soft {Attr} 48.78 18.51 20.19 7.20 

Soft {Pair}, Soft {Obj}, Hard {Attr} 47.80 17.29 19.48 6.95 

Soft {Pair}, Soft {Obj}, Soft {Attr} 48.66 18.53 20.28 7.28 

Soft {Pair}, Soft {Obj}, Hard+Soft {Attr} 46.85 18.72 19.79 6.99 

Soft {Pair}, Hard+Soft {Obj}, Hard {Attr} 47.50 17.03 19.01 6.82 

Soft {Pair}, Hard+Soft {Obj}, Soft {Attr} 48.11 19.01 20.30 7.28 

Soft {Pair}, Hard+Soft {Obj}, Hard+Soft {Attr} 48.03 18.84 20.23 7.19 

Hard {Pair}, Hard {Obj}, Hard {Attr} 48.32 18.99 20.11 7.18 

Hard {Pair}, Hard {Obj}, Soft {Attr} 49.16 18.74 20.21 7.30 

Hard {Pair}, Hard {Obj}, Hard+Soft {Attr} 47.14 18.67 19.62 6.95 

Hard {Pair}, Soft {Obj}, Hard {Attr} 48.03 18.77 20.24 7.16 

Hard {Pair}, Soft {Obj}, Soft {Attr} 49.33 19.01 20.35 7.33 

Hard {Pair}, Soft {Obj}, Hard+Soft {Attr} 46.81 17.86 18.96 6.46 

Hard {Pair}, Hard+Soft {Obj}, Hard {Attr} 46.21 18.65 19.60 6.80 

Hard {Pair}, Hard+Soft {Obj}, Soft {Attr} 48.91 18.55 20.31 7.27 

Hard {Pair}, Hard+Soft {Obj}, Hard+Soft {Attr} 48.32 18.74 20.05 7.16 

 

Seen(S), Unseen(U), AUC, and HM results for using prompt setting as Hard+Soft, Hard, and Soft. 

 

4.3.1. Hard+Soft, Hard, Soft 

 

An analysis comparing hard and soft prompts is presented in Table III. Previous research often 

used a mix of hard and soft prompts or just soft orhard prompts for training. However, using hard 
for a pair and soft for an object/state showed the best performance overall. The hard pair refines 

information from the inputs to enhance comprehension of the scene. Table III illustrates the 

importance of appropriately utilizing both hard and soft characteristics based on the label to 
comprehend complex scenes. 

 
Table 4.  Ablation study #2 

 
Methods S U HM AUC 

Pair 47.41 18.13 19.10 6.74 

Object 47.59 17.99 19.37 6.69 

State 47.63 18.38 19.25 6.86 

Object + State 47.89 18.23 19.23 6.91 

Pair + Object 47.90 18.16 19.58 7.00 

Pair + State 48.61 18.73 19.98 7.26 

Pair + State + Object 49.33 19.01 20.35 7.33 
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Seen(S), Unseen(U), AUC, and HM results for using prompt component as a single one for each 
and all together. 

 

4.3.2. Prompt Component Comparison of three elements 

 
Table IV indicates higher accuracy with three types of prompts compared to a single pair prompt. 

Prior studies [8], [14],[20] have used the single-pair prompt. Our research found that the best 

approach uses three separate prompt components, which separate object and state within the pair 
prompt. The utilization of a specific attribute and an object prompt demonstrated effectiveness in 

enhancing the comprehension of each element’s visual and linguistic content, resulting in 

increased performance over time. Also, deconstructed prompts helped clarify intricate 
relationships. 

 
Table 5.  Ablation study #3 

 
Methods S U HM AUC 

No Fusion 47.41 18.13 19.10 6.74 

Intra-Fusion Only 48.11 18.67 19.36 7.05 

Inter-Fusion Only 48.96 18.98 19.80 7.27 

1. Intra 2. Inter 48.85 18.80 20.02 7.18 

1. Inter 2. Intra 49.33 19.01 20.35 7.33 

 
Seen(S), Unseen(U), AUC, and HM results for no fusion, single fusion, and fusion order. 

 

4.3.3. Comparison of Inter-and Intra-Modality Fusion 
 

Table V displays results of no, single, and both but different order of fusions. The results show 

that MFSB is effective with improved accuracy metrics. Some parameters from separated 
prompts pass through the MFSB block to access important information for understanding 

complex scenes. Inter-fused features successfully mix each vision and language content on each 

perspective, and Intra-fused features updated content thathas relevant vice-versa elements. Also, 

the order after Intra-modality Fusion for intra-fusion is the most effective to make a response to 
new unseen compositions in CZSL. 

 

 
 

Figure 3. Inference comparison between baseline and ours. As shown, ours can predict accurately by a 

better understanding in intrinsic relationships. 
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5. CONCLUSION 
 

In this study, we introduce a novel method called Modal Fusion Synthesized Prompt to accurately 

identify nuanced distinctions in meaning for composing state and object during training. As 

grounded from prompt-tuning, a hard pair and soft decomposed prompt are applied to diverse 
usage in training. Furthermore, the proposed prompts serve different purposes in gathering 

precise and comprehensive information from the training data. The hard pair prompt gathers 

detailed information about multiple objects in a scene, with separate soft prompts capturing 
specific features based on complex scenarios and using inter- and intra-modal fusion to improve 

comprehension of visual and linguistic contexts. Extensive experiments on three challenging 

datasets demonstrate the effectiveness of our proposed method, Inter- & Intra-Modality Fusion 

with Separated Prompts. 
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