
 

David C. Wyld et al. (Eds): SIPO, BDHI, NET, SOEA, CSML, AISCA, MLIOB, DNLP – 2025 

pp. 123-132, 2025. CS & IT - CSCP 2025                                                      DOI: 10.5121/csit.2025.150412 

 
ARTIFICIAL INTELLIGENCE IN SOFTWARE 

ENGINEERING: INTEGRATION  
AND KEY CHALLENGES 

 

Xiaowei Shao 1, Mariko Shibasaki 2 and Ryosuke Shibasaki1,2 

 
1 Department of Engineering, Reitaku University, Kashiwa, Japan 

2 LocationMind, Tokyo, Japan 
 

ABSTRACT 
 
This paper explores the integration of artificial intelligence (AI) into software engineering. 

It examines how AI can be effectively incorporated throughout the software development 
lifecycle, encompassing phases like requirement analysis, system design, code development, 

testing, and software deployment. It highlights the potential benefits of AI-driven software 

development, such as increased development efficiency, improved software quality, and 

enhanced performance. The discussion extends to addressing the substantial challenges 

that accompany the integration of AI within software development frameworks. These 

include the limitations of current AI technology in achieving complete automation of large 

software projects, the need to ensure the accuracy and reliability of AI-generated code, 

complex task decomposition and verification, multi-agent collaboration, external 

knowledge utilization, and AI integration within project management workflows. This paper 

concludes by discussing the future directions in AI-driven software development. 

 

KEYWORDS 
 
Artificial Intelligence, Software Engineering, Multi-agent 

 

1. INTRODUCTION 
 
Since the invention of computers, software development has been closely tied to scientific 

computing and industrial applications. Early software systems were mainly used to handle 

complex mathematical computations and manage industrial processes. Software not only 

accelerated data processing and the construction of complex models but also greatly enhanced 
design precision and operational efficiency, playing a crucial role in driving technological 

progress and industrial automation. 

 
With the popularization of personal computers, the application of software expanded into 

domestic and commercial realms. Operating systems such as Microsoft Windows and Linux, 

along with applications like Microsoft Office, email, and instant messaging tools, have 

significantly transformed daily life and improved work efficiency. They have made document 
processing, information exchange, and data management more convenient than ever before. 

Moreover, the development of websites and multimedia software has greatly facilitated 

communication and revolutionized entertainment methods. From video platforms like Netflix and 
YouTube to various online news and blog platforms, these software applications not only provide 

a diverse array of information and entertainment resources but also allow individuals easy access 

to global information, enjoying various media content, thereby further deepening global cultural 
exchange and understanding. 

https://airccse.org/csit/V15N04.html
https://airccse.org/
https://doi.org/10.5121/csit.2025.150412


124                                  Computer Science & Information Technology (CS & IT) 

 
After entering the era of smartphones, the explosive growth of mobile software has profoundly 

impacted all aspects of society. From social media apps to online shopping platforms, and mobile 

games, these applications continuously reshape communication methods, shopping habits, and 

entertainment. For instance, apps like Facebook, Instagram, and TikTok have not only 
transformed the face of social interaction but have also driven the development of new marketing 

strategies. Meanwhile, service apps like Uber and Airbnb have completely altered the traditional 

models of transportation and tourism, demonstrating the irreplaceable role of software in modern 
society. These transformations indicate that software technology is increasingly becoming a 

significant force in the socio-economic structures and cultural forms of society. 

 
It is foreseeable that with the development of virtual worlds, digital twins, and metaverse 

technologies, the potential for software development will expand significantly in the future. In 

virtual environments, engineers have applied iterative optimizations to physical models to design 

tables that can move autonomously [1]. Additionally, digital twin technology has demonstrated 
its unique value in industry; for example, building digital twin models of equipment to optimize 

production processes. As these technologies continue to evolve and integrate, the role of software 

extends beyond the realm of information technology; it has become a critical force driving a wide 
range of socio-economic activities. Therefore, the future development of software will be a 

dynamic process filled with innovation. It is certain that these technological advancements will 

bring significant opportunities and challenges to software engineering.  
 

With the growing complexity of technological systems, software complexity also continues to 

increase. For instance, the 2001 release of Red Hat Linux 7.1 contained 30 million lines of source 

code, of which the Linux kernel itself comprised 2.4 million lines [2]. In small to medium 
projects, it is quite common to see tens of thousands to hundreds of thousands of lines of code, 

which often represent months or even years of collaborative effort by team members. Since the 

inception of software development, software engineering has evolved into a comprehensive 
discipline, including areas such as requirements analysis, system design, programming 

implementation, software testing, maintenance, and project management. Despite the existence of 

various software development process models, such as the waterfall model, incremental model, 

spiral model, and agile development, a number of challenges and difficulties still persist in the 
software development process, including complexity of requirement management, scale and 

complexity of software architecture, code quality management, team collaboration and 

communication, accumulation of technical debt, deployment and testing, continuous 
documentation updates and maintenance, etc.  

 

Over the past several decades, software development has primarily relied on human effort, that is, 
manually writing code line by line. Although integrated development environments (IDE) and 

tools (such as code completion, syntax checking, and performance profiling) have made great 

advancements, the core model, centered around manual labor, has remained unchanged. However, 

since the introduction of ChatGPT3.5 in 2022 [3], automated programming has become feasible 
and has quickly gained widespread attention and rapid development. Just as calculators and 

software once freed humans from the tedious task of numerical calculations (mathematicians no 

longer need to spend decades manually calculating π!), the introduction of AI represents a 
revolutionary change in the field of software engineering. This paper will explore the current 

directions in AI software engineering, address some of the core issues, and introduce some 

relevant applications. 
 

 

 

 



Computer Science & Information Technology (CS & IT)                                           125  

2. RELATED BACKGROUND 
 
The term "artificial intelligence" covers a broad range of technologies and application areas, such 

as pattern recognition, object detection and tracking, image classification, natural language 

processing, and machine translation. In this paper, we specifically refer to generative AI 

technologies based on large language models (LLMs). Taking GPT-3 as an example, it is an 
advanced large language model based on the generative pre-trained transformer (GPT) 

architecture [4]. The model employs a self-attention mechanism to handle input text, considering 

the full context of the input sequence to generate its output. ChatGPT is initially pre-trained on a 
huge dataset to learn broad patterns and structures of language, and then fine-tuned to perform 

more accurately in specific tasks. The primary advantage of this model is its capability to 

understand and generate human language, enabling it to fluently produce text close to human 

level. 
 

LLMs have achieved remarkable success in natural language processing (NLP) tasks such as 

natural language conversation, text translation, and text summarization, drawing widespread 
attention. These models demonstrate powerful capabilities in context understanding, information 

extraction, and text generation. Since the rise of deep learning, researchers have explored its 

application to code generation [5][6]. Early attempts primarily relied on models such as recurrent 
neural networks (RNN) and long short-term memory networks (LSTM), often combined with 

structured code representations such as abstract syntax trees (AST). However, constrained by the 

model’s ability and the scale of training data, these studies lacked accuracy and robustness in 

code generation. The generated code frequently contained syntax errors, logical flaws, or failed to 
effectively address real-world problems.  

 

The breakthrough success of the GPT-3.5 architecture marked a new phase for LLM technology. 
Its powerful language modeling abilities, coupled with zero-shot and few-shot learning 

capabilities, offered new opportunities in the field of code generation. Utilizing the large amount 

of available open-source code (e.g., GitHub, Stack Overflow, etc.) as training data, and exploiting 
the powerful transformer architecture, a few models with code generation capabilities have 

emerged, including Codex, CodeLlama, and CodeGen. These models have demonstrated 

promising performance in tasks such as code completion, code translation, and unit test 

generation, although their capabilities are still under development and require further refinement. 
 

The rapid advancement of AI-powered code generation has led to the emergence of a range of 

commercial products. For instance, Text2SQL translates natural language into SQL code, 
offering features like code explanation and issue resolution, thus lowering the technical barrier to 

database operations [7]. Cursor focuses on enhancing project management and user interaction 

within the software development workflow [8]. By integrating AI assistance into the code editing 

environment, Cursor significantly facilitates the management, updating, and debugging of 
multiple code files, thereby enhancing developer productivity. Similarly, ChatGPT has 

introduced a canvas mode for code development, providing a more convenient interface that 

facilitates code modification and testing. Although these products and technologies are not yet 
capable of fully automating the development of large-scale software, they represent valuable 

contributions to AI-integrated software development.  

 

3. AI INTEGRATION IN SOFTWARE DEVELOPMENT 
 
First, let us begin by examining a common development process (as shown in Figure 1), 

exploring how AI can be effectively integrated into the software development workflow. 

 



126                                  Computer Science & Information Technology (CS & IT) 

(1) Generating a requirements list. In software development, clearly defining the project's 
requirements is an essential first step that sets the objectives and expected functionalities. 

Typically, this process is carried out by human engineers through brainstorming, negotiation, and 

communication. In this process, AI technology can play the following roles: 

 
 Utilizing natural language processing techniques to analyze customer-provided requirement 

documents, AI can automatically extract and organize functional requirements. For example, 

AI can identify key requirement elements from the documents, such as functionality, 
performance specifications, and user interface preferences, and convert this information into 

a structured requirements list. 

 

 
 

Figure 1. Overview of AI-driven software development 

 

 Identifying any ambiguous or vague statements in the requirements, prompting developers 

to clarify or refine further, thereby ensuring the precision and feasibility of the requirements. 

 
(2) System design. In traditional development workflows, senior engineers are responsible for 

constructing the overall framework and design of the system based on the project requirements. 

This involves considering factors such as functionality, available resources, performance 
requirements, and future extensibility. In this process, AI technology can play the following roles: 

 

 Automated design recommendations: AI may automatically generate preliminary design 
proposals based on requirements, offering a variety of architectural options for developers to 

choose from, thus accelerating the design decision-making process. 

 Performance optimization: AI may identify potential bottlenecks based on workload analysis 

across different scenarios, analyze and predict the performance of the system under different 
designs, and facilitate overall performance optimization. 

 Risk assessment and management: AI may find out potential design risks and contradictions, 

providing early warnings to ensure the reliability and safety of the design. 
 

(3) Module based code/document generation. Once the overall framework is clarified, 

developers need to begin the actual implementation by writing program code and concurrently 

generating corresponding technical documentation. This step is crucial for transforming the 
design into functional and maintainable software. In this process, AI technology can play the 

following roles: 



Computer Science & Information Technology (CS & IT)                                           127  

 Automated code generation: AI may automatically generate function-level or module-level 
code based on the system design and requirement specifications, greatly increasing 

development speed and avoiding common programming errors and typos. 

 Intelligent code review: AI tools may perform real-time code reviews during the 

development process, detecting potential coding errors and performance issues to ensure 
code quality. 

 Automated document generation: As the code is developed, AI may automatically generate 

and update technical documentation, such as API documents and user manuals, ensuring that 
the documentation is consistently updated in sync with the code implementation. 

 

(4) Deployment/testing. After completing certain stages of software development, developers 
need to deploy and test the software in real or test environments. This is a detail-oriented and 

labor-demanding process, which ensures the software's stability and performance meet 

expectations in actual conditions. In this process, AI technology can play the following roles: 

 
 Intelligent test case generation: AI may automatically generate test cases based on the 

behavior of the application, covering more usage scenarios, thereby enhancing the 

comprehensiveness and efficiency of testing. 
 Automated deployment: AI may automate the deployment process, ensuring that the 

software is rapidly and consistently deployed across various environments, reducing 

potential errors caused by inconsistencies in deployment.  
 Fault diagnostics: By automatically collecting and providing feedback on relevant 

information during system failures, AI may facilitate intelligent analysis, enabling 

developers to quickly identify and address errors. 

 
In summary, during the requirements definition phase, AI can enhance the accuracy and 

completeness of requirement analyses. In the system design phase, AI not only boosts design 

efficiency but also optimizes design patterns. During the coding phase, AI facilitates the efficient 
and high-quality development of code and documentation. In the deployment and testing phase, 

AI improves the efficiency and quality of software testing and deployment, and assists in rapid 

error localization. Overall, integrating AI into software engineering allows for the effective 

optimization of tasks throughout the software development lifecycle. This integration is expected 
to generate considerable enhancements in both the development efficiency and the overall quality 

of the software product.  

 

4. KEY CHALLENGES IN AI-DRIVEN SOFTWARE DEVELOPMENT 
 

 
 

Figure 2. Workflow of AI agents in software development 



128                                  Computer Science & Information Technology (CS & IT) 

The incorporation of AI in software engineering presents both opportunities and challenges. 
While there are expectations for significant improvements in productivity and software quality, 

substantial challenges also arise. In initial LLM applications such as translation or natural 

language conversation, a small degree of inaccuracy is acceptable, and users understand this 

limitation. However, programming demands extreme precision. Each line of code is translated 
into binary machine instructions executed by the CPU or GPU. Even within large-scale software 

systems, a minor but fatal error—such as a memory allocation fault or a formatting mistake—can 

lead to the collapse of the entire software system, or even the operating system itself. Such 
failures can have severe social impacts, as illustrated by the massive blue screen incident 

involving CrowdStrike in July 2024. 

 
It is evident that current AI technology is not yet capable of fully automating the development of 

large-scale software projects. Imagine a scenario: developers instruct AI to create an operating 

system similar to Microsoft Windows, or to develop a document processing software within a 

Linux environment. Within hours or days, the AI autonomously generates the complete software. 
Following this, developers provide feedback and debugging information, utilized by the AI to 

continue refining and optimizing the software. After several iterations, the software reaches a 

release-ready state. While such a scenario is conceivable in the future, there is still a significant 
gap between today's AI capabilities and this objective. In this section, we will analyze and 

discuss key challenges on the research and development path toward this goal. 

 

4.1. Development Agent: Module-Level Code Implementation 
 

In code generation benchmarks such as HumanEval [9] and MBPP [10], function-level code 
implementation serves as the foundation for AI code generation. These datasets primarily focus 

on the correctness of individual functions, providing a baseline for evaluating the fundamental 

capabilities of AI-generated code. 
 

 
 

Figure3. An example from the HumanEval dataset (left) and the corresponding code generated by 

ChatGPT-4o (right) 

 

The goal of a development agent extends beyond function-level code generation to encompass 

the complete development of single modules, comprising multiple related functions and data 
structures. The primary tasks include: 

 

(1) Functionality: The generated code and document must fully implement all specified 
requirements of the module or function, leaving no missing features, based on the natural 

language description of the requirements. 

(2) Reliability and robustness: Beyond generating syntactically correct code, the agent must 

ensure that the code operates correctly under various inputs and boundary conditions, adhering to 
the intended functionality and logic. 



Computer Science & Information Technology (CS & IT)                                           129  

(3) Conformance to specifications: The behavior and output of the code must conform to the 
expected functional specifications and design documentation, including input/output formats, 

resource utilization methods, and error handling mechanisms. 

(4) Code optimization: The agent should be able to optimize code by selecting appropriate data 

structures and algorithms to address performance bottlenecks, thereby improving runtime 
efficiency or reducing resource consumption. 

(5) Automated test case generation: To validate the correctness and performance of the code, 

the agent needs to automatically generate comprehensive test cases, encompassing normal cases, 
boundary cases, and exceptional or error cases. 

 

The performance of the development agent heavily relies on LLMs, making their fundamental 
capabilities crucial. As illustrated in Figure 3, natural language can convey general principles, but 

often lacks precision, leading to ambiguities. Conversely, specific examples, while providing 

precise guidance, typically cover only a limited number of cases. Consequently, AI needs to fully 

understand the requirements to provide appropriate solutions, rather than simply matching or 
applying known patterns. Based on existing LLMs, AI agents have provided promising results in 

handling function-level tasks. For instance, by incorporating GPT-4o with a language model 

debugger, Zhong et al. achieved Pass@1 code generation rate of 98.2% [11]. 
 

4.2. Core Agent: System-Level Code Implementation 
 
In AI-driven software development, the core agent, responsible for task decomposition and agent 

scheduling, is crucial and represents a key technology in the entire development process. Its 

primary responsibilities include: 
 

(1) Complex task decomposition 

 
The core agent is expected to construct analytical pathways to break complex tasks into multiple 

subtasks. This is a highly challenging task. In GPT-o1, by simulating human cognitive process, 

the "chain of thought" functionality was introduced, demonstrating AI’s capability in task 

decomposition. In the research conducted by Zhu et al. [12], AI progressively learned rules 
during exploration in the Minecraft game world, and successfully decomposed the complex task 

of "obtaining diamond" into dependent subtasks. 

 
Furthermore, after decomposing a complex task into a series of subtasks, the core agent must also 

validate the execution results of these subtasks to ensure their correctness and effectiveness. This 

implies that the core agent needs to design module tests for each independent subtask, as well as 

integration testing for the overall system. 
 

(2) System architecture design and optimization 

 
The core agent needs to promote modularity in system design, so that individual components can 

be assigned to development agents. In addition, it must be capable of continuously monitoring the 

system's operational status and rapidly diagnosing performance bottlenecks or failure points. This 
kind of system management helps in maintaining high reliability and availability. Based on 

performance analysis, the core agent should establish a feedback loop that allows for iterative 

improvements, thus optimizing system performance over time. 

 
(3) Multi-agent collaboration and scheduling 

 

The core agent, as the manager and coordinator of a multi-agent system, is responsible for 
constructing a collaborative framework and clearly defined workflows for agents. On this 



130                                  Computer Science & Information Technology (CS & IT) 

foundation, it is also essential to establish explicit protocols and interfaces to ensure efficient and 
consistent communication among different agents. In [13], a meta-programming framework 

named MetaGPT is introduced, aimed at simulating the software development process by 

assigning agents to different roles (such as product managers, architects, engineers, etc.) and 

setting standardized communication protocols (SOPs) to facilitate multi-agent collaboration. 
 

4.3. Knowledge Management Agent 
 

The core responsibility of the knowledge management agent is to manage externally provided 

knowledge bases and data, thereby offering essential knowledge support to other agents. This 

feature enables the software development process to meet specific user requirements, making it a 
critical component in the multi-agent systems. 

 

Two primary approaches are commonly employed by knowledge management agents for 
handling external knowledge bases: retrieval augmented generation (RAG) and fine-tuning. RAG 

enables agents to augment their response generation process by first retrieving relevant 

information from external knowledge repositories. By combining information retrieval systems 
with generative models, RAG ensures that generated responses are more accurate, reliable, and 

reflective of current knowledge. A key advantage of RAG is its efficiency in knowledge updates; 

rather than requiring full model retraining, RAG dynamically incorporates new information 

through retrieval, thereby significantly reducing update and maintenance overhead. This makes 
RAG particularly suitable for dynamic knowledge domains where information changes 

frequently. 

 
Fine-tuning, conversely, involves the further training of a pre-trained LLM using a specific 

knowledge base dataset. This process refines the model's understanding and application of 

domain-specific knowledge, leading to enhanced performance in targeted areas. While fine-
tuning offers the benefit of deep knowledge integration, it demands considerable resources, 

including large amounts of labeled data and substantial computational power. A drawback is the 

need for complete retraining whenever the knowledge base is updated, making it less suitable for 

rapidly evolving knowledge domains. 
 

Regarding external data, the knowledge management agent requires specific data manipulation 

capabilities to effectively manage and utilize information. These capabilities typically encompass 
the creation, deletion, modification, and retrieval of related data. 

 

4.3. AI Integration in Software Project Management 
 

Before the advent of integrated AI development environments like Cursor [8], even though AI 

possessed powerful capabilities, the only way for developers to collaborate with AI in software 
development was through the cumbersome process of copying and pasting code and debugging 

information between the chat dialog and local project files. This primitive method of interaction 

was not only highly inefficient and time-consuming but also severely limited developers' ability 

to handle multiple files simultaneously, leading to frequent context switches and low productivity.  
The integration of AI in software project management aims to break through these bottlenecks, 

significantly enhance development efficiency, and better address the various challenges 

throughout the software project lifecycle. 
 

Within integrated AI development environments, to facilitate efficient collaboration and 

automation, AI needs to be granted the following permissions: 



Computer Science & Information Technology (CS & IT)                                           131  

 Automated file/document interaction and updating: This encompasses the ability to 
programmatically access, modify, and manage files and documents within the project 

workspace. 

 Document retrieval and access: This grants the AI agent the capacity to search, locate, and 

access relevant documentation, code comments, and other project-related information within 
the development environment. 

 Automated input (keyboard and mouse control) and output information acquisition: This 

entails the ability to programmatically simulate user input via keyboard and mouse events, 
as well as capture and process output displayed on the screen or in the console. This enables 

the AI agent to automate tasks such as running tests, interacting with user interfaces, and 

collecting execution results. 
 Acquisition of debugging information: This provides the AI agent with access to debugging 

information, such as logs, stack traces, variable values, and breakpoints. This allows the AI 

agent to assist developers in identifying and resolving errors, analyzing program behavior, 

and optimizing performance. 
 

5. CONCLUSIONS 
 

The rapid advancement of AI is profoundly reshaping the field of software engineering. The 
integration of AI with software engineering will undoubtedly greatly enhance development 

efficiency, and researchers alongside programmers are actively collaborating to push the 

boundaries of its capabilities. It is foreseeable that AI, trained on vast amounts of code, will 

become proficient in the various design patterns developed by human programmers. When 
addressing problems of low to medium complexity, AI is expected to demonstrate superior and 

more robust development capabilities than humans. However, when faced with highly complex 

systems and problems, the human programmer's abilities in analysis, abstraction, and creative 
problem-solving remain unmatched by AI at present. The critical challenge, and indeed the 

significant opportunity, lies in effectively combining human ingenuity with AI's computational 

power to revolutionize established software engineering methodologies. This exciting 
transformation may very well unfold within the next few years. 

 

REFERENCES 
 
[1] De Carpentier, G. (2024). Carpentopod: A walking table project. Retrieved from https://www. 

decarpentier.nl/carpentopod 

[2] Linux (2024), In Wikipedia, The Free Encyclopedia. Retrieved from https://en.wikipedia.org/ 

wiki/Linux  

[3] OpenAI. (2022). ChatGPT — Release Notes. Retrieved from https://help.openai.com/en/articles/ 

6825453-chatgpt-release-notes  

[4] Brown, T., et al. (2020). Language Models are Few-Shot Learners. In Advances in Neural 

Information Processing Systems, Vol. 33, pp. 1877-1901. 

[5] Katsogiannis-Meimarakis, G., & Koutrika, G. (2023). A survey on deep learning approaches for text-

to-SQL. The VLDB Journal, Vol. 32, pp. 905-936. 
[6] Li, J., Wang, Y., Lyu, M. R., & King, I. (2017). Code completion with neural attention and pointer 

networks. arXiv preprint arXiv:1711.09573. 

[7] Text2SQL.AI. (2024). Generate SQL with AI. Retrieved from https://www.text2sql.ai/  

[8] Cursor. (2024). The AI Code Editor. Retrieved from https://www.cursor.com/  

[9] Chen, M., et al. (2021). Evaluating large language models trained on code. arXiv preprint 

arXiv:2107.03374. 

[10] Austin, J., et al. (2021). Program Synthesis with Large Language Models. arXiv preprint 

arXiv:2108.07732. 



132                                  Computer Science & Information Technology (CS & IT) 

[11] Zhong, L., Wang, Z., & Shang, J. (2024). Debug like a Human: A Large Language Model Debugger 

via Verifying Runtime Execution Step by Step. In Findings of the Association for Computational 

Linguistics: ACL 2024, pp. 851-870. 

[12] Zhu, X., et al. (2023). Ghost in the Minecraft: Generally capable agents for open-world environments 

via large language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144. 
[13] Hong, S., et al. (2023). METAGPT: meta programming for a multi-agent collaborative framework. 

arXiv preprint arXiv:2308.00352. 

[14] Lewis, P., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances 

in neural information processing systems, 33, pp. 9459-9474. 

[15] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional 

transformers for language understanding. arXiv preprint arXiv:1810.04805. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

© 2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons 
Attribution (CC BY) license. 

 

https://airccse.org/

	Abstract
	Keywords
	Artificial Intelligence, Software Engineering, Multi-agent


