
ChaoticRIPE: Strengthening RIPEMD-160 with

the Chirikov Standard Map for Enhanced

Cryptographic Security

Suparn Padma Patra1 and Mamta Rani2

1,2Central University of Rajasthan, Ajmer, Rajasthan 305817
1suparnpatra@gmail.com, 2mamtarsingh@curaj.ac.in

Abstract. Advancements in communication and storage technologies need robust encryption tools to
protect data. Cryptographic hash functions are crucial in maintaining data integrity and security by turning
variable-length inputs into fixed-size digests. RIPEMD-160 is a popular hash algorithm that balances speed
and security. However, advances in cryptanalysis have revealed weaknesses, requiring upgrades to bolster
its defences against new dangers. Our research offers a new method to boost RIPEMD-160’s security
using the Chirikov Standard Map’s chaotic properties, which increase unpredictability. We developed the
ChaoticRIPE algorithm, incorporating the Chirikov Standard Map into RIPEMD-160. The experimental
analysis demonstrates that ChaoticRIPE exhibits improved resistance to cryptographic attacks, heightened
sensitivity to input variations, and a more uniform hash distribution than the original RIPEMD-160. The
method maintains efficiency with a minimal computational overhead of approximately 0.05 milliseconds
per hash computation. ChaoticRIPE is a potential enhancement for cryptographic hash functions used in
modern security applications; National Institute of Standards and Technology (NIST) statistical testing
results show the suggested technique’s resilience.
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1 Introduction

The rapid development of digital storage and communication systems in recent years has
made it clear how important strong and safe security methods are for keeping data’s
quality and authenticity. One important part of these systems is the cryptographic hash
functions, which take raw data of different lengths and turn it into a fixed-size digest
that can be used for many things, like verifying messages, creating digital signatures, and
storing passwords [8].

By adding chaos to the hash, researchers aim to increase security. Ayubi et al., [4]
proposed a cryptographic hashing algorithm that uses a complicated quadratic map with
chaotic behaviour in both the real and imaginary parts. Its long key length and sensitivity
to small changes improve the map’s resilience and security. Various analyses demonstrate
the function’s effectiveness and safety. To address problems with current structures like
multi-collision and length extension attacks, Zellagui et al., [33] suggested a new hash func-
tion that uses a sponge structure and two chaotic maps. It has statistically solid features
and excellent resilience to collision attacks, making it appropriate for cloud computing
and digital signatures.

Zellagui et al., [32] integrated Henon map in MD4 hashing algorithm in order to en-
hance the security of original MD4 algorithm. Their method offered a possible enhancement
to MD4 by improving statistical distribution and chaotic performance along with increas-
ing collision resistance. Similarly, RIPEMD-160, a popular cryptographic hash algorithm
known for its decent security and speed was created to improve the original RIPEMD[27].
It offers better protection against brute-force attacks [16]. However, the security of the
existing hashing algorithms has come under scrutiny due to the ongoing improvements
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in cryptanalysis methods[17]. As a result, researchers are exploring novel techniques to
increase the security of hash functions that are frequently used.

One strategy is implementing chaotic dynamic processes into the hashing algorithms
used in cryptography. Chaotic systems are known for ergodicity, sensitivity to initial
circumstances, and mixed-phase space that enhances their unpredictability and defense
against various attacks [31]. In this paper, we have introduced a technique that uses the
chaotic dynamics of the Chirikov Standard Map to increase the security of the RIPEMD-
160 hash function.

The paper has been organized as follows. We begin by reviewing previous studies
in Section 2. In Section 3, the preliminaries are given. Section 4 discusses the proposed
model. In Section 5, we have analyzed the results of the experiments. Section 6 concludes
the article.

2 Literature Review

Grassi et al. [13] explored the advancements in zero-knowledge (ZK) proof systems for
computational integrity, focusing on arithmetization-friendly hash functions. Specifically,
they introduced Poseidon2, an optimized version of Poseidon, featuring a flexible instan-
tiation as either a sponge or compression function. Poseidon2 incorporates more efficient
linear layers, reducing multiplications by up to 90% and constraints in Plonk circuits by up
to 70%. Addressing security concerns, they proposed a modification to thwart algebraic at-
tacks on both Poseidon and Poseidon2. Poseidon2’s security and efficiency improvements
make it a leading arithmetization-oriented hash function, mitigating known vulnerabil-
ities and demonstrating practical advantages in computational integrity-proof systems.
Similarly, Alan et al. [28] presented Tip5, an arithmetization-oriented hash function with
p = 264 − 232 + 1 components that employ the field-specific SHARK design technique.
The arithmetization of Tip5 is described in the context of particular design restrictions,
motivated by the recursive verification of STARKs. Three design techniques are compared
in the suggested methodology: Marvellous, Hades, and Reinforced Concrete. The SHARK
strategy with full S-box layers and MDS matrices is finally adopted for Tip5.

Moreover, Bouvier et al. [7] proposed Anemoi, a family of ZK-friendly permutations
designed for efficient hash functions and compression functions, catering to cryptographic
protocols such as Zcash, Monero, and others. Anemoi did well, with R1CS constraints
that were two times better than Poseidon and Rescue-Prime’s, a drop of 21% to 35%
in Plonk constraints, and, based on the field size, going two to three times faster than
Rescue-Prime. They came up with a new way to work and a new S-box structure called
Flystel. Both of these meet the design needs of arithmetization-oriented hash functions.

Pibiri and Trani [22] introduced a new way to build PTHash, a minimal perfect hash
function (MPHF), with the goal of making it work well in a wide range of situations.
PTHash is crucial for applications in computing, such as search engines and databases,
offering fast evaluation and minimal space consumption (2-3 bits/key). The proposed
algorithm enables multi-threading and external-memory processing, addressing the need to
scale efficiently to large datasets. Numerous tests conducted on real-world string collections
show that PTHash performs exceptionally well in search times while being competitive in
construction times and space usage.

Sideris et al. [26] focuses on enhancing the throughput rate of the Keccak hash algo-
rithm, also known as SHA-3, by proposing a novel architecture based on FPGA devices
(Virtex-5, Virtex-6, and Virtex-7). The Keccak algorithm is recognized for its excellent
hardware performance and resistance to cryptanalysis. The proposed methodology involves
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optimizing the Keccak algorithm through unrolling and pipe-lining techniques, introduc-
ing a new Round Constant (RC) generator format, and conducting thorough validation
using NIST examples.

Mishall [2] addressed securing health data exchange in Internet of Things (IoT) ap-
plications, particularly within Wireless Sensor Networks in the electronic health sector.
Based on Elliptic-curve Diffie–Hellman (ECDH) and QUARK hash, the proposed key ex-
change protocol aims to balance security and performance. The methodology involves strict
rules for parameter security, hiding public key exchange, integrating QUARK with ECDH,
and conducting a comprehensive security analysis using the Scyther tool. The proposed
protocol successfully addresses security vulnerabilities, and the performance evaluation
demonstrates efficiency compared to existing methods.

Nicky Mouha [20] focused on identifying vulnerabilities in cryptographic hash function
implementations, specifically revisiting the finalists of the NIST SHA-3 competition. The
paper discussed the recent discovery of a buffer overflow in SHA-3 (Keccak) in the extended
Keccak Code Package (XKCP), affecting Python, PHP, and other projects. The study
introduced a novel approach using formal methods, including symbolic execution with the
KLEE framework, to find vulnerabilities in SHA-3 finalists (BLAKE, Keccak, Grøstl) and
Apple’s CoreCrypto library.

Stefano and Chenzhi [29] introduced two-round multi-signatures and threshold sig-
natures, demonstrating security based on the plain discrete logarithm problem or the
RSA assumption, relying on random oracles. The proposed protocols are partially non-
interactive, with the first round independent of the message. Building on efficient discrete-
logarithm-based schemes, the authors extend MuSig2 and FROST to incorporate linear
hash functions, allowing security under either discrete logarithm or RSA assumptions. The
results proposed a general framework for transforming schemes secure under one more dis-
crete logarithm into those secure under plain DL or RSA assumptions.

Masrat and Samir [23] proposed a chaos-based hash function, leveraging the generalized
Collatz process to enhance security in cryptographic applications. The proposed method
incorporates chaotic variables governed by cryptographic keys, optimizing the design for
desirable properties such as randomness, collision resistance, uniformity, and sensitivity to
initial conditions. Through extensive evaluations, including comparisons with SHA-3 and
SHA-2, the proposed hash function consistently outperforms existing alternatives, demon-
strating superior statistical features, collision resistance, and efficiency. The algorithm
exhibits robustness against common attacks, making it promising for digital signatures
and data integrity applications. The study underscores the effectiveness of the proposed
chaos-based hash function, positioning it as a reliable solution for cryptographic systems
in real-world scenarios.

Peyman et al. [5] introduced a generalized chaotic map based on a complex quadratic
map for designing chaotic hash functions in cryptographic systems. The proposed map
exhibits chaotic behavior in real and imaginary parts, ensuring a high key length for cryp-
tographic security. Dynamical tests, including bifurcation diagrams and Lyapunov expo-
nent analyses, confirm the chaotic nature of the map. The proposed method successfully
generates hash codes ranging from 32 to 2048 bits, with a key length of 234 bits.

Salwa et al. [24] addressed enhancing blockchain security by proposing a modified SHA-
256 hash algorithm. The modification occurs after public key generation and is based on
four chosen chaotic maps and DNA sequences, increasing the complexity between the
original message and hash digest for heightened security. The proposed algorithm’s effi-
ciency is assessed, analyzed, and compared to SHA-256, considering confusion, diffusion,
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and distribution properties. Security performance is evaluated through collision analysis,
demonstrating improved robustness compared to SHA-256.

Hesam et al. [21] proposed a novel image encryption method, combining chaos func-
tions and an evolutionary algorithm for enhanced security. Chaos functions contribute
random occurrences and sensitivity to initial values, ensuring a secure encryption process.
The evolutionary algorithm optimizes layout and mapping to enhance image entropy. Im-
age components are disrupted using the evolutionary algorithm, coding rules, and logistic
mapping with an initial value from a hash function. The method exhibits good speed with
simple operators (Addition and XOR) and resistance to attacks due to a 256-bit hash
function and a large search space for the evolutionary algorithm. The proposed encryp-
tion algorithm offers high security, resistance against differential attacks, and uncertainty
in decryption, making it superior to other algorithms. The decryption involves solving
equations with two secret keys resembling a digital signature, offering a reversible alter-
native for encryption algorithms.

Jiandong et al. [18] introduced a Spark-based hash function and a two-dimensional
linked dynamic integer tent map to deal with security and speed issues that come up
when working with big amounts of raw data. The approach involves partitioning plaintext
in the Spark platform, parallel processing of data blocks, and utilizing a Merkle tree
structure for compression. The compression function employs a two-dimensional coupled
image lattice with a dynamic integer tent map and additional dynamic parameters to
enhance obfuscation.

In order to overcome shortcomings in conventional 1D maps, Abdullah et al. [3] pre-
sented a one-dimensional (1D) chaotic map with three control parameters. Using numerical
techniques, the new map’s dynamic behavior is examined; bifurcation diagrams and Lya-
punov exponent tests show a complex and varied behavior. In a way to secure images,
the suggested map is used to make a pseudo-random number. A lot of statistical tests,
like mean square error (MSE), peak signal-to-noise ratio (PSNR), NPCR, and UACI tests
on 28 shots, show that the encryption system is strong. In safe image cryptography ap-
plications, the newly presented 1D map works well and offers a more secure option than
conventional chaotic 1D maps. Keyspace analysis facilitates high randomness, homoge-
neous pixel distribution, sensitivity to small vital changes, and resilience against brute
force attacks.

Gaurav et al. [12] introduced a hash-based secure chaotic steganography technique for
concealing secret information within a cover image. The proposed method utilizes a hash
function to compute non-LSB positions for hiding secret data bits. Encoding the secret
involves chaotic sequences, and the randomness of these sequences is validated using the
NIST test suite. Standard statistical validation tests, including PSNR, Euclidean distance,
histogram analysis, and SSIM index, demonstrate the satisfactory quality of the stego
image.

Yu-Jie et al. [19] proposed a hash function construction scheme combining a two-
dimensional coupled map lattice and a dynamic integer tent map. The dynamic integer
tent map is the nonlinear function for the two-dimensional coupled map lattice, with dy-
namic parameters added to enhance security. The bit logic decision function of the dynamic
integer tent map controls the change in dynamic parameters. Test results demonstrate the
hash function’s strong security, simple implementation, and potential as an ideal replace-
ment for traditional hash functions. The algorithm offers flexibility by allowing users to
select different output lengths (128 bits, 256 bits, or 512 bits) based on their requirements.

Hang et al. [25] used a 4-D chaotic system based on a flux-controlled memristor model
to show a chaos-based image encryption method. The proposed algorithm integrates a
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Hash process using the MD5 algorithm to disturb the initial values of the chaotic system,
enhancing plaintext sensitivity and security. Additionally, S-box substitution and bit-XOR
operations are introduced to further scramble the pixel values and improve the algorithm’s
security. Several measures, such as information entropy, association coefficient, greyscale
histogram, plaintext sensitivity, key sensitivity, and ciphertext sensitivity, show that the
suggested encryption method works well.

Emmanuel et al. [1] focused on enhancing information security by implementing the
RSA and ElGamal cryptographic algorithms, accompanied by the SHA-256 hash function
for digital signature formulation. The primary objective is to authenticate shared data and
ensure its integrity. The methodology involves implementing the RSA and ElGamal cryp-
tographic algorithms using the C programming language and incorporating the SHA-256
hash function for digital signatures. The study emphasized the importance of information
security in the face of increasing cybercrimes, piracy, scams, and fraud. The implemented
cryptographic algorithms and hash functions aim to protect sensitive data, giving users
control over their information. The study recommends further implementation for secure
submission, storage, and extraction operations to protect sensitive data comprehensively.

Susila et al. [30] addressed the critical data integrity issue in the IoT security context,
focusing on lightweight cryptographic hash functions suitable for resource-constrained de-
vices. The study contributed by conducting a comprehensive survey of state-of-the-art
lightweight cryptographic hash functions up to early 2022. They classified design trends,
providing insights into diverse development approaches. The analysis and comparison of
these functions consider cryptographic properties and implementation aspects. Challenges
in designing lightweight cryptographic hash functions are discussed, and potential gaps in
future research are identified. Recently, Considering the importance of biometric security,
[9] proposed Chaos-based hashing scheme for cancellable biometrics security whereas [15]
utilized chaotic map for more better way to perform image encryption.

3 Preliminaries

In this section, we have discussed the existing hashing algorithms that are required for
understanding our proposed scheme. We have explained the Chirikov standard map and
the RIPEMD-160 hash function, which are main components of our proposed algorithm.

3.1 Chirikov Standard Map

The Chirikov Standard Map is a simple mathematical model used in the study of chaotic
dynamical systems [11]. It is a two-dimensional area-preserving chaotic map. It describes
how the position and velocity of this particle change over time under specific conditions.
The following iterative Equations 1 and 2 define the map:

θ(n+ 1) = (θ(n) + p(n+ 1)) mod 2π (1)

p(n+ 1) = (p(n) +K · sin(θ(n))) mod 2π (2)

Where θ(n) represents the angle, p(n) is an angular momentum at the nth iteration, and
θ(n+1) and p(n+1) are the updated position and momentum of the particle, respectively.
K is a control parameter determining the degree of chaos in the system. When K is small,
the Chirikov Standard Map shows regular behavior. However, the K increases beyond a
critical value, and the map starts showing chaotic behavior. We can see that even small
changes in the beginning can have huge effects on the results in the future.
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The Chirikov Standard Map has several beneficial characteristics that make it suitable
for cryptographic applications. Some of the characteristics include ergodicity, sensitivity to
initial conditions, and mixed-phase space. Ergodicity ensures that the map fully traverses
the phase space and offers great unpredictability. The sensitivity to starting conditions,
also known as the ”butterfly effect,” states that even small changes in the initial values
of theta and p lead to drastically different trajectories. Lastly, the mixed-phase space
attribute describes the presence of both regular and chaotic zones, making it challenging
to forecast the system’s behaviour[14].

3.2 RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160)

A popular cryptographic hash algorithm called RIPEMD-160 takes input data and outputs
a 160-bit hash result [10][6]. It was created as a substitute for the MD4 and MD5 hash
algorithms in order to overcome their security flaws. For a variety of applications, it has
been discovered that the hash function offers a fair level of security and performance.

The RIPEMD-160 algorithm processes input data in 512-bit blocks, iteratively ap-
plying compression functions to update an internal state. The internal state comprises
five 32-bit words combined to produce the final 160-bit hash value. While the compression
functions work, they use a mix of logical operations like AND, OR, XOR, and NOT, as well
as modular math and bitwise rotations. These operations provide nonlinearity, dispersal,
and chaos, which are essential for a secure hash function.

4 Proposed Scheme of ChaoticRIPE

In this section, we have discussed our proposed ChaoticRIPE method, which uses the
Chirikov Standard Map to improve the existing RIPEMD-160 hash function. Two main
components of our proposed Algorithm 1 are secure ripemd160 and chirikov standard map.
In this, we first calculate the starting angle theta, the initial angular momentum p, the
control parameter K, and the number of iterations to be carried out are the four inputs
that the chirikov standard map function requires. Theta and p are input values, and the
function iteratively applies the Chirikov Standard Map equations to them for the set num-
ber of iterations. The final value of theta and p are sent back as output. The essential
component of our proposed ChaoticRIPE method is the secure ripemd160 function. Three
parameters are required to calculate the hash: the input data, the control parameter K,
and the number of iterations of the Chirikov Standard Map.

The function first calculates the SHA3-512 hash of the supplied data. The resultant
hash digest is divided into two pieces in order to determine the starting values of theta and
p and is transformed into floating-point integers in the [0, 2π) range. Further, the theta, p,
K, and iterations are called together with the starting values of the chirikov standard map
function. In this stage, the hash computation incorporates the chaotic dynamics of the
Chirikov Standard Map. The original byte sequences in the RIPEMD-160 hash digest are
then replaced with the new values of theta and p, which are subsequently transformed
back to byte sequences.

In order to get the improved hash value, the altered digest is finally hashed using the
RIPEMD-160 method. A more secure and unpredictable hash function is produced due
to the second layer of hashing, which ensures that any possible patterns or correlations
generated by the Chirikov Standard Map are scattered. Figure 1 shows the workflow of
our proposed ChaoticRIPE method.
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Fig. 1. The workflow of our proposed model ChaoticRIPE

5 Analysis

The sensitivity to small changes in the input data of the original RIPEMD-160 and the
proposed ChaoticRIPE are evaluated. We have used the Hamming distance for comparison
between the hash values of an original data and the same data with little alteration, as
shown in Figure 2. Based on our test, the average Hamming distance was 36.99 for the
original RIPEMD-160’s whereas the proposed ChaoticRIPE’s has an average hamming
distance of 37.27. The average Hamming distance is more when the hash function is more
sensitive to small changes. This shows that the proposed ChaoticRIPE is more sensitive
to input changes as compared to original RIPEMD-160.
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Algorithm 1: Algorithm for ChaoticRIPE

Input: data, K, iterations
Output: Hash
// data is any input string

// K is initial value for Chirikov Standard Map

1 Function chirikov standard map(θ, p, K, iterations):
2 for i = 1 to iterations do
3 p = (p+K · sin(θ)) mod (2π)
4 θ = (θ + p) mod (2π)

5 end
6 return θ, p

7 End Function
8 Function secure ripemd160(data, K, iterations):
9 m = hashlib.new(’sha3 512’)

10 m.update(data.encode(’utf-8’))
11 digest = m.digest()
12 θ = int.from bytes(digest[:8], ’big’) /

(264) ∗ 2 ∗math.pi p= int.from bytes(digest[8 : 16],′ big′)/(264) ∗ 2 ∗math.pi
13 θ, p = chirikov standard map(θ, p, K, iterations)
14 θ bytes = int(θ / (2 * math.pi) *

(264)).to bytes(8,′ big′) p bytes= int(p/(2 ∗math.pi) ∗ (264)).to bytes(8,′ big′)
15 m = hashlib.new(’ripemd160’)
16 m.update(digest[:8] + θ bytes + digest[16:24] + p bytes + digest[24:])
17 return m.hexdigest()

18 End Function

Fig. 2. Hamming Distance Comparison
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Fig. 3. Character Sequence of Input Data

Fig. 4. Character Sequence of Generated Hash
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The key characteristic of a hashing algorithm is the uniform distribution of hexadecimal
hash values. To demonstrate this, we generate a message using random characters, convert
it to ASCII decimal codes, and plot it in Figure 3. ASCII code of the hash value generated
by our proposed technique are then uniformly distributed across the possible hash value
range shown in Figure 4. This ensures that the hash distribution is sufficiently uniform to
hide information and serve as a robust security measure.

Fig. 5. Hash Value of Proposed Scheme with Different Conditions

The proposed ChaoticRIPE method is very sensitive to small changes in the starting
conditions or the messages. The simulation for sensitivity is run under the conditions listed
below.
Condition 1: The original message is: ”Central Class is a listing of online courses”
Condition 2: Replace the first character of the original message ”C” by ”c”.
Condition 3: Add ”.” at the last of the original message.
Condition 4: change K = 0.711 to 0.710
Condition 5: change K = 0.711 to 0.710 and Replace the first character of the original
message ”C” by ”c”.

The corresponding 160-bit hash values in hexadecimal format are the following:
Condition 1: A3B5DB6F5D9EF6F47564A9ABAF970D8CB0A86365
Condition 2: A9AE9235E8696631686CA05CFC8412196F87A369
Condition 3: 434732E77CDE1F5C3ED487D5FD3C94569E129E6A
Condition 4: 5B948806065AFA2315F2D0F2AB36F9B3D1EB2B58
Condition 5: 1CEBCCB1BA69E275689C815E77F48CE9C5779B1C

In Figure 5, each hash value for the proposed system under various situations. We may
state that the suggested method has considerable sensitivity since the results of the binary
representations of the hash show that a slight change in the message, starting condition,
or control parameter can affect all the hash values.

Based on the results summarised in Table 1, it can be observed that the proposed
ChaoticRIPE passed all NIST 2.1.2 tests with outstanding P-values. Table 2 shows the
position-wise frequencies of 0s and 1s for 1 million rows containing hash values of different
input messages. Hence the proposed scheme is complex enough.

The time-dependent efficiency of the two hash algorithms was compared by calculating
the average time required to calculate the hash of the data. According to the experiment’s
findings shown in Figure 6, original RIPEMD-160 took an average of 0.0026 milliseconds,
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whereas proposed ChaoticRIPE took an average of 0.0529 milliseconds. ChaoticRIPE re-
quires more time than Standard RIPEMD-160. However, the difference is minimal (around
0.05 milliseconds). This minor increase in calculation time is a fair trade-off for enhanced
sensitivity to input changes since security activities like hashing are often not time-critical.

Table 1. Results of NIST Test Suit 2.1.2

P-VALUE PROPORTION STATISTICAL TEST Result

0.460664 156/160 Frequency PASS

0.788728 160/160 BlockFrequency PASS

0.546791 156/160 CumulativeSums PASS

0.220448 155/160 CumulativeSums PASS

0.425817 160/160 Runs PASS

0.350485 156/160 LongestRun PASS

0.275709 158/160 Rank PASS

0.180322 159/160 FFT PASS

0.934318 160/160 NonOverlappingTemplate PASS

0.141256 159/160 Universal PASS

0.559523 157/160 ApproximateEntropy PASS

0.917870 102/103 RandomExcursions PASS

0.995373 103/103 RandomExcursionsVariant PASS

0.919445 158/160 Serial PASS

0.739918 156/160 LinearComplexity PASS

Fig. 6. Time Comparison
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Table 2. Frequency of 0s and 1s in the sequence of 1M BITSREAD

P. 0s 1s P. 0s 1s P. 0s 1s P. 0s 1s

1 500664 499336 41 500270 499730 81 500904 499096 121 500516 499484

2 500006 499994 42 499984 500016 82 500683 499317 122 499969 500031

3 500054 499946 43 499658 500342 83 499489 500511 123 500648 499352

4 500171 499829 44 499426 500574 84 499947 500053 124 500594 499406

5 500692 499308 45 500686 499314 85 500501 499499 125 499760 500240

6 499743 500257 46 500502 499498 86 498299 501701 126 500748 499252

7 499460 500540 47 499708 500292 87 500523 499477 127 499754 500246

8 499204 500796 48 500877 499123 88 499739 500261 128 499623 500377

9 500188 499812 49 500354 499646 89 500302 499698 129 500929 499071

10 500184 499816 50 499654 500346 90 499272 500728 130 500293 499707

11 500744 499256 51 500315 499685 91 499813 500187 131 499494 500506

12 499551 500449 52 498944 501056 92 500521 499479 132 500317 499683

13 500266 499734 53 500165 499835 93 499837 500163 133 498501 501499

14 500474 499526 54 499803 500197 94 500608 499392 134 500217 499783

15 499391 500609 55 499782 500218 95 499380 500620 135 499957 500043

16 499871 500129 56 499999 500001 96 498610 501390 136 499709 500291

17 499092 500908 57 499483 500517 97 499249 500751 137 500494 499506

18 500088 499912 58 500090 499910 98 499050 500950 138 500748 499252

19 500781 499219 59 500314 499686 99 500295 499705 139 500166 499834

20 500404 499596 60 500210 499790 100 500176 499824 140 499707 500293

21 499698 500302 61 499238 500762 101 500171 499829 141 500057 499943

22 500563 499437 62 500777 499223 102 499320 500680 142 499845 500155

23 499657 500343 63 499714 500286 103 499286 500714 143 499071 500929

24 500268 499732 64 499477 500523 104 499838 500162 144 499879 500121

25 500288 499712 65 499891 500109 105 500225 499775 145 499876 500124

26 500818 499182 66 499639 500361 106 500832 499168 146 499728 500272

27 499308 500692 67 500292 499708 107 501020 498980 147 499664 500336

28 499824 500176 68 500239 499761 108 500376 499624 148 500125 499875

29 500418 499582 69 500305 499695 109 499829 500171 149 499058 500942

30 499955 500045 70 499931 500069 110 500683 499317 150 499897 500103

31 500118 499882 71 500864 499136 111 500662 499338 151 500567 499433

32 499843 500157 72 500520 499480 112 499294 500706 152 500524 499476

33 499738 500262 73 500737 499263 113 499369 500631 153 498964 501036

34 500979 499021 74 500032 499968 114 499904 500096 154 498616 501384

35 499945 500055 75 499851 500149 115 500198 499802 155 499776 500224

36 500417 499583 76 500384 499616 116 499282 500718 156 500405 499595

37 500391 499609 77 499859 500141 117 500122 499878 157 499931 500069

38 500479 499521 78 499993 500007 118 499943 500057 158 500045 499955

39 500074 499926 79 500412 499588 119 499169 500831 159 501022 498978

40 500280 499720 80 499785 500215 120 499707 500293 160 499913 500087

6 Conclusion & Future Work

In this paper, we have proposed ChaoticRIPE, which is an improved version of RIPEMD-
160 hash function. It uses the chaotic characteristics of the Chirikov Standard Map to
increase its security. The ergodicity, sensitivity to initial conditions, and mixed-phase space
of the Chirikov Standard Map contributes to improved security the hash function by
making it unpredictable and resistance to various attacks. According to our results, the
ChaoticRIPE is more sensitive to input changes.

Further research might investigate how other chaotic maps, including the Henon Map,
might be integrated to evaluate their effects on security and performance. Furthermore,
maximising ChaoticRIPE for hardware implementations could help resource-limited set-
tings be more efficient. Its use in cryptographic systems like digital signatures and key
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derivation mechanisms should also be explored in further research. ChaoticRIPE’s po-
tential use in post-quantum cryptography makes evaluating its resistance to quantum
cryptanalysis rather important. Finally, thorough real-world security testing may confirm
its resilience against sophisticated cryptographic attacks.
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