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ABSTRACT 
 
Traditional authentication methods, such as passwords and biometrics, verify a user’s 

identity only at the start of a session, leaving systems vulnerable to session hijacking. 

Continuous authentication, however, ensures ongoing verification by monitoring user 

behavior. This study investigates the long-term feasibility of eye-tracking as a behavioral 

biometric for continuous authentication in virtual reality (VR) environments, using data 
from the GazebaseVR dataset. Our approach evaluates three architectures—Transformer 

Encoder, DenseNet, and XGBoost—on short- and long-term data to determine their 

efficacy in user identification tasks. Initial results indicate that both Transformer Encoder 

and DenseNet models achieve high accuracy rates of up to 97% in short-term settings, 

effectively capturing unique gaze patterns. However, when tested on data collected 26 

months later, model accuracy declines significantly, with rates as low as 1.78% for some 

tasks. To address this, we propose periodic model updates incorporating recent data, 

restoring accuracy to over 95%. These findings highlight the adaptability required for 

gaze-based continuous authentication systems and underscore the need for model 

retraining to manage evolving user behavior. Our study provides insights into the efficacy 

and limitations of eye-tracking as a biometric for VR authentication, paving the way for 
adaptive, secure VR user experiences. 
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1. INTRODUCTION 
 
The most prevalent authentication method today is static authentication, which includes 

passwords, biometrics, PINs, and more. While techniques like these are challenging to by pass 

due to their complex identity structure, static authentication has a noteworthy drawback. Once a 
malicious actor successfully navigates through static authentication, they gain unrestricted access 

to the system, which continues to recognize them as a legitimate user[1]. 

 
In contrast, continuous authentication offers a dynamic alternative that uniquely combines 

ongoing user identification with a seamless user experience. Traditional authentication methods 

typically verify the identity only at the beginning of a session, assuming 1 that the user remains 

unchanged throughout the session. However, continuous authentication monitors user behavior in 
real time, making it considerably more challenging for unauthorized individuals to maintain 

access. Any deviations from established behavioral patterns can trigger immediate responses, 
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such as reauthentication or session termination. This proactive approach significantly mitigates 
the risk of session hijacking, in which an attacker could take control of an already authenticated 

session[2]. 

 

The evolution of continuous authentication has progressed from desktop environments to mobile 
devices and now extends to virtual reality (VR) headsets. These headsets utilize behavioral 

biometrics such as eye tracking, hand movements, and head gestures. Recent studies, including 

the work by Lohr et al. (2022)[3] and their 2024 follow-up[4], have demonstrated the 
effectiveness of eye tracking as a behavioral biometric, achieving low Equal Error Rates (EERs) 

in user identification[3]. 

 
Although these advances are promising, behavioral biometric patterns can change over time. It 

happens due to users changing behavioral patterns; as noted in various studies, behavioral 

patterns are known to evolve[5]. When behavioral patterns evolve and change, authenticating 

impostors versus legitimate users becomes difficult, and as a result, EER scores increase. Other 
behavioral biometrics, such as gaze and touch patterns used in mobile devices, also undergo 

changes that require continuous updates during the registration phase[5]. 

 
In this study, we investigate the long-term usability of eye tracking for continuous authentication 

using the GazebaseVR dataset, which spans 26 months and encompasses three distinct rounds of 

data collection. We developed user models based on the transformer encoder architecture 
utilizing eye-tracking information from Round 1 (the first month) and tested the model’s ability to 

predict user data from Round 3 (captured after 26 months). Initial results showed low accuracy 

scores of approximately 10 percent. However, when incorporating data from all three rounds into 

the user model, accuracy scores surged beyond 95 percent. This finding suggests that for eye 
tracking to serve as a reliable behavioral biometric, the user model must be updated with 

behavioral data over time. 

 
Our research aims to analyze eye tracking as a viable behavioral biometric for VR/AR headsets 

by examining its long-term usability. In this study we also explore various authentication 

architectures—including DenseNet, Transformer Encoder, and XGBoost—to ascertain which 

algorithms yield optimal results for user identification. Our research findings indicate that while 
all three architectures achieve commendable accuracy rates, XGBoost demonstrates lower 

performance with accuracies ranging from 85% to 90%. In contrast, both Transformer Encoder 

and DenseNet achieve accuracies between 90% and 97%. 
 

2. LITERATURE REVIEW 
 

2.1. Datasets for Eye Tracking in Virtual Reality 
 

The development of reliable and scalable continuous authentication systems based on eye-

tracking requires comprehensive datasets. Several datasets have been introduced in recent years, 
each offering unique attributes relevant to eye movement biometrics. 

 

2.1.1. GazeBaseVR 

 
GazeBaseVR, developed by Lohr et al. (2023), is a large-scale longitudinal dataset capturing eye 

movements from 407 college-aged participants using a VR-enabled eye tracker at 250 Hz[6]. 

Collected over 26 months, the dataset includes 5,020 recordings across five tasks (vergence, 
smooth pursuit, video viewing, reading, and random saccades), allowing for diverse eye 

movement analysis. Unique to GazeBaseVR, the dataset provides 3D positional data (X, Y, Z) for 
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both eyes and offers rich demographic diversity, contributing significantly to the field of eye 
movement biometrics. Compared to its predecessor, GazeBase, this dataset adds novel task types, 

like vergence, and supports binocular tracking, making it ideal for advanced VR-specific EMB 

studies. Such extensive data supports the development of robust, generalizable machine learning 

models for eye movement analysis and authentication applications. 
 

2.1.2. GazeBase 

 
The GazeBase dataset, presented by Griffith et al. (2021)[7], is a comprehensive longitudinal 

dataset featuring 12,334 monocular eye-movement recordings from 322 collegeaged 

participants[7]. Collected across nine rounds over 37 months, the data includes seven eye-
tracking tasks, such as fixation, saccades, reading, and free viewing. All recordings were captured 

using an EyeLink 1000 eye tracker at 1,000 Hz, with calibration performed for each task to 

ensure accuracy. Due to its scale and repeated measures, GazeBase is well-suited for studies in 

eye movement biometrics and machine learning applications focused on eye signal analysis. 
Additionally, classification labels and pupil area data are available for a subset, providing 

valuable resources for supervised learning in gaze analysis[7]. 

 

2.2. Eye Tracking in Continuous Authentication 
 

Eye movement biometrics (EMB) have gained significant attention as potential mechanisms for 
continuous authentication in VR, where eye-tracking sensors can facilitate real-time identity 

verification. Recent studies have shown that gaze-driven biometrics can yield low equal error 

rates (EERs), essential for effective authentication. 
 

2.2.1. EKYT and DenseNet Implementation 

 
The Eye Know You Too (EKYT)[3], based on DenseNet architecture, is optimized for eye 

movement-based biometrics. The EKYT network employs eight convolutional layers with 

densely connected layers to enhance feature extraction, followed by a global average pooling 

layer and a fully connected layer, which generates a 128-dimensional embedding for each user. 
This architecture has demonstrated robust performance for gaze-based continuous authentication, 

and its DenseNet foundation supports the efficient reuse of features across layers, addressing 

challenges related to feature extraction in eye-tracking data[3]. 
 

2.2.2. Gaze Base VR and DenseNet Implementation 

 

The GazeBaseVR dataset collects 5020 binocular eye movement recordings from 407 college-
aged participants over three rounds, enabling EMB research in VR environments[6]. Raju et al.[4] 

have implemented the EKYT architecture in the GazeBaseVR data set. This study contrasts the 

biometric performance of VR-collected data with a high-end 1,000 Hz eye tracker, showing that 
while VR data are noisier, it remains viable for authentication, achieving an equal error rate 

(EER) of 1.67% in short-term scenarios. These findings underline the potential of VR-based 

EMB, suggesting that VR eye-tracking data, despite challenges, may offer a convenient, accurate 
biometric solution. 

 

2.3. Challenges in Eye Tracking for Continuous Authentication 
 

While gaze-based biometrics hold promise, challenges remain, particularly in terms of 

calibration, signal quality, and user behavior variation over time. For instance, the visual axis, 
requiring user-specific calibration, can be challenging for continuous authentication. Raju et al. 

(2024) noted that spatial accuracy directly affects authentication performance, with higher error 
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rates observed when calibration is not consistently maintained. Further, the dynamic nature of 
user behavior suggests a need for adaptive models that update with user data to maintain high 

authentication accuracy over time. 

 

3. METHODOLOGY 
 

3.1. Dataset 
 
The GazebaseVR dataset stands as the most comprehensive publicly accessible dataset focused 

on eye-tracking data acquired from virtual reality (VR) and augmented reality (AR) headsets. 

This dataset encompasses eye-tracking data collected from both eyes of participants while 

immersed in VR, a setup essential for analyzing human gaze behaviors in virtual environments. 
The study began with 465 individuals, but 58 were later excluded due to various considerations. 

The data collection spanned three recording rounds over a 26-month period, with each round 

incorporating two separate recording sessions approximately 30 minutes apart. The eye-tracking 
data (ET) were recorded using SensoMotoric Instruments’ (SMI’s) VR device, which samples 

data from both eyes at a nominal rate of 250 Hz. Such a high sampling frequency enables precise 

capture of eye movements, making the dataset ideal for analyzing fine-grained eye movement 

patterns. 

 
3.1.1. Dataset Tasks 
 

To capture a comprehensive set of eye movement patterns, researchers instructed participants to 

perform five distinct tasks. These tasks were specifically designed to induce various eye 

movements such as vergence, smooth pursuit, saccades, and fixations, providing a rich basis for 
eye movement analysis. 

 
Table1:Overview of Eye Movement Tasks [6] 

 
Task Features Description 

Vergence task(VRG) Convergence and divergence A black dot appears on a large 

Square plane and alternates between 

different depths. 

Smooth 

(PUR) 

pursuit task Saccades, fixations A small black sphere moves 

Smoothly between the left and right edges 
of the viewing region. 

Video 

(VID) 

viewing task Multiple features A video is displayed on a large, 

Rectangular plane. 

Reading task(TEX) Multiple features Anexcerptofapproximately820 

characters from National Geo- 

graphic is displayed. 

Randoms accade task 

(RAN) 

Saccades, fixations A small black sphere jump storan- 

Dom screen positions. 

 

3.1.2. Dataset features 

 

The ET API provided by SMI produces 3-dimensional unit vectors representing the gaze 
direction of each eye and timestamps with nanosecond precision. There are 250 timestamp 

records for each second (250Hz), which provides a rich analysis of eye movements [6]. The 

following features are collected for each user. We only utilize features n, clx, cly, clz, crx, cry, crz 
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and an additional feature created by us called user. The first 7 features provide patterns of eye 
movements such as fixations, saccades, blink and more of users and these are used to train the 

user model which is described in further sections. The last column user is used for multi-

classification, it basically represents which users information and we classify a user. 
 

3.2. Pre-Processing of Eye-Tracking Data 
 

The pre-processing of raw eye-tracking data is essential to ensure consistency and quality for 
subsequent analysis and model training. This involves selecting relevant features, normalizing 

data temporally and spatially, and structuring it into segments suitable for model input. 

 

Figure1: Overview of the Methodology 

 

3.2.1. Feature Selection 

 
Key features are selected from the raw data to focus on essential gaze patterns. These include the 

timestamp (’n’) and six spatial coordinates: ’clx’, ’cly’, ’clz’ for the left eye, and ’crx’, ’cry’, 

’crz’ for the right eye. For temporal normalization, timestamps are converted from milliseconds 
to seconds, ensuring consistency across devices and enabling standardized time-based pattern 

analysis[4]. 

 

3.2.2. Normalization 
 

The normalization process for eye-tracking data in this study involves both temporal and spatial 

aspects, ensuring consistency and optimal input for model training. Temporal normalization 
converts timestamps from milliseconds to seconds: 

 
 

Spatial normalization adjusts each coordinate to a range of [-1, 1] using Min-Max normalization: 
 

 
 

where x is the original value and xmin and xmax are the minimum and maximum values across 
the dataset. The range is centered around zero, which can be beneficial for algorithms like 

Transformers, which those using activation functions. [8]. 

 

3.2.3. Windowing and Data Structuring 

 

To prepare the continuous eye-tracking data for model input, we employ a segmentation strategy 
adapted from the DenseNet architecture [3]. The data stream is divided into fixed-size windows, 

each containing 1250 samples. This window size corresponds to a 5-second interval when 
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sampled at 250 Hz, striking a balance between capturing meaningful temporal patterns and 
maintaining a manageable input size for machine learning algorithms. The data within each 

window is then restructured into a 2D array format. In this arrangement, rows represent the 

spatial coordinates of eye movements, while columns correspond to discrete time points. This 

organization results in a 3D array structure (windows × coordinates × time points), which is 
particularly well-suited for sequential data processing in transformer models [9]. 

 

3.3. Transformer Encoder Architecture 
 

The proposed architecture, known as the Transformer Model, is specifically designed for 
processing eye movement biometrics (EMB). This model performs a mapping f : R(C×T) → RN , 

where C represents the number of input channels, T denotes the length of the input sequence and 

N corresponds to the number of output classes. The architecture is inspired by the original 
Transformer model [9] and has been adapted to efficiently handle the time-series data inherent in 

eye tracking applications. 

 

The Transformer Encoder architecture has not previously been applied to continuous 
authentication using eye tracking as a behavioral biometric. This study seeks to benchmark its 

performance against state-of-the-art models like EKYT and DenseNet [3]. Our findings reveal 

that the Transformer Encoder achieved strong results and, in some instances, surpassed the 
DenseNet architecture. 

 

The Transformer Model employs a dimensionality of dmodel = 64, utilizes 4 attention heads, and 
comprises 2 transformer encoder layers. To mitigate over fitting, dropout is systematically 

applied throughout the architecture. This design ensures that the model remains compact and 

efficient, making it suitable for deployment in resource-constrained environments such as virtual 

reality (VR) and augmented reality (AR) devices. 
 

The choice of dmodel = 64 was made to maintain a compact model size while preserving 

sufficient representational capacity. This dimensionality allows for efficient processing of the 
eye-tracking time series data, which consists of 7 features (timestamp and 3D coordinates for 

each eye) sampled at 250 Hz. The model uses 4 attention heads and 2 encoder layers. This 

configuration was chosen to capture complex temporal dependencies in eye movement patterns 

while keeping the model lightweight. 
 

3.3.1. Training Parameters 

 
The model is trained for 50 epochs. This number was chosen to provide sufficient iterations for 

the model to learn patterns in the eye-tracking data while balancing computational resources. An 

initial learning rate of 0.001 is used with the Adam optimizer. This relatively low learning rate 
was selected to ensure stable training, particularly important for transformer models which can be 

sensitive to learning rate. A batch size of 32 is employed, striking a balance between 

computational efficiency and providing sufficient stochastic gradient estimates. These parameter 

choices reflect a balance between model complexity and computational efficiency, tailored to the 
specific requirements of continuous authentication in VR environments using eye-tracking data. 

 

3.4. Model Training for Eye-Tracking Data 
 

The model training process involves distinct steps for each of the three models: XGBoost, 

Transformer Encoder, and DenseNet. Each model is tailored to leverage eye-tracking data for 
user identification, utilizing varying architectures and methodologies to capture unique gaze 

patterns. The primary motivation for training XGBoost is its lower computational cost compared 
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to neural network-based approaches. This study aims to evaluate whether computationally 
efficient machine learning algorithms can deliver comparable performance to neural network 

models. 

 

3.4.1. Training XG Boost Model 
 

The XGBoost model, widely recognized for its gradient boosting capabilities, is used here with a 

flattened 2D input derived from the original 3D eye-tracking data. The data is first reshaped to a 
2D format, allowing XGBoost to process it as a feature matrix where each row represents a user 

sample. XGBoost is highly suitable for tabular data due to its ability to optimize complex feature 

interactions through gradient boosting [10]. For 7 model evaluation, the dataset is split in an 
80:20 ratio, with the training set comprising 80% of the data and the test set comprising 20 

 

The training objective is set to ”multi:softmax” for multi-class classification, with a learning rate 

(η) of 0.3 and maximum depth (max depth) of 6. A DMatrix is created for each dataset split, 
providing a structured way for XGBoost to handle labeled data. After training, predictions are 

made on the test set 

 
This approach capitalizes on XGBoost’s strength in handling non-linear data interactions, 

delivering high accuracy on gaze-based classification tasks. 

 

3.4.2. Training Transformer Encoder Model 

 

The Transformer Encoder model is designed to leverage the sequential nature of eyetracking data, 

using attention mechanisms to capture temporal dependencies and spatial relationships in the gaze 
patterns. In this setup, the pre-processed eye-tracking data is first converted to PyTorch tensors, 

with user labels encoded for classification. The data is split into training and testing sets, with 

batches handled by PyTorch’s ‘DataLoader‘ to optimize memory and computation. 
 

The model architecture consists of an embedding layer that maps the input to a dmodel 

dimensional space, followed by a positional encoding layer to account for sequence order. The 

encoder structure includes multi-head self-attention and feed forward layers, following the 
formula: 

 

 
 
where Q, K, and V represent query, key, and value matrices, respectively, and dk is the 

dimensionality of the keys. The model is trained for 50 epochs with Cross Entropy Loss as the 

criterion, and parameter updates are managed by the Adam optimizer with a learning rate of 

0.001 [9]. After each epoch, average loss is recorded to track model convergence. This model 
effectively learns sequential dependencies in eye movements, a crucial feature for reliable user 

identification. 
 

3.4.3.  Training DenseNet Model 
 

The DenseNet model, adapted from a convolutional neural network (CNN) structure, is tailored 

for eye-tracking data through dense connections that encourage feature reuse and efficient 
gradient flow[11]. The model architecture begins with an initial convolutional layer, followed by 

multiple dense layers, where each layer receives input from all preceding layers within the dense 

block. This connectivity enhances learning efficiency and mitigates the vanishing gradient 
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problem, a common issue in deep CNNs. 
 

The DenseNet model processes each input sample in a 1D convolutional format, with dense 

blocks of increasing dilation rates, allowing it to capture spatial dependencies across varying 

scales. The loss function used is Cross Entropy Loss, and the Adam optimizer updates parameters 
to minimize classification error. Similar to the Transformer model, DenseNet is trained for 50 

epochs, with loss values logged for each epoch. 

 
DenseNet’s structure is advantageous for gaze data, as its dense connections capture both fine-

grained spatial details and broader contextual information, contributing to high performance in 

gaze-based user identification tasks. 
 

4. RESULTS AND DISCUSSION 
 

4.1. Short-Term Model Results 
 

The initial phase of the experiment focused on short-term model performance, where XGBoost, 

Transformer Encoder, and DenseNet models were trained on Round 1 eyetracking data of 407 
users and evaluated on the same round, using an 80:20 train-test split. Table 2 shows the 

accuracies achieved for different eye movement tasks, demonstrating that both transformer and 

DenseNet models performed exceptionally well in classifying users based on their gaze patterns. 

 
In this short-term scenario, the models achieved accuracies between 80.25% and 97.77% across 

various tasks, with few exceptions going below 80%, indicating that Transformer Encoder and 

DenseNet effectively capture unique gaze characteristics over a short timeframe. However, 
XGBoost is limited in performance, with 79.31% accuracy combined with all tasks. Although the 

accuracy of XGBoost does not meet with neural network architecture, it still provides exemplary 

accuracy. On the other hand, high accuracies with neural networks suggest that gaze patterns 

contain distinct features that can differentiate users with a high degree of reliability when the data 
collection and testing occur within a relatively close period. For tasks like Vergence (VRG) and 

Smooth Pursuit (PUR), which involve precise eye movements, the accuracy was exceptionally 

high, reflecting the stability of these gaze patterns over a short term. 
 

This finding highlights the feasibility of using gaze-based biometrics for short-term 

authentication in VR settings, where users’ gaze patterns remain stable and predictable. The high 
short-term accuracy also underscores the potential of Transformer-based architectures to handle 

sequential eye-tracking data effectively. The window size for all tasks is 5 seconds, and data from 

all 407 users is used in training and testing. 
 

Table2:Model Accuracy Comparison-Short-term Training 

 

Task DenseNet Transformer XG Boost Train Round Test Round 

All 97.09% 97.20% 79.31% Round1 Round1 

PUR 96.61% 96.80% 84.16% Round1 Round1 

RAN 95.52% 95.58% 80.25% Round1 Round1 

TEX 90.22% 91.00% 57.48% Round1 Round1 

VID 87.22% 90.50% 57.66% Round1 Round1 

VRG 96.47% 97.77% 87.39% Round1 Round1 
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4.2. Long-Term Model Results 
 

To evaluate the long-term stability of gaze-based biometrics, we assessed the model performance 

by training on the data of Round 1 and testing the data of Round 3 collected 26 months later. As 
shown in Table 3, this resulted in a significant drop in accuracy, with scores ranging from 1.78% 

to 10.28% depending on the task and model. This dramatic decrease in performance suggests that 

gaze patterns are not static and may evolve over 9 time, potentially influenced by factors such as 
changes in user behavior, eye health, or VR interaction habits. This marked decrease suggests that 

gaze patterns undergo considerable changes over time[?], presenting significant challenges for 

maintaining reliable user differentiation in long-term scenarios. 

 
DenseNet demonstrated the highest overall accuracy at 7.79% when combining all tasks, while 

the Transformer Encoder showed the poorest performance at 3.01%. XGBoost exhibited mixed 

results, outperforming other models in some tasks like TEX (12.11%) and VRG (11.46%), but 
underperforming in others such as PUR (4.89%) and VID (1.78%). 

 

The task-specific variations in accuracy suggest that certain gaze behaviors may be more stable 
over time, while others are highly variable. For instance, tasks related to text reading (TEX) and 

vergence (VRG) showed relatively higher accuracies, indicating potentially more consistent gaze 

patterns for these activities. In contrast, the video-watching task (VID) yielded the lowest 

accuracies across all models, highlighting the complexity of long-term gaze-based user 
identification, particularly for dynamic visual stimuli[12]. 

 

These findings underscore the need for more robust models and feature extraction techniques that 
can adapt to temporal changes in gaze patterns. Future research should focus on developing 

methods that can maintain higher accuracy levels over extended periods, possibly by 

incorporating adaptive learning mechanisms or by identifying more stable, long-term gaze 
characteristics[12]. 

 

The low long-term accuracy indicates that models trained on older data fail to generalize well 

when tested on data collected after a long interval. For example, the Random Saccade (RAN) and 
Video Viewing (VID) tasks, which depend heavily on dynamic gaze shifts, experienced 

substantial performance degradation. The results highlight a critical limitation in the long-term 

use of gaze patterns for continuous authentication. Behavioral biometrics, like gaze data, are 
inherently dynamic[13], and this variability over time implies that models trained on gaze data 

must be periodically updated. This need for frequent retraining or model adjustment aligns with 

findings in related studies on continuous authentication, where user behavior tends to evolve, 

leading to potential identification challenges. 
 
 

Table3:Model Accuracy Comparison-Long-term Testing 

 

Task DenseNet Transformer XG Boost Train Round Test Round 

All 7.79% 3.01% 4.85% Round1 Round3 

PUR 10.28% 9.94% 4.89% Round1 Round3 

RAN 5.98% 7.67% 6.15% Round1 Round3 

TEX 8.40% 3.71% 12.11% Round1 Round3 

VID 4.00% 2.45% 1.78% Round1 Round3 

VRG 8.06% 7.57% 11.46% Round1 Round3 
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4.3. Revised Long-term Model Results with Updated Data 
 

To address the observed decline in long-term accuracy, a revised model was trained on a 

combined dataset of Round 1 and Round 3 data. In this setup, the model was tested 10 on 
previously unused Round 3 data to assess whether incorporating recent data would enhance 

performance. As seen in Table 4, this approach resulted in significant improvement, with 

accuracies reaching up to 98.71%, closely matching the short-term results. 
 

These improved results suggest that by continuously updating the training dataset with recent 

data, the model can better adapt to evolving gaze patterns. This approach, which mirrors periodic 

retraining, can help maintain high authentication accuracy even as user behavior changes over 
time. For continuous authentication systems to remain reliable, incorporating recent data into 

training may be essential, particularly for biometrics subject to temporal variability, like gaze. 

 
This finding underlines the importance of adaptive modeling in the context of continuous 

authentication. Behavioral biometrics, unlike static identifiers, require flexible models that can 

accommodate gradual changes in user behavior. Consequently, for eyetracking authentication 
systems to be feasible in the long term, regular updates with recent behavioral data are likely 

required. Future research could explore optimal retraining intervals and data selection strategies 

to achieve a balance between computational cost and authentication accuracy. 

 
Table4:Model Accuracy Comparison-Long-term Training with Updated Data 

 

Task DenseNet Transformer XG Boost Train Round Test Round 

All 98.71% 96.52% 93.25% Round1+3 Round3 

PUR 98.50% 97.46% 88.50% Round1+3 Round3 

RAN 97.14% 98.32% 83.66% Round1+3 Round3 

TEX 98.75% 98.22% 55.13% Round1+3 Round3 

VID 86.22% 91.78% 55.78% Round1+3 Round3 

VRG 97.17% 94.48% 87.55% Round1+3 Round3 

 

4.4. Ethical Implications of Eye-Tracking for Continuous Authentication 
 
While eye-tracking offers promising advancements in continuous authentication for virtual reality 

environments, it also raises several ethical concerns that must be carefully addressed: 

 

4.4.1. Privacy Concerns 
 

Eye movement patterns can potentially reveal sensitive information about a user’s mental or 

physical state. For instance, certain gaze patterns might indicate cognitive load, emotional states, 
or even medical conditions such as attention deficit disorders or early signs of neurological 

diseases[14]. It is crucial to ensure that this data is used solely for authentication purposes and not 

for unauthorized analysis or profiling. 

4.4.2. Data Security 
 

The secure storage and transmission of eye-tracking data is paramount. Given the sensitive nature 

of biometric information, robust encryption and data protection measures must be implemented to 
prevent unauthorized access or data breaches[15]. Developers of VR systems must adhere to strict 

data protection standards and regularly audit their security protocols. 
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4.4.3. User Consent and Control 
 

Clear and comprehensive user agreements are essential when implementing eye-tracking 

authentication. Users must be fully informed about what data is collected, how it is used, and who 

has access to it. Additionally, users should have the option to opt out of continuous authentication 
or choose alternative methods, ensuring their autonomy in deciding how their biometric data is 

used[15]. 

 
By addressing these ethical considerations, we can work towards developing eye tracking 

authentication systems that not only enhance security but also respect user privacy, promote 

inclusivity, and maintain high ethical standards in the rapidly evolving field of virtual reality 
technology. 

 

5. CONCLUSION 
 

This study investigated the use of eye-tracking data as a behavioral biometric for continuous user 
authentication in virtual reality (VR) environments, with a focus on both short-term and long-

term usability. Using the GazebaseVR dataset, we evaluated the performance of Transformer 

Encoder and DenseNet models for user identification, achieving promising results in short-term 
experiments with accuracy levels reaching over 97%. These results indicate that gaze patterns in 

the short term can serve as a reliable biometric, with both the Transformer and DenseNet 

architectures proving effective in classifying users based on unique eye movement characteristics. 

 
However, when testing model performance over an extended period, significant accuracy 

degradation was observed, with accuracy dropping to as low as 1.78% for certain tasks after 26 

months. This decline highlights a key limitation of behavioral biometrics such as eye tracking: 
gaze patterns are subject to temporal changes, likely influenced by behavioral shifts, health 

factors, or user adaptation to VR environments. The findings underscore that, while effective in 

the short term, static models fail to generalize well over time, making continuous model updates 
essential for sustaining high accuracy in real-world applications. 

 

To address this, we explored an adaptive model training approach by incorporating recent data 

into the training set. This method restored accuracy to near short-term levels, with performance 
improvements exceeding 98%. Such results suggest that periodic model retraining with recent 

data is crucial to maintaining the viability of gaze-based continuous authentication systems. 

Adaptive modeling, where data from subsequent sessions are used to update the user model, can 
potentially offset the temporal variability in gaze patterns, providing a practical solution for long-

term user identification in VR. 

 

In conclusion, this study demonstrates the feasibility of using eye-tracking as a behavioral 
biometric for continuous authentication in VR settings, while emphasizing the need for adaptive 

model retraining to account for behavioral drift over time. Future work could focus on 

determining optimal retraining intervals and exploring additional features such as head or hand 
movements to enhance model robustness. As VR applications grow in importance, developing 

reliable, adaptive biometric systems for continuous authentication will be essential for enhancing 

user security in immersive environments. 
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