
A Study to Evaluate the Impact of LoRA

Fine-tuning on the Performance of

Non-functional Requirements Classification

Xia Li, Allen Kim

The Department of Software Engineering and Game Design and
Development,

Kennesaw State University,
Marietta, USA

Abstract. Classifying Non-Functional Requirements (NFRs) in software development life cycle is
critical. Inspired by the theory of transfer learning, researchers apply powerful pre-trained models
for NFR classification. However, full fine-tuning by updating all parameters of the pre-trained
models is often impractical due to the huge number of parameters involved (e.g., 175 billion
trainable parameters in GPT-3). In this paper, we apply Low-Rank Adaptation (LoRA) fine-
tuning approach into NFR classification based on prompt-based learning to investigate its impact.
The experiments show that LoRA can significantly reduce the execution cost (up to 68% reduction)
without too much loss of effectiveness in classification (only 2%-3% decrease). The results show that
LoRA can be practical in more complicated classification cases with larger dataset and pre-trained
models.

Keywords: Non-functional requirements classification, low-rank adaptation (LoRA), pre-trained
models, fine-tuning

1 Introduction

Non-Functional Requirements (NFRs) in the whole software development life cycle
are critical for meeting users’ expectations and ensuring the system performs well
across various dimensions, such as quality, usability, security, and performance. Un-
like functional requirements that focus on the specific actions of the system, NFRs
define the overall behavior and constraints of the system, which makes them essen-
tial in guiding architectural design decisions. For example, NFRs help determine
how secure, scalable, or reliable the system needs to be. Given their importance,
it is essential to identify and extract NFRs from software requirements specifica-
tion (SRS) documents early in the development process to ensure that they are
adequately addressed. However, categorizing NFRs is a time-consuming task due
to the complexity of their descriptions with natural languages. Consequently, the
process is error-prone and requires a significant effort to ensure that all NFRs are
properly understood and incorporated into the system design.

David C. Wyld et al. (Eds): SIPO, BDHI, NET, SOEA, CSML, AISCA, MLIOB, DNLP – 2025
pp. 103-111, 2025. - DOI: 10.5121/csit.2025.150410CSCP 2025CS & IT

https://airccse.org/
https://airccse.org/csit/V15N04.html
https://doi.org/10.5121/csit.2025.150410

In the past decades, various machine learning and deep learning techniques have
been applied to classify Non-Functional Requirements. For example, EzzatiKarami
et al. [3] used Support Vector Machine (SVM) and Decision Tree for NFR clas-
sification by combining different feature extraction techniques. Rahimi et al. [9]
used four deep learning models (e.g., LSTM, BiLSTM, GRU, and CNN) for ac-
curate requirements classification. With the development and application of trans-
former models [22], various powerful pre-trained models (e.g., BERT [4], GPT [5])
have been applied into requirements classification inspired by the theory of transfer
learning. The basic idea is that the pre-trained foundation models can be trained
in advance and users can fine-tune the models for their specific downstream tasks.
For example, Hey et al. [10] proposed NoRBERT to fine-tune the BERT model and
apply it to different tasks for requirements classification. Luo et al. [7] proposed
PRCBERT by applying prompt engineering for requirement classification using
BERT model with flexible prompt templates. Despite the promising performances
of current studies with pre-trained models, the major issues is the cost to fine-
tune the models. Currently, there are huge amount of parameters (up to billions)
to be tuned for modern large language models, indicating that a lot of time and
resources will be spent to fine-tune better results for the specific task. To overcome
the problem, a parameter-efficient fine-tuning (PEFT) approach called Low-Rank
Adaptation (LoRA [12]) is proposed to accelerate the fine-tuning of large models
while consuming less memory. In this paper, we propose to conduct an extensive
study to evaluate the impact of LoRA on NFR classification. We apply p-tuning [6]
which is a prompt-based approach on various pre-trained models such as BERT
and RoBERTa [23]. The reason to use p-tuning is that it can provide stable perfor-
mance for classification tasks by designing learnable templates. Our study indicates
that LoRA can significantly reduce the execution cost (e.g., up to 68% reduction)
without too much decrease of classification abilities.

The structure of the paper is as follows. In Section 2, we introduce the stud-
ies related to software requirements classification. In Section 3, we illustrate the
approach of our study. In Section 4 and Section 5, we discuss our experimental
configurations as well as the results analysis, respectively. We discuss the threats
to validity in Section 6 and conclude the paper in Section 7.

2 Related Work

2.1 Traditional learning techniques for requirements classification

In recent years, machine learning (ML) and deep learning (DL) techniques have
been increasingly applied to enhance software requirement classification. For exam-
ple, Canedo et al. [13] compare the performance of different models such as Logist
Regression (LR), Support Vector Machine (SVM), Multinomial Naive Bayes (MNB)

2

104 Computer Science & Information Technology (CS & IT)

and K-Nearest Neighbors (KNN) for both functional and non-functional require-
ments. Amasaki et al. [2] use vectorization methods (e.g., document embedding
methods) with various supervised machine learning models for NFR Classification.
AlDhafer et al. [14] use Bidirectional Gated Recurrent Neural Networks (BiGRU)
to classify requirements by considering word sequences and character sequences as
tokens. Dekhtyar et al. [8] use Word2Vec embeddings and CNN for NFR classifica-
tion.

2.2 Pre-trained models for requirements classification

Inspired by the theory of transfer learning, researchers seek to apply powerful pre-
trained models into the filed of software requirements classification. Kici et al. [15]
fine-tune an existing pre-trained model called DistilBERT to achieve promising per-
formance compared with other deep learning methods such as LSTM and BiLSTM.
Hey et al. [9] propose a new approach called NoRBERT to fine-tune the popular
BERT model for requirements classification. Luo et al. [7] apply prompt learning
for requirements classification by using BERT model flexible prompt templates to
achieve accurate requirements classification. Kaur et al. [16] present a new Bidirec-
tional Encoder-Decoder Transformer-Convolutional Neural Network (BERT-CNN)
model for requirements classification, performing better than the state-of-the-art
baseline approach.

2.3 LoRA for classification tasks

LoRA (Low-Rank Adaptation) fine-tuning is a technique used to efficiently adapt
pre-trained large language models (LLMs) to specific tasks with minimal compu-
tational cost. Researchers have applied LoRA into various fields for classification
tasks to achieve promising performance. Yang et al. [17] introduce an advanced
methodology for financial news topic classification by leveraging the Chatglm3-
6b model [18] through LoRA and Noise Enhanced Fine-Tuning (NEFT). Shuai et
al. [19] introduces a method utilizing the Llama3-8b model for emotion text classi-
fication which is accelerated by LoRA and FlashAttention techniques. McCleary et
al. [20] explore the application of LoRA fine-tuning approach with small language
models for triple negative breast cancer cases with various large language models
such as GPT 3.5, GPT 4 and Mistral’s 7B. Aggarwal et al. [21] apply LoRA to the
realm of image classification for plant disease detection.

In this paper, we conduct an extensive study on the impact of LoRA by fine-
tuning various large language models such as BERT and RoBERTa. We apply
p-tuning, which is a popular prompt-based learning technique through pre-trained
models by designing learnable templates fed into the models for training.

Computer Science & Information Technology (CS & IT) 105

3 Study Approach

In this section, we introduce how we conduct the experiments for NFR classifi-
cation based on p-tuning and LoRA fine-tuning. The overall process is shown in
Figure 1, including following steps. Please note that we cite the famous illustration
of LoRA [12] as the fine-tuning part in the figure. First, we convert the original
requirement statements based on a specific template with learnable tokens based
on p-tuning. Second, the new template is fed into different pre-trained models to
predict the category of requirement. Third, during the training process, we apply
LoRA approach to freeze the weights of original pre-trained model by adding an
alternative matrices. The target label can be predicted through back propagation
with updated weights. Next, we introduce the basic ideas of p-tuning and LoRA
used in our study.

Original requirement input

1. Template generation for p-tuning

2. Pre-trained models 3. LoRA fine-tuning

Fig. 1. Overview of the study approach

3.1 P-tuning

P-tuning is a prompt-based learning technique where certain learnable continuous
prompt embeddings (soft templates) are created in concatenation with original in-
put requirement sequence. The target label of the classification task is embedded
in the sequence that pre-trained models can predict. For other techniques using
pre-trained models, an additional neural network (e.g., RNN, CNN) is connected
with the pre-trained models and pre-trained models are typically used to generate
a final vector representation for input sequence with low correlation between the
input sequence and the target task. However, p-tuning can let pre-trained models
directly predict the masked token label to achieve better classification performance.

106 Computer Science & Information Technology (CS & IT)

For p-tuning, we use the following template as the input of the pre-trained mod-
els: [CLS][P][P][P]REQUIEMRNT SENTENCE[SEP]. [CLS][P][P][P]This require-
ment is related to [M][SEP]. In the template design, [P] represents the learnable
token without any real meanings while [M] is the masked token to represent the
requirement category (e.g., performance, security, usability) that can be predicted
by pre-trained models. [CLS] represents a special token in the front of the original
input text and [SEP] is a separator token to represent the segment of each sentence.
Thus, one example of the final input can be “ [CLS][P][P][P] How well are the sys-
tem and its data protected against attacks?[SEP]. [CLS][P][P][P]This requirement
is related to [M][SEP] ”.

3.2 LoRA

To adapt current pre-trained large language models (e.g., GPT-3, LLama, and
Mistral) to specific tasks, fine-tuning is an essential step. However, full fine-tuning
by updating all parameters of the pre-trained models is often impractical due to
the huge number of parameters involved (e.g., 175 billion trainable parameters in
GPT-3), making it computationally expensive and storage-intensive. To resolve this
problem, LoRA is proposed to offer a more efficient alternative by significantly re-
ducing the number of trainable parameters. As shown in Figure 1, LoRA can freeze
the weights of pre-trained models while insert two smaller matrices to represent
the updated weights through low-rank decomposition. These new matrices can be
trained to adapt to the data while keeping the overall number of changes low. In
detail, W0 with size d× d is the original weight matrix and kept unchanged during
the training procedure. ∆W is the new updated weights with the same size d× d.
However, in LoRA, a new parameter r is introduced to reduce the size of the ma-
trix ∆W. The smaller matrices, A and B, are defined with a reduced size of r × d,
and d× r. For LoRA, only the weights of matrices A and B are trained to update
during training process. After the training process is completed, the new input x
with a size of 1× d will be multiplied by both W and ∆W, resulting in two d-sized
output vectors. These vectors are then concatenated element-wise to produce the
final result, and the weights can be merged with the base model. The final output
is a vector with size h shown in the figure. In this paper, we investigate how LoRA
can improve the efficiency of NFR classification and if the similar effectiveness can
be kept with LoRA.

4 Experimental Design

In this section, we introduce the pre-trained models and dataset used in our study
in Section 4.1 as well as the experimental configuration and evaluation metrics in
Section 4.2.

Computer Science & Information Technology (CS & IT) 107

4.1 Pre-trained models and dataset

To evaluate LoRA on pre-trained models with different sizes, we use four founda-
tion models ”bert-base-uncased” (110M parameters), ”bert-large-uncased” (340M
parameters), ”roberta-base”(125M parameters) and ”roberta-large”(355M param-
eters) that can be downloaded from the popular AI community Hugging Face1. We
use the widely used dataset PROMISE [1] with 914 non-functional requirements
that consists of the following five pre-labeled categories: operability, maintainability,
performance, security, and usability. To make the dataset adapted to the template,
we apply popular natural language processing steps (e.g., stemming, lemmatization,
stop-word removal and conversion to lower case) via the widely used NLTK2 toolkit
to pre-process the dataset. We also remove special characters that are unique in
different domains.

4.2 Experimental configuration and evaluation metrics

In our study, we split the original dataset into training set (80%) and test set (20%).
We apply 10-fold cross-validation for the four pre-trained models. We use cross-
entropy loss function since NFR classification is the classic multi-class classification
problem. We also use the popular evaluation metrics precision, recall and F1 score
for classification problems. Their equations are as follows.

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2× Precision× Recall

Precision + Recall
Where TP represents the number of True Positives, FP indicates the number of
False Positives and FN is the number of False Negatives.

For the hyperparameters, we set the maximum input sequence length as 128,
batch size as 8, learning rate as 3e−5, epochs as 32. To implement LoRA, we use
the pre-defined framework peft from Hugging Face. From the experiments, we
can reduce the trained parameters to 20% - 25% from original pre-trained models.
Also, we set the specific parameter rank r used in LoRA as 8. We also use AdamW
optimizer [11] in the training process. All training and inference are executed on a
server with Intel Core 13900K CPU, 32GB memory and NVIDIA RTX 4090 GPU.

5 Results Analysis

In this section, we illustrate the impact of LoRA on the efficiency and effectiveness
of NFR classification with p-tuning, shown in Table 1 and Table 2. In Table 1,

1 Hugging Face. https://huggingface.co/
2 NLTK toolkit. https://www.nltk.org/

108 Computer Science & Information Technology (CS & IT)

Table 1. Efficiency of NFR classification with and without LoRA

Model without LoRA with LoRA %reduction

Bert-base 11 mins 5 mins 54.5%
Bert-large 19 mins 6 mins 68.4%

Roberta-base 13 mins 7 mins 46.2%
Roberta-large 20 mins 9 mins 55%

Table 2. Effectiveness of NFR classification with and without LoRA

Model Precision Recall F1 score

Bert-base 81.39%(78.75%) 82.46%(78.13%) 81.92%(78.40%)
Bert-large 82.37%(79.26%) 82.90%(79.38%) 82.44%(79.32%)

Roberta-base 82.57%(80.73%) 83.17%(79.75%) 82.86%(80.26%)
Roberta-large 83.45%(81.29%) 83.57%(80.15%) 83.42%(80.78%)

the number indicates the execution cost of classification for 1-fold cross validation.
From the results, we can find that LoRA can significantly reduce the execution
cost of NFR classification. For example, for the Besrt-large model, it can reduce
the cost by 68.4% (19 mins vs 6 mins). In Table 2, the first column represents the
four models used in the study. The last three columns represent the values in terms
of the three metrics: precision, recall and F1 score. Please note that the number
outside the parentheses represents the value without LoRA while the number in
the parentheses indicates corresponding results with LoRA fine-tuning. Also, all
results are calculated as the average values of 10-fold cross-validation. From the
results, we have following findings. First, we can find that the two models from
Roberta performs better than Bert models. For example, the F1 score of Bert-base
is 81.92% while it is 82.86% for RoBERTa. The possible reasons could be that
RoBERTa is trained on a larger corpus of text with robust representation of the
language and it uses a dynamic masking strategy where different tokens are masked
in each training example. Also, we can find that the large versions of both models
perform better than their corresponding base model. It indicates that more weights
trained for NFR classification can get better performance. Third, with LoRA fine-
tuning approach, we can find that the performance are worse than corresponding
models without LoRA. However, the difference is only 2%-3%, showing that LoRA
can be practical and acceptable in more complicated classification cases with larger
dataset and pre-trained models.

6 Threats to Validity

The main external threat to the validity is the dataset we used. In our study, we
use the widely used data PROMISE for NFR classification to make our results as

Computer Science & Information Technology (CS & IT) 109

accurate as possible. The internal threat to the validity is the implementation of
the training and inference. To reduce the threat, we use the pre-defined framework
of LoRA from the popular AI community Hugging Face.

7 Conclusion

In this paper, we conducted a comprehensive study to evaluate impact of LoRA
fine-tuning approach on the performance of prompt-based non-functional require-
ments classification. Our experimental results show that with LoRA fine-tuning
approach, the execution cost can be reduced by up to 68% and the performance
are worse than corresponding models without LoRA. However, the difference is
only 2%-3%, showing that LoRA can be practical and acceptable in more com-
plicated classification cases with larger dataset and pre-trained models compared
with the significant execution cost reduction. In future, we plan to evaluate NFRs
classification by using more fine-tuning approaches.

References

1. Sayyad, SJ. PROMISE software engineering repository. 2005
2. Amasaki, Sousuke and Leelaprute, Pattara. The effects of vectorization methods on non-

functional requirements classification. 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA)

3. EzzatiKarami, Mahtab and Madhavji, Nazim H, Automatically classifying non-functional re-
quirements with feature extraction and supervised machine learning techniques: A research pre-
view. Requirements Engineering: Foundation for Software Quality: 27th International Working
Conference, REFSQ 2021, Essen, Germany, April 12–15, 2021.

4. Devlin, Jacob. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805

5. Brown, Tom B. Language models are few-shot learners. arXiv preprint arXiv:2005.14165. 2020
6. Liu, Xiao and Zheng, Yanan and Du, Zhengxiao and Ding, Ming and Qian, Yujie and Yang,

Zhilin and Tang, Jie. GPT understands, too. AI Open, 2023
7. Luo, Xianchang and Xue, Yinxing and Xing, Zhenchang and Sun, Jiamou. Prcbert: Prompt

learning for requirement classification using bert-based pretrained language models. Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering, 2022

8. Dekhtyar, Alex and Fong, Vivian. Re data challenge: Requirements identification with word2vec
and tensorflow. 2017 IEEE 25th International Requirements Engineering Conference (RE)

9. Rahimi, Nouf and Eassa, Fathy and Elrefaei, Lamiaa. One-and two-phase software requirement
classification using ensemble deep learning. Entropy, 2021

10. Hey, Tobias and Keim, Jan and Koziolek, Anne and Tichy, Walter F. Norbert: Transfer learning
for requirements classification. 2020 IEEE 28th international requirements engineering confer-
ence (RE)

11. Loshchilov, I. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. 2017
12. Hu, Edward J and Shen, Yelong andWallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and

Wang, Shean and Wang, Lu and Chen, Weizhu. Lora: Low-rank adaptation of large language
models, arXiv preprint arXiv:2106.09685, 2021.

13. Dias Canedo, Edna and Cordeiro Mendes, Bruno, Software requirements classification using
machine learning algorithms.Entropy, 2020, MDPI

110 Computer Science & Information Technology (CS & IT)

14. AlDhafer, Osamah and Ahmad, Irfan and Mahmood, Sajjad. An end-to-end deep learning sys-
tem for requirements classification using recurrent neural networks. Information and Software
Technology. 2022

15. Kici, Derya and Malik, Garima and Cevik, Mucahit and Parikh, Devang and Basar, Ayse. A
BERT-based transfer learning approach to text classification on software requirements specifi-
cations. Canadian AI. 2021.

16. Kamaljit Kaur, Parminder Kaur. BERT-CNN: Improving BERT for Requirements Classifica-
tion using CNN. Procedia Computer Science. 2023

17. Yang, Liziqiu and Huang, Yanhao and Tan, Cong and Wang, Sen. News topic classification
base on fine-tuning of chatglm3-6b using neftune and lora. Proceedings of the 2024 International
Conference on Computer and Multimedia Technology.2024

18. Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang,
Zhilin and Tang, Jie. Glm: General language model pretraining with autoregressive blank in-
filling. arXiv preprint arXiv:2103.10360. 2021

19. Shui, Hongyi and Zhu, Yuanjing and Zhuo, Fan and Sun, Yibo and Li, Daoyuan. An Emotion
Text Classification Model Based on Llama3-8b Using Lora Technique. 2024 7th International
Conference on Computer Information Science and Application Technology (CISAT). 2024

20. McCleary, Kyle and Ghawaly, James and Miele, Lucio. TNM Tumor Classification from Un-
structured Breast Cancer Pathology Reports using LoRA Finetuning of Mistral 7B. AAAI 2024
Spring Symposium on Clinical Foundation Models. 2024

21. Aggarwal, Deeksha and Mittal, Yash and Kumar, Uttam. Advancing Image Classification
through Parameter-Efficient Fine-Tuning: A Study on LoRA with Plant Disease Detection
Datasets. The Second Tiny Papers Track at ICLR.2024

22. Vaswani, A. Attention is all you need. Advances in Neural Information Processing Systems.
2017

23. Liu, Yinhan. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692. 2019

Computer Science & Information Technology (CS & IT) 111

 . This article is published under the Creative Commons
Attribution (CC BY) license.
© 2025 By AIRCC Publishing Corporation

https://airccse.org/

