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Abstract. Retrieval Augmented Generation (RAG) has been a recent improvement in providing recent
and accurate data to Large Language Models (LLMs). Although RAG has been successful in reducing hal-
lucinations within LLMs, it remains susceptible to inaccurate and maliciously manipulated data. In this
paper, we present Distributed-RAG (D-RAG), a novel blockchain-based framework designed to increase
the integrity of the RAG system. D-RAG addresses the risks of malicious data by replacing the RAG’s
traditionally centralized database with communities, each consisting of a database and a permissioned
blockchain. The communities are based on different subjects, each containing experts in the field who
verify data through a privacy-preserving consensus protocol before it is added to the database. A Retrieval
Blockchain is also designed to communicate between the multiple communities. The miners on this Re-
trieval Blockchain are responsible for retrieving documents from the database for each query and ranking
them using an LLM. These rankings are agreed upon, and the top ranked documents are provided to the
LLM with the query to generate a response. We perform experiments on our proposed D-RAG framework,
and our results show that our Retrieval Blockchain is scalable and our privacy-preserving consensus pro-
tocol maintains efficiency as community members increase. These results demonstrate that in a real-world
application setting D-RAG is scalable in maintaining data integrity.
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1 Introduction

As technology continues to advance, there has been a noticeable improvement in mod-
ern Artificial Intelligent (AI) systems using Large Language Models (LLMs). LLMs have
shown remarkable advancement in natural language processing by leveraging the compu-
tationally complex process of training neural networks with extremely large corpuses of
text. With their much more realistic and conversational, human-like text output, LLMs
have contributed to advancements in healthcare, education, financial services, and are con-
tinuing to improve various aspects of human life [1].

Although LLMs have demonstrated numerous improvements, they still have certain lim-
itations. In order for LLMs to produce high-quality responses, they must be trained on
enormous amounts of data, which takes significant time and resources. LLMs are unable
to provide up-to-date responses (for example, to respond with information on a current
event) without being retrained, unfortunately, this is computationally expensive and im-
practical to do on a daily basis. This has led to the development of Retrieval Augmented
Generation (RAG). RAG pulls data directly from external, up-to-date databases to pro-
vide more recent and relevant information. As RAG becomes more prevalent among AI
systems, it helps LLMs overcome limitations of its training to become more accurate.

While RAG has been successful in providing recent and relevant data to LLMs, little has
been done to ensure that RAG is secure and trustworthy [2]. Our work is motivated by the
increasing reliance on RAG within AI systems and the need to ensure the trustworthiness
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of the data being supplied to LLMs. RAG systems rely heavily on databases sourced from
the internet, leaving it vulnerable to untrustworthy and biased data. This underscores
a pressing challenge within RAG systems: maintaining the integrity and quality of data
within the RAG database.

Introduced in 2020 by [3], RAG is a relatively recent advancement for AI, resulting in
limited research on the integrity of RAG. Current strategies for improving RAG often do
not focus on data integrity itself. These methods usually focus on updating the retrieval
system of RAG to avoid retrieving irrelevant documents for queries. These solutions are
designed to avoid noisy documents and retrieve higher relevant documents for the query,
but are still not sufficient in protecting against malicious or unsafe data. In addition to
improving the retrieval system, as in previous works [4][5], our framework improves the
integrity and quality of the data used for RAG, therefore, increasing the trustworthiness
of AI.

Data integrity is a problem that has become highly prevalent within the internet and AI
systems. RAG’s process of data retrieval from the internet can lead to biases, misinforma-
tion, and unreliable data. Attacks formulated against RAG have proven to be successful
in altering an LLM’s output, causing biases or harmful behavior [6][7]. Now, we pose the
question of what is protecting the integrity and quality of the data that RAG uses.

In this paper, we strive to ensure the trustworthiness of the data used by RAG systems in
order to improve the integrity of LLMs. To achieve this, we propose D-RAG (Distributed-
RAG), a distributed blockchain framework that uses a privacy-preserving consensus proto-
col to create new databases for RAG. D-RAG consists of a permissioned public blockchain
integrated into each database. These databases, referred to as communities, are divided
based on certain subjects and only allow specialized users onto the blockchain associated
with it. In these communities data is proposed and reviewed by community members be-
fore it is added to the RAG database, therefore improving the data integrity over current
RAG systems. We also incorporate a public permissionless Retrieval Blockchain. The Re-
trieval Blockchain focuses on retrieving and ranking the documents for RAG to improve
the relevance of the data given for the query. This framework increases the security of the
RAG system and protects it against unsafe data.

1.1 Contributions

The key contributions of this paper are as follows:

1. D-RAG : We introduce a novel framework, named D-RAG, for building a distributed
retrieval augmented generation system that ensures data integrity. This framework
establishes communities of specialized and verified knowledge in order to facilitate
generating an accurate response from multiple sources for any given user query.

2. We propose Privacy-Preserving Knowledge Incorporation (PPKI), a privacy-preserving
consensus protocol that ensures the integrity of proposed data to be added to a com-
munity database. To ensure privacy and avoid biases, our consensus protocol uses
zero-knowledge proofs to protect the identity of the proposer as well as the decision
of the approving members, emulating a double-blind peer review. In these commu-
nities data is proposed and reviewed by community members before it is added to
the database, therefore improving the data integrity over current internet based RAG
systems.

3. A Retrieval Blockchain is used to retrieve and rank the documents for each query. It
consists of a user submitting a transaction whenever there is a query. Then, quorum
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members use the query to retrieve the relevant documents from community databases.
After the documents are retrieved, the quorum members use LLMs to rank the doc-
uments within the context of the query. Quorum members reach consensus on the
highest-ranking documents, which are later used to generate a final response.

4. We implemented D-RAG and our results demonstrated the accuracy of document
ranking using LLMs, the scalability of our proposed Retrieval Blockchain, and the
efficiency of our double-blind mechanism in PPKI.
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Fig. 1: Blockchain framework for D-RAG. This framework includes multiple communities
each with a database and blockchain and a Retrieval Blockchain that takes a query as
input and outputs a response. The interaction between the communities and Retrieval
Blockchain is shown.

2 Related Work

RAG has been a useful method to improve the accuracy of LLM responses. However, it has
also demonstrated its own issues that research is currently striving to address [8]. While
work to decentralize RAG has received limited attention, research efforts have focused on
improving the existing RAG system, specifically improving the evaluation of the retrieved
documents from RAG.

Many proposed systems have utilized an LLM to improve the ranking process of the RAG
system [4][5][9][10]. These systems utilize the LLM in two different approaches to improve
RAG. These approaches include using an LLM to generate scores or labels for documents
according to the query, or simply using an LLM to detect the noisy or irrelevant documents
retrieved by RAG. Some of these systems specifically finetune or train an LLM for the
processes of document evaluation, whereas some of the papers just use an existing LLM.
In addition to using an LLM to help with ranking documents, Yan et al. [11] also proposed
utilizing web searches for complementary knowledge sources if the LLM finds all retrieved
documents to be incorrect.

These systems highlight a significant issue with RAG: the retrieval of irrelevant documents
as answers to queries. While they have achieved some success in enhancing the accuracy
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and trustworthiness of the documents retrieved by RAG, they do not directly address
concerns regarding malicious or biased data prevalent within RAG databases. This limi-
tation can lead to failures in their systems and underscores the need for further research
to improve these systems.

Xiang et al. [2] introduced the first framework to defend against poisoning attacks, these
attacks inject malicious or biased data into RAG’s database. This work isolates each doc-
ument retrieved and generates a response for each one and then performs a secure text
aggregation over the responses. This defense guarantees that any outliers or poisoned
data are detected, provided that the amount of poisoned data is less than the majority of
retrieved passages. While this method showed high success rates against poisoned data,
it still has some limitations. This system fails to prevent malicious data from entering
the database, and if a significant amount of malicious data enters the database then this
method is insufficient in preventing its retrieval.

Previous studies aimed at enhancing the current RAG system have focused on improving
the retriever’s ability to rank documents accurately, thereby enhancing AI accuracy. Be-
cause RAG is a recent advancement in AI, efforts to improve it have overlooked database
enhancements. However, recent studies have begun addressing improvements specifically
aimed at optimizing the RAG database. Work proposed by Edge et al. [12], focuses on
implementing a knowledge graph that is split into communities. When knowledge is added
to the database, LLMs are used to split the knowledge into chunks and to identify entities
in the text, categorizing it into specific communities. Once entities are found, the LLM
extracts descriptions of entities and their relations. Then, it forms communities and sum-
maries of the communities are stored to help with retrieval. While this research does not
decentralize RAG, it takes an important step forward in improving the database for RAG.

Research completed by Origin Trails, sought to decentralize the external databases used
by RAG systems [13]. [13] introduced Verifiable Internet for AI, which uses a multiple
blockchain framework to create a knowledge graph for RAG that stores non-AI generated
data. The knowledge graph is split into communities, with each community having its own
blockchain. Origin Trails focuses on non-AI generated data within the database, leaving
the issues of data integrity unaddressed. Decentralizing RAGs database is the next step
to make RAG more secure and trustworthy. In contrast, our D-RAG framework focuses
on the integrity of the data within the database itself. We also ensure more security and
trust by checking documents at the retrieval stage.

3 Preliminaries

3.1 RAG

RAG consists of an external database which is usually sourced from the internet or Wika-
pedia. Most RAG systems use vector databases, since it is easier to search for similarity
with vector representations. The data in the RAG database is split into chunks and en-
coded in vector representations and stored into a vector database. When an LLM is given
a query, RAG will search the database for related documents to give to the LLM. First,
RAG will embed the query into vector representation so it can be used to search the doc-
uments, then it retrieves the top-k documents from its database. The documents retrieved
are then ranked based on relevance to the query. The LLM then uses its pretrained or
parametric knowledge and the top similar documents retrieved by RAG to formulate the
final response to the original query.
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3.2 Blockchain

Blockchain is an immutable decentralized digital ledger that records transactions. Within a
blockchain there are ’blocks’ that are cryptographically linked, each block records a trans-
action that has occurred. In order for transactions to occur, a required consensus between
nodes must take place. This consensus is reached among the members of a blockchain
without the need for any third party. The benefits of blockchain include increased secu-
rity, immutability, and decentralization. Blockchain has been applied in many sectors such
as health care, finance, government, and manufacturing [14].

3.3 Zero Knowledge Proofs

Zero Knowledge Proofs (ZKP) are a method used to prove that a statement is true without
revealing any other information about the statement. Schnorr’s protocol is an example of
a sigma protocol that is used for ZKP [15]. In Schnorr’s protocol, a prover will compute
a random number, then calculate a value a using the random number and their public
key. The prover will give a to the verifier, then the verifier will send a challenge value c
which the prover uses with their secret and random value to calculate z. Once the verifier
receives z from the prover, they can validate with a and z that the prover knows the secret
with low probability of fraud.

3.4 Exponential ElGamal Encryption

In exponential ElGamal encryption, users use a shared public key in order to encrypt
their message. The users can then collectively compute the total sum of the encrypted
cipher texts, then decrypt the sum of the cipher texts. The users then perform a discrete
log algorithm on the decrypted value in order to compute the value of the message [16].
Exponential ElGamal is effective for voting because it allows users to submit encrypted
values of 0 or 1 and then add them homomorphically without revealing who submitted
which values.

4 SOLUTION: D-RAG

4.1 Solution Overview

Our proposed system introduces a novel framework which leverages blockchain to de-
centralize RAG. D-RAG is designed to mitigate concerns of data integrity within RAG
systems, which leads to an increase in trustworthiness of LLMs utilizing RAG.

D-RAG utilizes a multiple blockchain approach to improve the current RAG system. This
involves using separate blockchains for various databases, each dedicated to specific special-
ized subjects, thereby creating distinct communities. Along with the communities, there is
a primary blockchain or Retrieval Blockchain which retrieves documents and ranks them.
This framework is illustrated in Figure 1. In this system, the blockchains need to be able
to communicate with each other for the process of document retrieval. Protocols such as
those proposed by [17] could be utilized for this process of inter-communication between
the blockchains.

All blockchains utilized by the communities are permissioned public blockchains, meaning
they only allow experts of the certain fields within the blockchain. This ensures that the
data is verified and validated by experts within the field before being integrated into the
system. To further increase the integrity of the system, a privacy-preserving consensus
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Decentralized Response Generation Protocol

Input: Query Q, user’s public key Pk, list of quorum members
Output: A new block on Retrieval Blockchain

1. Each miner within the quorum executes a smart contract that performs the following
(a) Embeds Q to Q′

(b) Performs a semantic search within each community database with Q′ to retrieve top-k relevant
documents, D = {d1, d2, . . . , dm}

2. Each miner within the quorum executes the following steps individually
(a) Create a prompt to request an LLM to rank the documents. As will be shown in Section 5,

we experimented with four different methods: single-step prompt, a multi-query prompt, a
summarization prompt, and an answer ranking prompt.

(b) Prompt LLM to rank retrieved documents D on the relevance to query Q.
3. The quorum members perform the following

(a) Collectively reach consensus on the most relevant documents within D.
(b) Prompt LLM using the most relevant documents as context in order to generate a response

R for query Q.
(c) Encrypt R with Pk and store [[R]]Pk in a separate database.
(d) Construct and sign a new block on the Retrieval Blockchain containing the link to [[R]]Pk and

a hash H(R)

Protocol 1.1: Steps of the Retrieval Blockchain takes in order to generate a response for a
query

protocol called Privacy-Preserving Knowledge Incorporation (PPKI) is implemented dur-
ing the verification process. This protocol uses a double-blind mechanism, in which the
proposer’s identity and members’ votes are hidden. This mechanism mitigates the risks
of biases influencing the validation of information. The communities and PPKI serve to
increase the trustworthiness and security of RAG.

In this framework, the main Retrieval Blockchain is crucial for detecting malicious data
that may still be within the database. This blockchain is utilized to replace the process
of retrieval and document ranking within RAG. The Retrieval Blockchain is a public per-
missionless blockchain which uses its’ consensus protocol to retrieve information from the
database and rank the documents. Figure 1 shows how the Retrieval Blockchain interacts
with the communities. A user submits a query and it is later embedded by members in a
quorum on the Retrieval Blockchain. The embedded query is used to retrieve documents
which are then ranked by an LLM. The quorum members generate a response with the top
ranked documents, then a new block is created with the response returned to the original
user. This system of ranking and retrieving is used to detect any outliers of malicious or
biased data to further enhance the integrity of the RAG system. The Retrieval Blockchain,
along with the databases, increases the trustworthiness of LLMs by using blockchain to
increase the security and output of RAG.

4.2 Adversarial Model

Adversaries in the D-RAG system include (1) malicious users attempting to inject unsafe
or biased data, (2) colluding participants manipulating consensus or rankings, (3) exter-
nal attackers seeking unauthorized access or disruption, and (4) insider threats exploit-
ing permissions to compromise data integrity. To counter these threats, D-RAG employs
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D = {d1, d2, d3, d4}

M1: Generated Prompt, [D,Q] Ranking             
M2: Generated Prompt, [D,Q] Ranking  

Mk: Generated Prompt, [D,Q] Ranking

H(R)
Link to [R]Pk

 Miners reach consensus 
on top relevant documents

Prompt

External 
Database

Tx[Query (Q), Pk]

Embedded 
Query

Semantic search

Retrieved Documents

Link 
R is hashed

New Block 

1

2

3

4
5

6

7

Symbol for LLM
Dots going vertically down between m2 and mk
Put numbering in circles
One llm 
Put miners in place of blockchain and blockchain next to it, 
show miners signing block

Encrypt R
[R]Pk

Store

Miners

Response (R)

Digital signatures

Append

Fig. 2: The steps of the Decentralized Response Generation Protocol for the Retrieval
Blockchain. Each number represents a different step in the process.

privacy-preserving protocols to prevent unsafe data injection and collusion, permissioned
blockchains to restrict access and maintain data integrity, and a consensus-driven retrieval
process to ensure query results are unbiased and relevant. Additionally, its distributed
architecture enhances resilience against service disruptions and unauthorized tampering.

4.3 Retrieval Blockchain

The Retrieval Blockchain replaces the retriever of RAG in our proposed solution to bring
more accuracy to the documents retrieved as an answer to a query. For this blockchain
system, it uses a consensus protocol, or Decentralized Response Generation Protocol, to
retrieve documents related to a query from the databases and then rank the retrieved doc-
uments to reach a common answer of the top-k relevant documents. The top-k relevant
documents are then used as context for the answer to the query given.

In Protocol 1.1, it explains the steps of the consensus protocol for the Retrieval Blockchain
and Figure 2 also illustrates these steps. It begins with a user submitting a query trans-
action, by inputting the query Q and their public key Pk. A quorum of 10% of the miners
within the blockchain is selected for the consensus process. The selection of quorum mem-
bers is a needed process for our consensus, there have been many literature works that
study the selection of quorums within blockchains. Our method will use algorithms like
the following to select our quorum [18][19]. Each miner in the quorum is given a smart
contract which ensures the retrieved documents are the same for each miner. The smart
contract directs the quorum members to embed Q and use the embedded query Q′ to
perform a semantic search on the D-RAG databases. The quorum members retrieve docu-
ments within a certain similarity threshold. The similarity between a query and document
is determined through a cosine similarity measurement, which measures the angles be-
tween vector embeddings to find the most relevant documents. Only documents with the
highest cosine similarity are retrieved.
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After the quorum members retrieve the top similar documents D, they each generate their
own prompt to provide an LLM with so that it can rank the documents regarding their
relevance to the query. In our implementation, we tested four different methods of prompts
that can be used to rank documents using Chat GPT-4o. The different types of prompts
included a single-step prompt, a summarization prompt, multi-query prompt and multi-
answer prompt.

new data + sources
update

Proposer community members vote for 
data to be approved

create and sign 
new block

H(data) 
H(sources)

Database
append

Fig. 3: The process of Privacy-Preserving Knowledge Incorporation within the communities

For the quorum members, they each design their own prompt for the LLM to rank the
documents and use an LLM of their choosing. When submitting the scores of the ranking,
the quorum members give the documents scores based off of where the LLM ranked them.
If only 10 documents are retrieved, then the document ranked as the most relevant by
the LLM will be given a score of 10, with the next document a score of 9 and so on.
Once the quorum members receive their scores for the documents, they submit them to
the blockchain to reach consensus. The scores for each document are added up and the
documents with the highest scores are identified as the top documents.

Once consensus is achieved for the top documents, then the quorum members are given a
smart contract which requires them to collectively feed the LLM a prompt, the query Q,
and the top documents to generate a response to the Q. Once the response R is received,
it is encrypted with the users public key Pk, which was submitted in the beginning of
the transaction. Then the encrypted response [[R]] is stored in an external database and
the quorum members construct a new block on the Retrieval Blockchain. This block con-
tains a link to [[R]] on the external database, and a hash of the original response. The
encryption of the response ensures privacy of the user’s transaction history. The hash of
the response is so that the user can ensure the response wasn’t tampered with by miners
on the blockchain. The user can use the link and collect the encrypted response from the
external database. Then, the user can decrypt and hash the response from the database
and compare it to the hashed response on the block. If the hash of the responses both
match, then the user can be sure that the response is valid.

The Retrieval Blockchain ensures RAG to be more secure and trustworthy in what it out-
puts to LLMs. Using blockchain improves the original system of RAG through the ranking
and the consensus protocol. RAG uses semantic search and cosine similarity calculations
to determine the top rated document. The Retrieval Blockchain updates this by utilizing
the miners on the blockchain to rank the documents using an LLM. Since the documents
are ranked with various methods and the top documents are agreed upon, it ensures more
integrity in the eventual response that is generated.

4.4 Communities

Within the D-RAG system, we include multiple communities which each have a database
and a permissioned public blockchain integrated within them. The blockchain is there to
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Privacy-Preserving Knowledge Incorporation
Input: Identity (public keys) of community members y1, y2, . . . , ym
Output: A new block of the proposed data

1. The proposer, who is supposed to be a community member, proposes new data and related sources.
2. The proposer also produces a proof that they belong to the community without disclosing their

identity. To do that, the proposer combines Schnorr’s identity protocol with Zero-Knowledge OR
protocol:

ZK OR(Schnorr(y1), Schnorr(y2), . . . , Schnorr(ym))

3. Each community member selects a large random private key ai : 2 ≤ i ≤ p − 1 and computes
public key gai mod p

4. All community members collectively compute the group public key Ai ≡ g
∑

ai mod p
5. Each member individually provides:

(a) An encrypted vote [[v]] of 0 or 1 to accept or reject the block. To encrypt their vote v, they
choose random value r and then encrypt their vote:

[[v]] = (c1, c2) = (grmod p, gv ·Armod p)

(b) A Zero-Knowledge Proof that proves [[v]] encrypts either 0 or 1
(c) A signature of their encrypted vote σ[[v]]

6. Each member homomorphically tally all the votes

[[V ]] =

m∏
i=1

[[v]] = (A
∑

r · g
∑

vmod p, g
∑

rmod p)

7. Community members jointly decrypt [[v]]:

gV = (A
∑

r · g
∑

v)/

m∏
i=1

(g
∑

r)ai = g
∑

vmod p

8. Apply discrete log algorithm on gV to compute V = v1 + v2 + ...vm
9. If V is above the agreed upon threshold (the new data is accepted):

(a) The database is updated with the new information
(b) A new block is created containing the hash of the new data and the hash of the corresponding

resources

Protocol 1.2: Algorithm for Privacy-Preserving Knowledge Incorporation

validate the information before it is updated to the database to increase the integrity of
the data. The communities are split based on different subjects, for instance, molecular
biology or calculus, with the blockchains only allowing experts of the community to join.
Each of these communities utilize the experts on the blockchains to validate and verify
the information being proposed. While traditional RAG uses a vector database, D-RAG
can use different forms of databases within the communities. Figure 1 illustrates a vector
database, a knowledge graph, and a relational database as examples of different databases
for the communities. This allows more flexibility for the D-RAG system rather then relying
on one type of database.

While our proposed solution involves each community operating on its own blockchain,
it is also feasible to implement all communities on a single blockchain. In this setup, the
single blockchain would utilize smart contracts to manage community specific processes
such as member registration, proposing data, and voting. Each community would function
independently within this framework, with smart contracts maintaining the necessary sep-
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aration between them. This approach retains the integrity of the community-based struc-
ture while simplifying the overall system architecture by consolidating operations onto a
single blockchain.

4.5 Privacy-Preserving Knowledge Incorporation

Each community within the framework includes a database and a blockchain. The con-
sensus protocol for the blockchains is Privacy-Preserving Knowledge Incorporation, this
protocol is used to verify the information entering the database. Each member on the
blockchain is an expert in the specific community, therefore, increasing the relevance and
integrity of the data being proposed. PPKI ensures that the integrity is maintained within
the databases while also protecting the privacy of the miners in the system. This protocol
is shown in Figure 3 and Protocol 1.2. It begins with either a miner on the blockchain
or a proposer proposing new information to be added to the database. Along with any
proposed information, sources are also provided by the proposer to help verify that the
information is correct.

The other nodes on the blockchain then receive the new proposed information and compare
it to the provided sources to verify that the data is trustworthy and correct. While this
system utilizes human opinion as the ground truth for data, it still maintains security since
experts serve as validators. For information to be approved and added to the database,
the information must receive 70% of approving votes from the members of the community.
Once proposed information receives enough votes, it is then added to the database and a
new block is created with a hash of the new information and hash of the sources associated
with it.

In this consensus protocol, we also create a privacy-preserving aspect to it that uses Zero
Knowledge Proofs (ZKP) and a process of voting with Exponential ElGamal encryption
in order to perform a double-blind consensus. In the scientific community, there is concern
of biases when scientific papers are peer reviewed. The scientific community implements
a double-blind system, wherein a paper is peer reviewed but the author’s identity is kept
secret from the reviewer and the reviewer’s identity is kept secret from the author, with
the overall goal of preventing biases. In our consensus protocol, we design a similar system
which the identity of the proposer and the votes of the members are hidden to mitigate
the problem of biases within scientific communities. The steps of this process are outlined
below.

• ZKP for proposer : The first part of Privacy-Preserving Knowledge Incorporation is
outlined in steps 1 and 2 of Protocol 1.2. This portion uses ZKP to hide the identity of
the proposer when new information is proposed. When a proposer provides new infor-
mation, they use ZKP to prove they are a member of the community without revealing
who they are. For this system, we will be using Schnorr’s protocol with Zero-Knowledge
OR. Schnorr’s protocol uses the private and public key pair with an algorithm to prove
that someone is a valid member without revealing who they are. Zero-knowledge OR
is used to prove one statement of a set of statements is true, without revealing which
one is true. Thus, the proposer’s identity is proven to be true but not revealed. The
ZKP is provided as part of the transaction of the proposed information so the other
members know that the proposer is a member of the community.

• Computing Group Key with Exponential ElGamal: This part of the consensus protocol
involves steps 3 and 4 in Protocol 1.2. In these steps, the members of the community
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each compute their own public and private key pair. Then, they collectively work
together to compute a group public key to use for encryption.

• Providing vote, ZKP, and signature: Once the members of the community have the
group public key, they then use it to encrypt their vote of either 0 or 1, resulting in
2 cipher texts. If the member votes 1, they approve the knowledge being proposed.
If a member votes 0, they do not approve it. The members then provide ZKP that
their vote is either a 0 or 1 and also provide a signature of the encrypted vote with
their own set of keys. Since each public key is posted with the signature, it ensures
that a member within the community does not vote more than once. This part of the
consensus is shown in step 5 of Protocol 1.2.

• Homomorphically compute total sum of the votes: In step 6 of Protocol 1.2, the mem-
bers homomorphically compute the total sum of votes V using exponential ElGamal.
The equation illustrates that the members compute the total sum of the random values
of r and the votes v within the ElGamal equation from step 5a. At this point of the
process V by itself is still unknown.

• Decrypting and computing number of votes: In steps 7 through 9 in Protocol 1.2, the
members of the community decrypt the total sum. The members compute from step
5a in protocol 2, c2 divided by the product of c1. This outputs the value of gV mod p.
Once the members decrypt the votes, V by itself is still unknown to them and they
need to apply the discrete log algorithm in order to calculate the total value of V .
Once the members of the community calculate V , if V is at least 70% of the members
in the community, then the proposed knowledge is valid. The knowledge is added to
the database and a new block is created.

5 Experimental Evaluation

For our experiments, we first performed tests using Chat GPT-4o with OpenAI [20] to test
the accuracy of ranking documents with different types of prompts. We also tested the
scalability of the consensus protocol for the Retrieval Blockchain with different numbers
of nodes. Finally, we tested the efficiency of our proposed double-blind review in Privacy-
Preserving Knowledge Incorporation.

The three experiments of our proposed framework were implemented using both Python
and Java, as well as libraries such as LangChain, OpenAI, BlueChain, ZKProver, and
Bouncy Castle. The temperature for Chat GPT was not explicitly set, however, OpenAI’s
documentation suggests that the default temperature is 1, on the scale of 0 to 2 [21][22].
All experiments were conducted on an HP Spectre x360 laptop with the following speci-
fications: 11th Gen Intel Core i5-1135G7 processor (2.40 GHz), 8 GB of RAM (7.65 GB
usable), running Windows 11 Home.

For ranking documents with an LLM, we implemented our experiments in Python and
used the Cranfield Collection [23], which is a dataset containing 1400 documents and 225
queries. The Cranfield collection includes information related to aerodynamics. With re-
gards to specific queries, documents are given a relevance score of 1 to 4 with 1 being the
most relevant and 4 being the least. In our assessment, we consider a relevant document
to be a document with a relevance score of 1 or 2, while irrelevant documents have scores
of 3 and 4. We utilized Chat GPT 4o with different prompts on all of the queries and
documents.
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5.1 Accuracy of document ranking with LLM

We included four different types of prompts in our experiments, all of which are designed
to ask Chat GPT 4o to rank the documents. The first prompt was a single-step prompt
that asked the LLM to rank the documents with relevance to the query in one prompt. The
next prompt we tested was a summarization prompt, first it asked the LLM to summarize
each document and then asked the LLM to rank the summarizations with relevance to the
query. We also included a multi-query prompt that asked the LLM to rephrase the query
into multiple queries and then rank the documents based off of the rephrased queries. The
last prompt asked the LLM to generate answers with the documents and query and rank
the answers based off of the query.

Our first round of experiments used four documents from the Cranfield database with
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Fig. 4: The overall accuracy for the LLM
ranking a relevant document as the most
relevant document according to prompt
and experiments
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Fig. 5: The overall accuracy for the LLM
ranking relevant documents in the first
3 spots of relevancy depending on the
prompt used

the related query. Each document had a different relevancy score between 1 to 4 and we
sampled 6 different queries for our tests. We calculated the accuracy of the LLM ranking
a relevant document in the top spot of its ranking. These calculations are shown in Figure
4. We observe that the single-step and summarization prompts demonstrate the most
accuracy of 66% with four documents, but are still below the accuracy from the second
round of experiments. In our review of the data, with four documents the LLM performed
well in ranking a document with a score of 1 in relevancy in the top spot, but the last 3
rankings varied of what relevancy score was ranked. The performance for the multi-query
and multi-answer prompts decreased leading to less trust in the LLM ranking the right
documents with these prompts.

For our next round of experiments, we sampled the same queries but with ten documents
each instead of four. Since there were ten documents, this meant that multiple documents
had the same relevancy score. Figure 4 and Figure 5 demonstrate the overview of our
results. Once again, the LLM did better with ranking relevant documents in the top spots
but became more confused with lower rankings. In Figure 4, it demonstrates that the
single-step prompt achieved a 100% accuracy with ranking a relevant document in the
first spot while the other prompts had an 83% accuracy. We also analyzed the accuracy
of the ranked relevant documents in the first 3 spots. In these results, the single-step and
multi-answer prompts returned an accuracy of 55% while the summarization and multi-
query prompts had an accuracy of 72%. As the rankings increased, the accuracy of the
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LLM decreased, but it generally ranked the relevant documents in the top 3 rankings.
Figure 4 also demonstrated that the LLM performance improves when more documents
are given to rank.

The results demonstrate that while Chat GPT 4o is not perfect with ranking documents, it
still produces the more relevant documents in the top rankings, leading to more accuracy
in the context used by an LLM for a query. The experiment overall demonstrated more
accuracy in certain prompts than others. The summarization prompt was overall the most
accurate while the multi-answer prompt did not perform well, it caused the LLM to become
confused and even refused to rank the answers once. While the experimental results showed
some general patterns for different prompts, it was not perfect since Chat GPT 4o may not
be well versed on aerodynamics and may therefore fail more in ranking with this subject.

While these findings are based on a specific dataset and LLM model, they are not intended
to be generalized across all datasets or models. Instead, the goal was to demonstrate the
potential accuracy of LLMs in ranking documents. Further testing on different datasets
may improve the results to confirm whether LLMs really can be trusted to rank relevance
and detect malicious data. ChatGPT 4o was selected for this study due to its popularity
and status as a state-of-the-art language model, thus, making it a relevant choice for
assessing how well it performs document ranking tasks. The Cranfield Collection was
chosen because it was one of the few datasets that provided queries, documents, and a
specific ranking of said documents according to the query. This allowed for a direct and
unbiased comparison between the LLM’s rankings and the dataset’s relevance judgments.
This issue of establishing ground truth is discussed in greater detail in our future work
section.

5.2 Scalability of the Decentralized Response Generation Protocol

Our implementation for these experiments include four different steps of the Retrieval
Blockchains consensus protocol (Decentralized Response Generation Protocol). The first
step involves the miners retrieving the relevant information for a query. To implement this
step, we used LangChain [24][25] as the retriever. LangChain takes the query in the form
of plain text, embeds it [22], and then searches for the relevant documents. We used the
Cranfield collection and split the dataset into four databases to represent our framework,
which uses multiple databases. Nodes in this step each retrieve one document from the
four datasets to test the scalability of retrieving from multiple databases.

The next step involves ranking documents, we used OpenAI’s Chat GPT versions 3.5, 4

Fig. 6: Scalability of the Decentralized Response Generation Protocol
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and 4o [20] for this process to mimic nodes using different LLMs. We cycled through the
four different types of prompts each node could use, then using the prompts, the LLM
would be asked to rank the doucments. Next, we implemented the consensus process for
the document ranking, this involved nodes assigning each document with a score based
on the document’s ranking. Consensus is reached by summing all the scores and returning
the document that has the highest score. The last step is block creation for the Retrieval
Blockchain. For this step, we built upon BlueChain [26]. Our block creation included a
total of 150 nodes with different quorum sizes. It is assumed that the response to the
query has already been generated. The purpose of this implementation is to measure the
runtime, starting when a transaction is submitted, forming a block, and ending when all
the nodes in the network have added this block. At each step, we implemented with 20,
40, 60, 80, and 100 nodes, then summed all the components to calculate the total runtime
for this protocol. Our findings show the scalability of our architecture and offer insightful
information about components that account for the largest portion of the total runtime.

We observe from Figure 6 that the four components are indeed scalable, as the total
runtime shows a clear linear increase as the nodes in the quorum increase linearly. We also
observe that the ranking step dominates all the other components, accounting for roughly
half of the total runtime. The retrieval process shows the second highest runtime due to
the constraint of each node having to retrieve documents from four different datasets.
These results calculate the runtime for each node performing each process one at a time.
While the ranking process dominates the runtime calculations, we acknowledge that in
a real world setting that multiple nodes would retrieve and rank their documents at the
same time, thus taking less time.

The total runtime is shown to start at a total of 2 minutes with 20 nodes and increase
to a total of 5 minutes with 100 nodes. The total runtime provides many insights on
improvements that could be made by increasing the efficiency of the protocol’s process.
This efficiency could be increased through changes made in the retrieval and ranking
process, this will be critical for increasing the usability of our proposed RAG system.

5.3 Efficiency of the Privacy-Preserving Knowledge Incorporation Protocol

This implementation tests the efficiency of the double-blind component of Privacy-Preserving
Knowledge Incorporation. Our experiment tested the efficiency of two steps in this process.
The first step, the proposition, occurs when the proposer provides a ZKP as part of their
transaction for new proposed knowledge. The second step, the verification, is the process
of the members voting and encrypting their vote using Exponential ElGamal and ZKP.

For the proposition, the proposer must provide a ZKP. We implemented Schnorr’s pro-
tocol within a Zero-Knowledge OR. This process begins by simulating Schnorr’s protocol
which entails generating one secret key and then creating a corresponding public key. We
then generate m − 1 random public keys for m − 1 nodes with m representing the total
amount of nodes. With this setup in place, the implementation then proceeds to construct
m Schnorr proofs. Since there is only one valid pair of matching secret and public keys,
only one of these proofs will be identified as true. As long as one of the Schnorr’s proof
returns true, the single Zero-Knowledge OR will always return true.

The next portion included implementing the votes and requires ZKPs provided by the
voting members of the community. For this process, we implemented exponential ElGa-
mal which is shown in steps 3 through 8 in Protocol 2. We utilize exponential ElGamal
in order to encrypt the votes. Then, we used a ZKP to prove that the vote provided was
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Fig. 7: Efficiency of Privacy-Preserving Knowledge Incorporation protocol

either a 0 or 1. To provide the ZKP for the vote we took the values of c1, c2, g, p, Ai, and
r as input. The prover solves for c2 assuming the vote is either 0 or 1, if it succeeds then
the prover returns true. In each of these steps, we tested efficiency of the protocol with
20, 40, 60, 80, and 100 nodes.

We observe in Figure 7 that the total runtime stays under 0.6 seconds for the total amount
of nodes that were tested on. The proposer providing a Zero-Knowledge Proof is shown
to have a linear increase as the number of nodes increase, taking the time between 0.1
to 0.2 seconds. The runtime for the voting members of the community shows a complete
linear increase over time, with the process only taking about 0.2 to 0.3 seconds. Our re-
sults demonstrate the efficiency and feasibility of the double-blind mechanism within our
consensus protocol for the varying amount of nodes.

6 Conclusion and Future Work

In this work, we introduce D-RAG, a novel blockchain based framework designed to in-
crease the integrity of RAG systems. Our solution addresses the challenges of data in-
tegrity within RAG systems by leveraging blockchain to increase the trust of data utilized
by LLMs. Our proposed framework incorporates communities that use a consensus proto-
col, PPKI, to verify data before it is introduced into the RAG database. Additionally, we
include a double-blind mechanism in PPKI that conceals the identity of the proposer and
decisions of the approving members. Our proposed Retrieval Blockchain is used to detect
malicious data retrieved by the RAG system. Our testing with document ranking has
demonstrated that LLMs are effective at ranking relevant documents for queries, there-
fore, increasing the trust of our proposed system. The experimentation on our framework
demonstrates the scalability of our proposed Retrieval Blockchain and the efficiency of the
double-blind mechanism in PPKI.

For future research, there are several key areas that can help improve the integrity of
RAG systems. One of the most prominent, is that of ground truth, finding a more robust
and secure way to determine ground truth in data that can help prevent malicious data
being used. Another possible area of future work could involve training an LLM for the
specific purpose of ranking the documents retrieved by a RAG system. This could vastly
improve the experiments that were performed with OpenAI’s Chat-GPT models. Other
future directions could focus on improving the retrieval process in this proposed frame-
work, ensuring it is efficient and robust. Our work on the RAG system is an important
step forward in the research for more secure and trustworthy AI.
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