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Abstract. The time crystal is a well-known phenomenon observed in any quantum Floquet system. Time
Crystal is a phenomenon in which the states of the system propagate spontaneously, saving time-reversal
symmetry. It is one of many body localisations that prolong the lifetime of quantum states. However, it
is destroyed by the operation from external environments such as gate operations. Therefore, we propose
the method to Control the Time Crystal by modifying the Hamiltonian and driving noise conserving
time-reversal symmetry. As a result, the method demonstrated the simple gate operations, Grover’s, and
Quantum Fourier Transformation algorithms by Time Crystal. We also demonstrated adiabatic Grover’s
and Shor’s algorithm.
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1 Introduction

Chaotic phenomena have been studied for a century. Such phenomena are investigated
and demonstrated in quantum physics, such as quantum chaos, quantum integrable sys-
tems, quantum non-integrable systems, and many-body localization. Integrable quantum
many-body systems are characterized by an abundance of conserved quantities, which en-
dow them with remarkable properties such as complete solvability and regular behavior.
These systems exhibit a high degree of order and simplicity, allowing for exact analytical
solutions and revealing deep connections to mathematical structures such as integrable
models and algebraic techniques. Examples of integrable systems include the Heisenberg
one-dimensional model [14], the Lieb-Liniger one-dimensional model [15], and the Tonks-
Girardeau gas [24], among others. Conversely, non-integrable quantum many-body systems
lack such conserved quantities and exhibit chaotic dynamics, leading to complex emergent
behavior. The absence of integrability results in phenomena such as thermalization, where
the system reaches a state of maximum entropy and loses memory of its initial conditions.
Non-integrable systems are ubiquitous in nature and encompass a wide range of physical
phenomena, including thermalization in quantum gases [23], quantum chaos in black holes
[22], and the onset of turbulence in fluid dynamics [38].

In parallel, the concept of many-body localization [1] has emerged as a cornerstone in
the study of quantum thermalization and ergodicity. Many-body localization refers to the
phenomenon wherein quantum information remains localized within individual regions of
a disordered quantum system, inhibiting the system’s ability to thermalize and equilibrate.
This departure from conventional statistical mechanics has profound implications for our
understanding of quantum phase transitions and the stability of quantum coherence in
interacting systems. Many-body localization has emerged as a cornerstone in the study of
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quantum thermalization and ergodicity. Many-body localization refers to the phenomenon
wherein quantum information remains localized within individual regions of a disordered
quantum system, inhibiting the system’s ability to thermalize and equilibrate. This depar-
ture from conventional statistical mechanics has profound implications for our understand-
ing of quantum phase transitions and the stability of quantum coherence in interacting
systems. For these reasons, chaotic phenomena are utilized in computing applications, such
as image encryption [32, 40]. Quantum chaos is also harnessed for computation in vari-
ous ways. One prominent example is the Quantum Reservoir Computer, which leverages
chaotic behavior that emerges through measurement and feedback mechanisms[6, 41, 19].
Other studies focus on circuits designed to induce quantum chaos [31], two-level chaotic
systems [18], and the application of Shor’s algorithm in quantum integrable systems [25].

Time crystals (TCs), first proposed by Nobel laureate Frank Wilczek in 2012 [39], rep-
resent a paradigm shift in our understanding of equilibrium dynamics. Unlike traditional
notions of equilibrium, where temporal symmetry is preserved, TCs exhibit a spontaneous
breaking of time translation symmetry, manifesting as persistent oscillations even in the
absence of external driving. This unique feature offers tantalizing prospects for the ex-
ploration of new phases of matter with potential applications in quantum computing and
precision metrology. In fact, some groups in the world have demonstrated that Discrete
Time Crystal [8] [5] makes the lifetime of qubits longer.

In addition, the group at Aalto University announced that TCs could be used as
qubits, and they have a long lifetime above 2 seconds after the crossing of energy levels
[4]. Controlling of the quantum state by the TC phase itself may be realized unless time-
reversal symmetry is preserved.

The gate operation destroys the time-reversal symmetry. However, the noise modifi-
cation can propagate the quantum state to the aimed state, conserving the time-reversal
symmetry. Therefore, we propose a novel method of quantum calculation that takes ad-
vantage of Time crystals. We call this Quantum Time Crystal Computing (QTCC). The
optimal Hamiltonians and parameters vary depending on the aimed and initial states.
The parameters can be optimized by the manner of Quantum Machine Learning (QML)
[17][13]. QML is the hybrid method using a quantum computer and classical machine
learning methods, such as Quantum Circuit Learning (QCL) and Quantum Support Vec-
tor Machine (QSVM) [27], Quantum Neural Network (QNN) [2] [20], and Born Machine
(BM) [21]. We use the Hamiltonian Engineering Born Machine (HEBM) [36], which is
the specialized BM for optimizing the parameters of Hamiltonians for aimed propagation.
The HEBM is applicable for material engineering such as Variational Quantum Eigensolver
and its family [33]. Hence, HEBM can optimize the parametric Hamiltonians and realize
QTCC. It may broaden the scope of quantum computers and become the clue to finding
a novel quantum system. We performed the flipping of all qubits, making an evenly dis-
tributed state, Grover’s algorithm, Shor’s algorithm and Quantum Fourier Transformation
(QFT) by QTCC with optimized parametric Hamiltonians.

Section 1 is the introduction, section 2 describes the method detail of QTCC and the
optimization method, section 3 describes the result for flipping and evenly distributed
state, 4 shows the result of universal and adiabatic Grover’s algorithm, the result of QFT,
and the result of adiabatic Shor’s algorithm, Section 5 is the discussion of results, and
section 6 is the concluding remark.

2 Method

This section describes the details of Quantum Time Crystal Computing (QTCC ) and our
demonstration. Time Crystal ( TC ) is a symmetrical propagation of quantum systems
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with time-reversal symmetry. It is demonstrated on several quantum Floquet systems,
such as the ring of spin and photons. Hamiltonian varies periodically between radiated by
an electromagnetic field and noisy system propagated by a Hamiltonian with randomized
coefficients corresponding to the noise. Any quantum system can be in the TC phase, and
the TC prolongs the lifetime of quantum systems as,

H =

{∑N
j=0 0.5(1− d)Xj (0 ≤ t mod 2T ≤ T )

H1 (T < t mod 2T ≤ 2T ).
(1)

N is the number of qubits and H1 includes the noises and d is the assumed tunable
coefficient, which is 0.001 for all calculations.

We assume the noise of this term as the rotation noise of parameters such as {θi =
θ0i + θ

r
iErr(0, 1/3)}, Where Err(0, 1/3) is the Gaussian function which the center is x = 0

and standard deviation is 1 /3. We use a Hamiltonian Engineering Born Machine ( HEBM)
to derive the desired parameters, which realize the aimed distribution of probabilities. Any
superpositioned state can be realized by optimizing and modifying the parameters. The
scheme of HEBM is almost the same as that of the Quantum Machine Learning ( QML )
algorithms [30]. It minimizes the Loss functions such as,

F = fKf + faimKfaim − 2faimKf . (2)

and or KL divergence

DKL(f
aim∥f) =

N−1∑
i=0

faim
i ·

(
log faim

i − log fi

)
(3)

where f is the calculated distribution of probability obtained by time propagation of
the initial state by parametric Hamiltonians, and faim is their aimed value, respectively.
This is the maximum-mean-discrepancy-loss (MMD-loss) function. Then, f and faim are
calculated distributions that are derived by the parametric quantum circuit and aimed
distribution, respectively.

They are 2N -dimensional vectors and expressed as fj =| xj |2 for U | Φini⟩ =| Φ⟩ =∑2N−1
j=0 xj | j⟩ and faim

j =| fj |2 for | Φans⟩ =
∑2N−1

j=0 fj | j⟩ by the decimal state
represented by the state of each qubit.

In addition, f can be substituted for the coefficients derived by quantum tomography.
Quantum tomography [7] is a method for estimating quantum states from the trace of
density matrices of states and Pauli operators. The states can be identified by the 4N -
dimensional vector.

ρ =
1

2N

3∑
µ1=0

3∑
µ2=0

· · ·
3∑

µN=0

Tr[(σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµN )ρ] (4)

· σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµN .

Then, 0, 1, 2, and 3 of Pauli matrices indicate that they are the I, X, Y, and Z operators
for a given qubit, respectively. We use the Hamiltonian propagator and the propagator is
expressed as U = exp(−i/2Hdt)Ndt for π = 2dtNdt = 2T . The parameters are coefficients
of Hamiltonians, and Hamiltonians are expressed in Pauli’s words. Then Ndt is the number
of time frames and is fixed at 50. Hamiltonian takes the form H =

∑No−1
j=0 θjPj for the

product of the Pauli matrix Pj , consisting of the Pauli matrix Xj , Yj , Zj . No is the number
of Pj in Hamiltonian.
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Hence, the propagator must be decomposed into propagators of single terms of Hamil-
tonian. It is achieved by Suzuki-Trotter decomposition [29] in this work. In this method,
the Born machine is used for Hamiltonian engineering. This is why we call this method
HEBM ( Fig. 1 ).

Fig. 1. The flowchart of HEBM[36]. 1, Firstly, parametric Hamiltonian H is input and Trotterized. 2, The
initial parameters are set on H, and the initial circuit | Φini⟩ is prepared. 3, The initial state is propagated
by H using the circuit depicted by t = π/2. 4, The loss function F is calculated for the final calculated
distribution | Φ⟩ = exp(−iHt/2) | Φini⟩. 5, The gradients of the loss function are calculated according
to the parameter shift rule ( PSR). 6, The parameters are updated by gradients. If the conditions of
convergence are satisfied, final parameters and Hamiltonian are obtained. Otherwise, 3, 4, 5, and 6 are
performed using updated parameters.

The method of optimizing variables is the Covariance Matrix Adaptation Evolution-
ary Method ( CMaEs ) [12] because optimization, including noisy parameters, cannot be
performed accurately by Heuristic methods such as Broyeden-Fretcher-Goldfarb-Shanno
( BFGS ) and Nelder-Mead methods. CMaEs is an optimization method that searches
for the optimum parameters by estimating the parameter sets in parameter space and
weighting each parameter set.

By iterating this, the CMaEs method searches for the global minimum. The evalua-
tion function is the average of eq. 2 or 3 for 10 results of propagation. We use blueqat
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SDK [16] for numerical simulation of quantum calculations and optionally [3] to optimize
parameters.

3 Discrete TC and time-reversal symmetry

In this section, we perform QTCC for flipping all qubits and making an evenly distributed
state by optimizing parameters. In these simulations, H1 =

∑3
j=0(θ

ZXZ
j Zj−1XjZ1+1) for

j = −1 = 4 = 0 the third term of parent Hamiltonian for Gibbs distribution of 1-D
Ising model. The result of flipping all qubits is shown in Figs. 2 and 3. The Values of
the evaluation function for the number of trials are shown in Fig. 2, and the probability
of each state for the time frame by gradation map is shown in Fig. 3, respectively. We
calculate the evaluation function at t = 2T.

The realm of the parameter is [0 ,2) for all value components from here without declare.
As shown in Fig. 2, the 800th trial lowers the evaluation function, and the minimum

average of the evaluation function result in 10 sampling is nearly 4.1837 ×10−3 for the
755th trial. Fig. 3 shows the probability of each state for a time frame by gradation map. At
that time, the 2T and 4T stare of qubits go back to the | 0⟩ state. However, the first qubit
from the left is depolarized at 4T, and the second qubit is depolarized at 5T respectively.
Even though time-reversal symmetry is almost preserved. This means the acceleration of
DTC can be achieved by adjusting the amount of noise.

Fig. 2. The number of trials v.s. the average of the loss function for the | 0⟩ state in case the initial state
is the | 0⟩ state, and the Hamiltonian is the third term of the parent Hamiltonian for Gibbs distribution
of 1-D Ising model. The blue area is the realm of the distribution of loss function for 10 sampled values,
and the green hatched area is the standard deviation, respectively.

The result of an evenly distributed state is shown in Figs. 4 and 5. The Values of
the evaluation function for the number of trials are shown in Fig. 4, and the probability
of each state for the time frame by gradation map is shown in Fig. 5, respectively. We
calculate the evaluation function at t = 4T. Shown in Fig.4, the average of the evaluation
function is lowered from the 700th trial, and the minimum is 1.8 ×10−2 at the 929th trial.
The minimum of the result in 10 samplings is 8.0535 ×10−3, and the maximum is 4.0242
×10−2, and the median is 1.3655 ×10−2, respectively.

Fig. 5 shows that the rebound of probability from the evenly distributed state at 6T
and 8T even rebounded states are | 13⟩ and | 14⟩, respectively.
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Fig. 3. The probability of states for time expressed by gradation map at 755 th trial for the | 0⟩ state in
case the initial state is the | 0⟩ state and the Hamiltonian is the third term of the parent Hamiltonian for
Gibbs distribution of 1-D Ising model.

Fig. 4. The number of trials v.s. the average of the loss function for the evenly distributed state in case
the initial state is the | 0⟩ state, and the Hamiltonian is the third term of the parent Hamiltonian for
Gibbs distribution of 1-D Ising model. The blue area is the realm of the distribution of loss function for
10 sampled values, and the green hatched area is the standard deviation, respectively.
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Fig. 5. The probability of states for time expressed by gradation map at 929th trial for the evenly dis-
tributed state in case the initial state is the | 0⟩ state and the Hamiltonian is the third term of the parent
Hamiltonian for Gibbs distribution of 1-D Ising model.

The DTC started from an evenly distributed state and never propagated to a given
one state in only 8T by positive parameters, with noise below 2 with respect to broadness.
QTCC may have a chaotic mechanical system if the Hamiltonian parameters are positive
or negative.

4 Grover’s and Quantum Fourier algorithm on QTCC

In this section, we perform Grover’s algorithm and Quantum Fourier Transformation (
QFT ) [35] on QTCC and show the results. We calculated the evaluation function at t =
2T for all cases in this section. The Hamiltonians for time propagation are the third term
of the Gibbs distribution, the All—to—All connected Ising model, and the One-body Pauli
X and Z operators, respectively. We added the oracle operator for the following section
for all Hamiltonians, Hence, the third term of Gibbs distribution, All—to—All connected
Ising model, and One-body Pauli X and Z operators have 10, 22, and 18 parameters,
respectively. Aimed data is | 0⟩ state for all following calculations

4.1 Grover’s algorithm on universal and adiabatic quantum computers

In this section, we demonstrate Grover’s algorithm and discuss the result using QTCC in
a universal and adiabatic manner. We calculate the evaluation function at t = 2T. At first,
we derive the parametric set for the three above types of Hamiltonians for quarter Grover’s
operator on the 3-qubit system. Figs. 6, 8, and 10 indicate the logarithmic loss functions
for the third term of Gibbs distribution, All-to-All connected Ising, and One-body Pauli
X and Z, respectively. As shown in Fig. 6, Gibbs distribution is the most accurate in three
Hamiltonians and kept lowering at 1500 th trial.

In Contrast, All-to-All Ising has the lowest accuracy of three, as shown in Fig. 8. The
convergence is the firstest. The One-body Pauli X and Z have both middle accuracy and
a time for convergence. as shown in Fig. 10. In Figs. 7, 9, and 11, we show the probabil-
ity distributions for time on three types of Hamiltonians. All cases are far from Grover’s
operator’s goal regarding the distribution. The distribution peak may not be feasible with
only positive or negative parameters because the chaotic motions are fundamentally irre-
versible.
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Fig. 6. The number of trials v.s. the average of the loss function for the quarter Grover’s operator in
case the initial state is the evenly distributed state, and the Hamiltonian is the third term of the parent
Hamiltonian for Gibbs distribution of 1-D Ising model. The blue area is the realm of the distribution of
loss function for 10 sampled values, and the green hatched area is the standard deviation, respectively.

Fig. 7. The probability of states for time expressed by gradation map at the best trial for the quarter
Grover’s operator in case the initial state is the evenly distributed state and the Hamiltonian is the third
term of the parent Hamiltonian for Gibbs distribution of 1-D Ising model.

154                                             Computer Science & Information Technology (CS & IT)



Fig. 8. The number of trials v.s. the average of the loss function for the quarter Grover’s operator in
case the initial state is the evenly distributed state, and the Hamiltonian is the All-to-All connected Ising
model. The blue area is the realm of the distribution of loss function for 10 sampled values and the green
hatched area is the standard deviation, respectively.

Fig. 9. The probability of states for a time expressed by gradation map at the best trial for the quarter
Grover’s operator in case the initial state is the evenly distributed state and the Hamiltonian is the All-
to-All connected Ising model.
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Fig. 10. The number of trials v.s. the average of the loss function for the quarter Grover’s operator in case
the initial state is the evenly distributed state and the Hamiltonian is the One-body Pauli X and Z model.
The blue area is the realm of the distribution of loss function for 10 sampled values, and the green hatched
area is the standard deviation, respectively.

Fig. 11. The probability of states for time expressed by gradation map at the best trial for the quarter
Grover’s operator in case the initial state is the evenly distributed state and the Hamiltonian is the One-
body Pauli X and Z model.
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On the other hand, we optimized the parameters for the oracle operator aimed at the
| 0⟩ state. The Hamiltonian is one body X and Z operator with an oracle operator. The
number of trials is 1500. We show the logarithmic loss function for the number of trials
in Fig. 12. The loss function average is the minimum at the 917th trial, and the value is
66.4792. The minimum, maximum, and median of the 10 calculations are 66.1284, 66.8675,
and 66.5017, respectively. We also show the propagation of the phases of states in Fig . 13,
for the parameters on the trial. The phases of all states are off-aimed values. The number
of qubits is 3, and ancilla is 1 qubit. We use eq. 3 for loss function and its f and faim

are the coefficients derived by quantum tomography for this calculation. The number of
valuable items includes the broadness of the noise. The realm of the parameter is [-4, 4)
for all value components; universal quantum computation using QTCC is supposed to be
limited.

Fig. 12. The number of trials v.s. the average of the loss function for the oracle operator in case the initial
state is the evenly distributed state, and the Hamiltonian is the One-body Pauli X and Z model. The blue
area is the realm of the distribution of loss function for 10 sampled values, and the green hatched area is
the standard deviation, respectively.

On the third hand, we optimize the parameters for Adiabatic Grover’s algorithm [28].
The number of qubits is 3, and the noise Hamiltonian is,

H1 = (1− s/T )Hi + s/THf (5)

Hi = θ0I − θ1 | ψ⟩⟨ψ | (6)

Hf = θ0I − θ2 | ψ⟩⟨ψ | +θ3(| i⟩⟨ψ | + | ψ⟩⟨i |) (7)

for the time s and the period T and the initial state | ψ⟩ =
∑

j=0 1/
√
2n − 1 | j⟩ where

| ψ⟩ =
∑

j=0 1/
√
2n − 1 | j⟩ is the superposition of all states and | i⟩ is an equal superpo-

sition of all states except for the aimed state. The number of trials is 300. Then, s starts
from 0 at t = T and s = t-T after that. We calculate the loss function at t = 2T. As shown
in Fig. 14, the average of the loss function lowers the fastest in above all cases, and the
average reaches the minimum 8.2349 ×10−5 at the 189th trial. The minimum, maximum,
and median are 1.7901 ×10−5, 1.799 ×10−4, and 1.806 ×10−5, respectively. Besides, the
difference between maximum, minimum, and standard deviation is the smallest in all cases
and trials. We show the time propagation for the parameter of all states in Figs. 15 and
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Fig. 13. The phase of states for time expressed by gradation map at the best trial for the oracle operator
in case the initial state is the evenly distributed state and the Hamiltonian is the One-body Pauli X and
Z model.

16. As shown in Fig. 15, the probability of | 0⟩ state lowers from t = T until t = 1.6T
and becomes 1 by 2T. The phase of | 0⟩ state becomes π at T and stays after that, as
shown in Fig. 16. The Hamiltonian is assembled compared to other cases, the QTCC has
the potential for adiabatic quantum computation.

Fig. 14. The number of trials v.s. the average of the loss function for Adiabatic Grover’s algorithm in
case the initial state is the evenly distributed state, and the Hamiltonian is the eq. 7. The blue area is the
realm of the distribution of loss function for 10 sampled values, and the green hatched area is the standard
deviation, respectively.

4.2 Quantum Fourier Transformation

In this subsection, we describe the result of performing QFT using QTCC. For this cal-
culation, we abide by the manner of subspace-search calculation, such as subspace-search
VQE. We calculate multiple and f from multiple initial states and common ansatz. The
entire loss function yields.

158                                             Computer Science & Information Technology (CS & IT)



Fig. 15. The probability of states for time expressed by gradation map at the best trial for Adiabatic
Grover’s algorithm in case the initial state is the evenly distributed state, and the Hamiltonian is the 7.

Fig. 16. The phase of states for time expressed by gradation map at the best trial for Adiabatic Grover’s
algorithm in case the initial state is the evenly distributed state, and the Hamiltonian is the 7.
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The realm of the parameter is [-4, 4) for all value components from here.

F =
∑
j=0

1/(j + 1)Fj (8)

Fj = fjKfj + faim
j Kfaim

j − 2faim
j Kfj . (9)

We assume that the initial states have three patterns of impulse and no probability
periodicity. The initial states’ periods are 16, 8, and 4, and the aimed states are spectrums
from 0 by 16, 8, and 4, respectively. We show the logarithmic loss function for the number
of trials in three initial states in Figs. 17, 18, and 19, respectively. For the initial state
with period 16, the average loss function is minimum in the 283rd trial, and the values
for the case where the periods of the initial states are 16, 8, and 4 are 4.799 ×10−2, 5.062
×10−2 and 8.639 ×10−2, respectively.

Fig. 17. The number of trials v.s. the average of the loss function for the spectrum from 0 by 16 in case
the period of the initial state is 16, and the Hamiltonian is the One-body Pauli X and Z model. The blue
area is the realm of the distribution of loss function for 10 sampled values and the green hatched area is
the standard deviation, respectively.

QFT is also difficult for QTCC.

4.3 Adiabatic Shor’s algorithm

In this section, we derive the parametric Hamiltonian for the Adiabatic Shor’s algorithm
[26] for factorization for 21. According to the paper, factorization of 21 can be performed
by 3 qubits adiabatically. g is the coefficient for optimization derivation and is 30. The
number of qubits is 3, and the Hamiltonian is,

H1 = (1− (s/T )2)Hi + (s/T )2Hf (10)

Hi = θ0

N∑
j=0

Xj (11)

Hf = θ1(210I + 84Z0 + 88Z1 + 44Z2 − 20Z0Z1 − 10Z0Z2

+20Z1Z2 − 16Z0Z1Z2) (12)
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Fig. 18. The number of trials v.s. the average of the loss function for the spectrum from 0 by 8 in case
the period of the initial state is 8, and the Hamiltonian is the One-body Pauli X and Z model. The blue
area is the realm of the distribution of loss function for 10 sampled values, and the green hatched area is
the standard deviation, respectively.

Fig. 19. The number of trials v.s. the average loss function for the spectrum from 0 by 4 in case the initial
state is 4, and the Hamiltonian is the One-body Pauli X and Z model. The blue area is the realm of the
distribution of loss function for 10 sampled values, and the green hatched area is the standard deviation,
respectively.
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for the time s and the period T And the initial state | ψ⟩ =
∏N

j=0HjXj | 0⟩.
The number of trials is 300. Then, s starts from 0 at t = T and s = t-T after that. We

calculate the loss function at t = 2T. As shown in Fig. 20, the average of the loss function
lowers the fastest in above all cases, and the average reaches the minimum 2.4569×10−5

at the 226th trial. The minimum, maximum and median are 6.4716×10−6, 5.9159×10−5,
and 1.8173×10−5, respectively. We also show the time propagation of the state for a case
in Fig. 21. The states | 3⟩ and | 7⟩ increase from t = T to t = 1.5T. After that, the | 3⟩
state is suppressed, and the | 7⟩ state is amplified to 1 with respect to the probability.
The number of parameters is only 2. However, the ability of QTCC to perform Adiabatic
quantum computation is demonstrated enough.

Fig. 20. The number of trials v.s. the average of the loss function for Adiabatic Shor’s algorithm in case
the initial state is | ψ⟩ =

∏N
j=0HjXj | 0⟩ and the Hamiltonian is the eq. 12. The blue area is the realm of

the distribution of loss function for 10 sampled values and the green hatched area is the standard deviation,
respectively.

Fig. 21. The probability of states for time expressed by gradation map at the best trial for Adiabatic
Shor’s algorithm in case the initial state is | ψ⟩ =

∏N
j=0HjXj | 0⟩ and the Hamiltonian is the eq. 12.
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5 discussion

QTCC demonstrates sensitivity to initial states similar to chaotic systems. At first, we
confirm behavior by deriving the parameters that propagate the given single state and
evenly distributed state to the given single states. We show the logarithmic minimum
averages of loss functions for the aimed single state from the | 0⟩ state and from the evenly
distributed state in Fig. 22, respectively. Fig. 22 shows that any single state from | 0⟩ to
| 7⟩ can be reached accurately. In contrast, no single state can be reached by t = 2T .

The realm of the parameter is [0,2) for all value components here.

Fig. 22. The number of aimed state v.s. logarithmic loss function in case initial is | 0⟩ state and the evenly
distributed state, respectively.

From these and the results in Section 3, the time propagation of QTCC retrieval has a
degree of stability, and the potential of changing the state of | 0⟩ state is more significant
than that of the evenly distributed state. This evenly distributed state is supposed to
be the most stable. QTCC can accurately perform adiabatic quantum algorithms. This
is supposed to be because the parametric Hamiltonian is time-dependent. The states of
QTCC cycle the definitive trajectory partially due to the noise. The evolution of Hamilto-
nians charges the trajectory. In addition, this phenomenon breaks the stability due to the
initial state. It is supposed that the constant parametric Hamiltonian corresponds to the
center-of-mass force and is perturbed by noise, and the time evolution of the Hamiltonian
corresponds to the time evolution of the trajectory.

According to the paper [9], the propagated state of discrete TC varies by the hyper-
parameter ϵ of Hamiltonian. Hence, adiabatic control of the amplitude and distribution
of noise can manipulate the result of the time propagation of TCs even on 4-qubit sys-
tems. This paper also show the same result on 57-qubit system[10]. The controlling of
parameters changes the result of time propagation even on 4-qubit systems. The noise and
parametric Hamiltonian itself evolve over time, and the more complex the operation, the
more complicated operation such as universal QFT may be realized. However, the limit of
the number of gates and its variation for a single parameter set and Hamiltonian is still
an open problem. The correspondence between the noise and parameter set and operation
is also.
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6 Concluding remarks

The paper reveals that the QTCC can accurately perform adiabatic quantum computation
and universal gate operation. This means that more kinds of systems can perform adiabatic
quantum computing and quantum computing. For example, hot and wet systems such as
organic compounds and cells, especially neurons [34]. However, some objectives remain.
The major objectives are establishing the method to calculate the parameters and perform
adiabatic quantum computation accurately in case three or more noise parameters split
the Hamiltonian complex and the method to perform universal quantum computation
accurately.

Machine learning by the manner of recurrent neural network and quantum reservoir
computing [11], and Variational Quantum Kolmogorov-Arnold Network (VQKAN) [37] is
also. Regardless, quantum annealers and quantum computers can take advantage of the
noise. Hence, the QTCC may be a milestone in quantum computing.
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Eltsov, V.B.: Nonlinear two-level dynamics of quantum time crystals. Nature Communications
13(1), 3090 (Jun 2022). https://doi.org/10.1038/s41467-022-30783-w, https://doi.org/10.1038/
s41467-022-30783-w

[5] Chen, B., Li, S., Hou, X., Zhou, F., Qian, P., Mei, F., Jia, S., Xu, N., Shen, H.: Digital Quantum
Simulation of Floquet Topological Phases with a Solid-State Quantum Simulator. arXiv e-prints
arXiv:2012.05495 (Dec 2020). https://doi.org/10.48550/arXiv.2012.05495

[6] Cossins, M.J., Phang, S.: New Reservoir Computing Kernel Based on Chaotic Chua Circuit and In-
vestigating Application to Post-Quantum Cryptography. arXiv e-prints arXiv:2406.12948 (Jun 2024).
https://doi.org/10.48550/arXiv.2406.12948

[7] Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D., Landon-Cardinal,
O., Poulin, D., Liu, Y.K.: Efficient quantum state tomography. Nature Communications 1(9), 149
(Dec 2010). https://doi.org/10.1038/ncomms1147

[8] Else, D.V., Monroe, C., Nayak, C., Yao, N.Y.: Discrete Time Crystals. Annual Review of Con-
densed Matter Physics 11, 467–499 (Mar 2020). https://doi.org/10.1146/annurev-conmatphys-
031119-050658

[9] Estarellas, M.P., Osada, T., Bastidas, V.M., Renoust, B., Sanaka, K., Munro, W.J., Nemoto,
K.: Simulating complex quantum networks with time crystals. Science Advances 6(42),
eaay8892 (2020). https://doi.org/10.1126/sciadv.aay8892, https://www.science.org/doi/abs/10.
1126/sciadv.aay8892

[10] Frey, P., Rachel, S.: Realization of a discrete time crystal on 57 qubits of a quantum computer. Science
Advances 8(9), eabm7652 (2022). https://doi.org/10.1126/sciadv.abm7652, https://www.science.
org/doi/abs/10.1126/sciadv.abm7652

[11] Fujii, K., Nakajima, K.: Quantum reservoir computing: a reservoir approach toward quantum
machine learning on near-term quantum devices. arXiv e-prints arXiv:2011.04890 (Nov 2020).
https://doi.org/10.48550/arXiv.2011.04890

[12] Hansen, N.: The CMA Evolution Strategy: A Tutorial. arXiv e-prints arXiv:1604.00772 (Apr 2016).
https://doi.org/10.48550/arXiv.1604.00772
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