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ABSTRACT 
 
This work is devoted to the modification of existing blind image restoration algorithms and 

methodologies for noise and blur elimination in videos and images captured by unmanned 

aerial vehicles. This work improves on the existing algorithms and methodologies to 

address the challenges and limitations of existing tools when applied to high-dimensional 

hyperspectral data by applying channel compression based on 3d convolutions as a 

dimensionality reduction method. The methods and algorithms described in this paper can 

be applied in near-real-time and batch-processing scenarios. 

 
A detailed analysis of noise and blur types and their respective sources is provided. An 

overview of existing methods is given, and their limitations when applied to hyperspectral 

data are analyzed. A two-stage image restoration approach for hyperspectral data based 

on is introduced. Proposed algorithms solve the key limitations of hyperspectral data image 

restoration, providing quality and performance, comparable to non-hyperspectral image 

restoration. 
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1. INTRODUCTION 
 
Hyperspectral imagery (HSI) is a set of techniques for analyzing complex objects and surfaces by 

detecting spectral information from their reflections in hundreds of narrow bands. Usually, 

hyperspectral cameras operate in both visible and non-visible spectrums, with a typical camera 
being able to capture 100-500 spectral bands. 

 

Such data has great potential for object classification, monitoring environmental changes, and 

detecting features invisible to the human eye. However, processing such images has two primary 
challenges namely high dimensionality and spectral-spatial dependencies. 

 

HSI is widely applied in various industries, including remote sensing of the Earth, environmental 
monitoring, agriculture, geological research, medical diagnostics, as well as the military and 
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space sectors. For remote sensing applications, HSI cameras are usually mounted on an airborne 
platforms to maximize the throughput and coverage of hyperspectral data capture process. This, 

in turn, vastly increases the volume of hyperspectral data that needs to be processed. With the 

advent of unmanned aerial vehicles (UAVs), they became the primary platform for mounting HIS 

equipment, as they are able to provide low-altitude capture of data with the pre-programmed 
flight pass, making them ideal choice for when high resolution data capture is necessary. 

Blur and noise removal is tone of the most crucial steps of data proprecessing, especially for data 

captured by airborne platforms [1]. This step highly increases the effectiveness of intelligent 
tasks, such as classification, segmentation and subsequent decision making. For small and light 

UAVs this step is even more important, as their size makes them a less stable platform, making 

them more susceptible to image degradation caused by external forces. 
 

The problem of noise and blur removal falls under the umbrella of image restoration problems. 

The area is well-researched, with a variety of methods and algorithms being used to remove 

unwanted noise and blur from the images. The majority of existing methods are designed with 
three dimensional data in mind. Applying them to hyperspectral data often proves challenging 

due to the issues that arise when the number of channels is increased. 

 
Removing noise and blur becomes even more important when it comes to high-risk hazardous 

applications of hyperspectral imagery, such as landmine removal. Extra caution should be taken 

to ensure that no artifacts were introduced during the restoration process, as this can lead to type 
II (or in worst cases type I) errors, slowing down the process significantly or creating additional 

danger to the personnel by failing to properly classify hazardous object. As such, developing new 

methods of image restoration for hyperspectral data is extremely important. 

 

2. LITERATURE OVERVIEW 
 

In this section, an overview of specifics and challenges of hyperspectral imagery, types of noise 

and blur, and existing methods of image restoration is provided. 

 

2.1. Hyperspectral images 
 
Hyperspectral images (HSI) are three-dimensional datasets that contain detailed spectral 

information for each pixel in the image. Unlike conventional images consisting of three channels 

(RGB – red, green, blue), hyperspectral images cover a much wider range of wavelengths, 

divided into hundreds of narrow spectral channels. 
 

As a result, hyperspectral data allows you to obtain unique information about objects that is not 

available when using only traditional visualization methods. 
 

A hyperspectral image is a three-dimensional tensor (often referenced as hypercube). First two 

dimensions correspond to spatial representation of the data (coordinates of pixels in the image). 
Third dimension represents the spectral characteristics of data and contains the values of light 

intensity in different wavelength ranges (also referred to as spectral bands).  

 

Each pixel in a hyperspectral image captures a vector of object’s reflection in different spectral 
bands, with each value in this vector corresponding to a specific channel. This allows for a 

detailed spectral signature of an object, material or surface to be created. These spectral 

signatures are unique to different objects or materials, making it possible to identify and classify 
them. Hyperspectral images typically cover the visible (VIS), near-infrared (NIR), and mid-

infrared (SWIR) ranges of radiation. The spectral channels are arranged with very small 
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bandwidths (typically 5 to 10 nm), which allows even small differences in light reflectance 
between objects to be captured. An example hyperspectral image is given in Fig. 1. 

 

The advantages of hyperspectral images are the possibility of obtaining deep information about 

an object or material. Reflectance depends on physical, chemical and biological properties of the 
material. This enables the analysis of objects with high accuracy, even if they have the same 

visual appearance. 

 
Hyperspectral images provide deep analysis of objects and materials due to their unique spectral 

detail. This makes them one of the most powerful tools for studying and monitoring complex 

systems and environments. However, it also has several downsides, namely equipment cost, high 
data dimensionality and spectral-spatial dependency. Due to this, a spectral vector of tens or 

hundreds of values is formed for each pixel. Despite the high informational density of such data, 

their processing is difficult due to several challenges. 

 

 
 

Figure 1.  Example of hyperspectral image from Pavia University dataset [2] used in this study  

 
Firstly, the computational complexity increase is polynomial in relation to the number of spectral 

bands. Every additional spectral band increases the size of spectral dimension by 1, but 

computational complexity increases by the factor of 𝑊 ∗ 𝐻, where W is the width of the image, H 

is the height of the image. This is especially critical for classification tasks, where algorithms 
need to analyze each spectral vector and compare it with known classes. The high amount of 

information complicates the process of training machine learning and deep learning models, 

making it more resource-intensive. 
 

Secondly, a significant number of spectral features can lead to data redundancy. In hyperspectral 

images, many spectral channels are interdependent or carry similar information. This creates a 
problem of data duplication, which reduces the efficiency of analysis and classification 

algorithms. Common solution to this problem is application of dimensionality reduction 

techniques. Methods like principal component analysis (PCA), linear discriminant analysis 

(LDA), or feature filtering are often used to reduce the dimensionality and speed up the 
processing. 

 

Additionally, spectral complexity can cause "noise" or anomalies in spectral vectors. In real data, 
variations are observed due to lighting, atmospheric effects, or sensor characteristics. This makes 
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it difficult to accurately represent objects and requires the use of additional pre-processing 
methods to normalize the data and filter out noise. 

 

Hyperspectral images are characterized by high dimensionality, which is both their advantage and 

a significant challenge in processing. Each pixel contains a spectral vector, which usually 
contains a large number of spectral bands, often more than a hundred. This data structure leads to 

a significant increase in the amount of information that needs to be processed. The problem of 

high dimensionality is often described as the "curse of dimensionality". The computational 
complexity of analysis algorithms grows at exponential rate with regards to the number of 

spectral channels, which further increases the difficulty of using classical algorithms. 

 
Another side effect of high dimensionality is the need for a larger training dataset for machine 

learning models in order to prevent over fitting. Limited number of data in high-dimensional 

setting leads to low generalization ability of models built with machine learning, and negatively 

impacts overall accuracy.  
 

Another important problem is data redundancy, where many spectral channels carry 

interdependent or duplicated information. This leads to increased computational costs and poor 
model performance. Dimensionality reduction techniques enable the separation of useful 

information from redundant noise, which in turn enables removal of certain dimensions and 

partially alleviates this problem. 
 

2.2. Noise and blur sources and types 
 
Image restoration tasks are distinguished into blind and non-blind image restoration settings. In 

the non-blind setting, the type, and possibly parameters, of noise and blur types are known ahead 

of time. This setting is usually used for a very specific use cases and enable the usage of  highly 
efficient deblurring algorithms. However, in practice, neither noise types nor their parameters are 

known ahead of time, which corresponds to the blind image restoration problem, which is a 

setting that will be considered in this work. In blind image restoration problems, however, image 

restoration is still based on the composition of known noise and blur sources. 
 

2.2.1. Noise 

 
Noise describes an unwanted adversarial alteration of the original signal, which decreases the 

number of information in the signal. In the context of image or video processing, noise affects 

pixels of the image, decreasing the amount of information that can be extracted from a given 

picture or video frame. 
 

In the context of image or video processing, noise is considered an unwanted alteration, that 

reduces the amount of useful information that can be extracted from a given picture or frame. The 
majority of noise encountered in images is additive in nature and is usually caused by either 

manufacturing defects, bit errors in sensor components or environmental factors[3].  

 
Additive white Gaussian noise (AWGN)[4] is one of the most common noise models that can 

represent a wide range of naturally-occurring noises, such as the thermal vibrations of atoms in 

conductors, black body radiation or shot noise. This noise is based on the central limit theorem, 

or rather an assumption that a linear combination of multiple random additive noises will have a 
Gaussian distribution.  
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Impulse noise[5] consists happens due to electrical interference or voltage spikes in the 
transmission medium. It tends to have an approximately flat frequency response over the 

spectrum range of interest. 

 

Quantization noise[6] is the distortion that occurs when an analog signal is converted into a 
digital signal with a limited number of discrete amplitudes. Rounding and truncation are typical 

causes of quantization noise. Quantization is involved to some degree in nearly all digital signal 

processing, as the process of representing a signal in digital form analogue involves rounding, 
flooring or ceiling operations during the conversion of continuous signal into discrete values. 

 

Poisson noise[7], also known as shot noise, is the umbrella term for noise that can be modelled as 
Poisson process. This type of noise is common in electro-optical devices, such as cameras. It is 

caused by the interference of wave-particle duality with photon counting sensors, which are used 

to capture the reflectance of objects in the scene. 

 
Speckle noise [8] are granular structures observed in coherent light, resulting from random 

interference. Speckle patterns happen due to randomization of coherent light, with the most 

common case being a reflection off an optically rough surface. The speckle effect is a result of 
the interference of many waves of the same frequency, having different phases and amplitudes, 

which add together to give a resultant wave whose amplitude, and therefore intensity, varies 

randomly. It is often the result of atmospheric conditions or manufacturing defect. 
 

While not exhaustive, this list captures the most commonly encountered types of noise. Additive 

Gaussian noise is one of the most common average noise models in use, and as such is used in 

this work. 
 

2.2.2. Blur 

 
Blur is an adversarial alteration to the original image due to external factors, such as camera-to-

object movement, camera focus, fog, etc. The sharpness of the object’s edge decreases and 

smoothly transitions from one color to another. Blur has a negative impact on the processing of 

affected regions of the image. There are several common types of blur. 
 

Average blur is spread over the entire surface of the image in both horizontal and vertical 

directions, and is defined by averaging a circle of radius R as in the following equation: 
 

 𝑅 =  √𝑔2 + 𝑓2,  (1) 

 
where g,  f represents the horizontal and vertical blurring component, and R is the radius of the 

circular average [5]. This type of blur is commonly used as a synthetic source of blur, however, it 

is rarely encountered in practice, as blur is rarely uniform in one direction. 
 

Gaussian blur is somewhat similar to AWGN as it is based on the same idea of linear 

combination of additive blur sources forming normal distribution under the central limit theorem. 

This type of noise is commonly used for smoothing and can be introduced during the image 
processing. In this blur, a Gaussian curve is used to calculate a circular gradient form the target 

kernel location, slowly decreasing in intensity towards the edges. This blur type is defined as a 

set of parameters for a bell-shaped curve, either in one-dimensional or two-dimensional setting: 
 

 𝐺(𝑥) =  
1

2𝜋𝜎2 𝑒
𝑥2

2𝜎2 
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 𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 𝑒
𝑥2+ 𝑦2

2𝜎2 , (2) 

 

where x, y are centre coordinates of the blur location, 𝜎 is the standard deviation of the 

distribution, which controls the radius and strength of the blur.  This blur is a better model for a 

combination of different blur sources, but requires careful parameter tuning when applied. 
 

Motion blur occurs naturally and is created by a motion between the camera and the target at the 

time of transition. It is commonly introduced during the image capture and consists of a 
combination of transitional, rotational, scaling and shift blurs. Due to it’s complex nature, no 

universal analytical representation of this blur exists. 

 

Out-of-focus blurring occurs when a 3-dimensional scene is translated onto 2-dimensional 
surface during the image capture process. For this phenomenon to occur, the captured object must 

be located outside of the camera’s depth during the exposure stage. 

 
Atmospheric blurring refers to a set of blur types that are caused by natural processes during the 

image capture. Several factors define the type and strength of atmospheric blur, namely 

temperature, wind speed, and exposure time 
 

2.3. Image Restoration Methodologies 
 
As discussed in the previous section, image restoration problem is divided into blind and non-

blind image restoration. The division into these two subclasses is based on whether the prior for 

the image degradation operator (blur, noise, or their composition) is known or not. Settings, 
where the prior is known are considered non-blind image restoration tasks. Non-blind image 

restoration methods are deterministic and provide faster image restoration in comparison to blind 

methods. Some of the most famous non-blind image restoration algorithms are the Lucy 

Richardson algorithm (l-r algorithm) [9], the wiener filter, and a regularized filter [10]. 
 

In this work, however, blind image restoration problem [11] is considered due to the complex 

nature of real-world blur and noise in hyperspectral images. Blind image restoration is more 
versatile than non-blind approaches, however it usually relies on non-deterministic algorithms 

that learn low-dimensional embeddings of underlying images to then restore the original image 

from the said embeddings. The most common way to achiev this is through application of 
machine learning methods. Neural networks are often chosen for their superior learning capacity 

in comparison to other machine learning methods. 

 

Convolutional neural networks (CNNs) and their variations are a superior choice [12] for image 
processing and computer vision tasks, including image restoration problem. They are able to 

learn embeddings in the convolution layers, which makes their application straightforward. 

Initially, neural networks were used in the multi-staged approach, where a regression or 
classification model was used to identify the type of noise and estimate it’s parameters to then 

apply non-blind image restoration techniques. Such approaches are based on less complex 

network architectures, such as simple multi-layer perceptron [13] or singular valued 

decomposition [14], however such approaches required extensive fine-tuning for each new 
application and had poor generalization ability. Further research in this direction considered an 

approach based on using a convolutional network to learn the prior for deblurring with a half-

quadratic optimization is proposed in [15]. 
 

More advanced approaches utilize a combination of several neural networks and an external 

algorithm. One such approach utilizes a classifier to identify the type of the blur kernel and two 
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sub-networks for parameter identification is proposed by Yan et al. [16]. Alternatively, Sun et al. 
[17] proposed to use a classifier to describe the linearly non-uniform blur kernel and apply a 

Markov random field (MRF) to optimize these patch-wise blur kernels. 

 

More recent research focuses on the utilization of more complex network architectures to 
complete the task of image restoration end-to-end, without relying on any auxiliary algorithms. 

Several works [18, 19] consider the estimation of the blur kernel and image restoration via a two-

stage framework that captures both space and frequency domains. However one challenge these 
approaches face is that they learn the texture pattern to use as a prior for image restoration, and 

require a well-defined, consistent texture to work with, limiting it’s practical application to 

domains which meet this requirement, such as text restoration or face restoration. 
 

Unfortunately, the limitation outlined above is considered fundamental and no solution to this 

problem currently exists. To overcome this limitations, the research is currently focused on using 

several related images to serve as a prior for a deteriorated image. As such, modern approaches 
are focused on solving the problem of video frame restoration, rather than just image restoration. 

While this introduces additional data to serve as a prior for degraded image, video frame 

restoration also introduces new challenges, namely – temporal dependency, frame alignment and 
higher data dimensionality, forcing further changes to the architecture. 

 

When it comes to the problem of video frame restoration, there are three methods that are 
considered state-of-the-art. The first method is called Deblur Network (DBN) [20] and it is based 

on first pre-procesisng the video with a homography matrix to solve the frame alignment 

problem, followed by a recurrent neural network to remove the noise and artefacts introduced 

after th pr-processing stage. Two-shot approach simplifies the workload of the neural network, 
but pre-processing algorithm itself can introduce noise and artefacts into the video. 

 

As such, more advanced approaches rely on a compelte end-to-end processing. An approach 
proposed in [21] named Recursive Deblur Network (RDN) is a single-stage approach, and thus 

does not utilize preprocessing, which makes it inherently faster than DBN. It produces 

comparable results when the noise is mild, however it performs better when fast motion is 

present, as the preprocessing step used in DBN tends to add more prominent noise if motion is 
present in the image. 

 

Recent developments in video deblurring are based on combining existing approaches based on 
recurrent neural networks and advances in attention mechanisms. The approach proposed by 

Zhong et al. [22]. The proposed approach  improves on existing methods, providing superior 

restoration capabilities, however, due to the fact that this approach is based on recurrent networks 
and utilizes a global spatial-attention module, which makes the overall throughput of the network 

not practical for real-time and near-real-time image reconstruction tasks. 

 

3. PROBLEM STATEMENT 
 
In this section a formal problem statement for HSI restoration is given. Additionally, quality 

metrics that are used to evaluate the efficiency of image restoration methods are defined. 

 
The problem of blind image restoration is based on the assumption that unknown degradation 

(also known as distortion) operator is applied to the original image. In this work, a degradation 

operator is considered as composition of  blur and noise: 

 

 𝐷(𝑥) =   𝑁(𝐵(𝑥)),  (3) 
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where D is the degradation operator, N is noise operator and B is blur operator, x is an input 
image. This framework hides the internal details of how noise and blur are actually implemented, 

however, for better results composition of 𝑁 ° 𝐵 should be non-linear. 

 

The goal of image restoration is to train a restoration learner f  that is capable of maximizing the 
score function (target quality metric) s: 

 

 𝑎𝑟𝑔𝑚𝑎𝑥𝜃  𝑠(𝑓(𝐷(𝑥), 𝜃), 𝑥), (4) 
 

where 𝜃 are the learn weights of the learner f. 

 

Effectiveness of image restoration can be measured objectively or subjectively. Subjective 
scoring relies on human perception of the image, while objective measure relies on the usage of 

deterministic metrics to compare original and restored images. In the case of HSI, objective 

metrics are the best choice, as human eye cannot effectively perceive the multiband data. 
 

To measure the effectiveness of image restoration, two metrics are selected: root mean squared 

error (RMSE) and peak signal to noise ratio (PSNR). 
 

Root Mean Square Error calculates the difference between the expected value in the training 

sample and compares it to the value that was produced by the model. It is often used in regression 

and classification tasks, but can be applied to image restoration as well by using pixel-by-pixel 
difference to compare original and restored image: 

 

 𝑅𝑀𝑆𝐸(𝐺, 𝐼′) =  √
∑ (𝐺𝑖− 𝐼𝑖

′)2𝑁
𝑖=1

𝑁
 ,  (5) 

 
where N is the batch size, G is the original image, I’ - restored degraded image. 

 

PSNR is used to measure the performance of image restoration tasks. It represents a pixel-by-
pixel difference between the reference and distorted images’ pixels. The PSNR of the image with 

dimensions m × n is the following: 

 

 𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10
𝑅2

1

𝑚∗𝑛
∑ ∑ 𝐺𝑥,𝑦− 𝐼′𝑥,𝑦

𝑚
𝑦=0

𝑛
𝑥=0

,  (6) 

 

where R  is  signal strength (maximum possible pixel value in the image), m, n are dimensions of 
the image, G is the original iamge, I’ - restored degraded image, x,y are corresponding pixel 

positions. 

 
Most commonly, PSNR is positively correlated with image quality, with restoration quality 

improving as PNSR increases. Optimal PSNR is a perfect match between pixels in, which is 

equal to the positive infinity [23]. 

 

4. METHOD 
 

4.1. Limitations of Existing Methods 
 

One of the primary challenges associated with hyperspectral image processing is the sheer 

volume of data that needs to be processed. Normal images consist of three channels, while 

hyperspectral images can have hundreds of bands. This makes processing one hyperspectral 
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image equivalent to processing ~30 frames of normal images. Considering the fact that several 
hyperspectral frames are required to serve as a “reference” (or prior) during the deblurring 

process, this incurs high computational cost and excessive number of parameters for neural 

network. This is a fundamental limitation of all neural-network based methods, and as such some 

type of dimensionality reduction has to be applied before the hyperspectral image is successfully 
processed by neural-network based image restoration algorithms. This leads to two major 

problems: non-linear local spectral-spatial structures and artefact introduction during the 

compression / decompression stage. 
 

Non-linear local spectral-spatial structures in the image has two implications for the processing 

stage. First of all, linear dimensionality reduction algorithms are unlikely to effectively capture 
the complexity and can lead to the loss of information during the dimensionality reduction. 

Secondly, the same is true for the noise, and in lesser extent to the blur, in the image. This leads 

to some spectral bands being more affected by effects of the noise, while others are affected to 

the lesser extent. As such, compensatory effect should not be equal across all of the channels, as 
it is likely to lead to image artefacts after the restoration process. 

Lastly, it is important to properly model the noise and blur in the image, as the existing datasets 

for HSI are sparse and usually consist of high quality hand-picked samples, which have good 
image quality and low frame-per-second, making them hard to use for training image restoration 

models.  

 
As such, two primary challenges of processing hyperspectral images with existing algorithms are 

the need for a non-linear dimensionality reduction method and lack of dedicated training dataset. 

To overcome these issues, in this work a degradation model is introduced to generate synthetic 

distorted images to solve the dataset scarcity problem with a several dimensionality reduction 
techniques and modes being analyzed. 

 

4.2. Degradation Model 
 

Degradation model is a one of a key components in solving dataset scarcity. In this work, we 

follow the general degradation model as outlined in (3) with a linear combination of noise and 
blur. A combination of blur and noise filters is used to distort the image and create a “low 

quality” sample. 

 
When building a degradation model, non-linear spectral-spatial structure of the data and noise 

must be accounted for. As such, two-dimensional noise models introduced in (1) and (2) are 

poorly fitted to be used as degradation operator. This, in turn, creates a need for a more complex, 

3-dimensional noise models.  
 

We also must consider the primary application of the proposed algorithm – processing images 

captured by UAV during flybys. While proposed algorithms and models are generic in nature, 
degradation model has to be tailor-fitted for each application. During UAV flybys various types 

of noise will be encountered, as such AWGN is the most suitable model, as it allows to capture 

the “average” noise experienced by hypersepctral camera. 
 

This, however, is not true for blur, which is experienced by each channel equally. As such, 

standard 2-dimensional blur applied to each channel would be sufficient enough to model the blur 

properly. Considering that during the applications of the HIS, during the flyby UAV will not be 
focused on any specific object, but rather scan the surface directly beneath it. This makes motion 

blur and rapid shakes the most prominent source of blur in the image. 
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As such, in this study we apply a combination of 3-dimensional AWGN as the noise component 
and either a 2-dimensional Gaussian blur or two-dimensional motion blur as the blur component. 

The 3-dimensional AWGN is one of the generalizations of N-dimensional normal distribution in 

the following form: 

 

 𝐺(𝑥, 𝑦, 𝑧) =  
1

2𝜋3/2𝜎3 𝑒
(𝑥−𝑥′)2+ (𝑦−𝑦′)2+(𝑧+𝑧′)2

2𝜎2 ,  (7) 

 

where 𝜎 is the deviation parameter of the distribution and controls the “strength” of the noise, x’, 
y’, z’ are the centre coordinates of the noise, x, y, z are the coordinates of the current pixel. The 

noise is introduced in a random centre x’, y’, z’ drawn from a uniform discrete distributions: 

 

 𝑥′ ∈ [0, 𝑊], 𝑦′ ∈ [0, 𝐻], 𝑧′ ∈ [0, 𝐶]  (8) 
 

where W is the width of the image, H is the height of the image. Applying this filter introduces 

the noise in the shape of concave quadratic plane (Fig. 2) that is centered somewhere in the 
image, but only affects a relatively small patch of it.  

 
 

Figure 2.  The shape of 3-dimensional Guassian distribution  

 

The strength of the noise represents how strong the blur will be. To achieve a good mix of strong 
and weak noise. To emulate it, during each instance of noise introduction, the distribution 

parameter is pulled from a normal distribution with variance parameter set to 0.2 * W. Please note 

that in this research we use images where H = W, which ensures symmetry of the noise across the  
dimensions. If this ratio is not maintained, however, separate scaling factor should be utilized to 

ensure that noise is symmetric. 

 

To emulate blur we use two types of blur: Gaussian centre blur and motion blur via convolution 
kernel. Gaussian blur uses 2-dimensional version as described in (2) and follows the same model 

to emulate blur strength as the noise component, except the variance of normal distribution is set 

to just 0.2. 
 

Motion blur is emulated through one-hot encoded convolution kernel filter. The initial kernel is 

formed by creating a kernel of size H/3 × H/3 initialized with zeroes. Then, the centre column is 

initialized with the random value drawn from a normal distribution with  𝜎 = 0.5. This emulates 
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the strength of motion blur, but also ensures that overall impact of blur is limited. The final step 
of blur kernel formation is to rotate it to simulate the movement in different direction. To achieve 

this, an Euclidian rotation is used: 

 

 𝑅𝑣 =  (
𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃
𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃

),  (9) 

 

where 𝜃 is the rotation degree, 𝜃 𝜖 [0, 2𝜋]. 
 
The blur is applied across all channels, simplifying the application of the filters. The scheme 

outlined above ensures that blur strength can be controlled to create varied augmentations, as can 

be seen in Fig. 3.  

 
 

Figure 3.  Example of motion blur kernel and application  

 

4.3. Channel Compression 
 
Channel compression is an important step in the model that compacts and encodes the raw bands 

in input data to ensure that it can be processed by the following neural network. Two possible 

approaches to the channel compression are dimensionality reduction methods, such as PCA, or 

end-to-end compression with 3D convolutions. 
 

Dimensionality reduction is the most commonly used technique, as it is well-researched and is 

easy to apply. Non-linear dimensionality methods, such as Isomap [24] are often used as pre-
processing step in HSI processing, however the main drawback of applying this methods is the 

fact that it might yield different number of “information dense” channels. While not a major 

drawback, this would require to re-train the underlying neural network’s adaptive layer each time 

a new dataset is used, which in turn hurts complicates fine-tuning of the model greatly. 
 

Alternative approach would be to utilize “learnt” dimensionality reduction. This approach is more 

generic and utilizes 3D convolution layers in front of the neural network to compress the 
channels. 

 

In this work, the latter approach is used as image restoration is a type of sequence-to-sequence 
problem, which requires matching both the original input and output. To remove any bias that 

might be introduced by dimensionality reduction methods, 3D convolutions are used as channel 

compression methods. In practice, however, image restoration is considered a pre-processing 

step, in which scenario using dimensionality reduction channel compression might be beneficial, 
as next steps are likely to need to reduce dimensionality as well, in which case non-linear 
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dimensionality reduction method is the recommended way to set up the channel compression. A 
5-layer encoder a decoder path with 5×5×10 convolution kernel are used for both constriction and 

extension pathway.  

 

4.4. Neural Network Architecture 
 

When it comes to the neural network architecture, the approaches can be broken down into two 
types: one-pass restoration and multi-pass recurrent restoration. In case of the one-pass approach, 

several neighbouring frames are squashed into a single “multi-channel” frame that has internal 

temporal coupling. The assumption is made that if these frames are close enough together, the 

neural network will be able to learn appropriate frame alignment and use squashed channel 
frames as a prior for the degraded frame restoration. These approaches tend to be more 

computationally efficient than recurrent algorithms. 

 
In the case of HSI, however, these methods have severe drawbacks. Even after the channel 

compression, the image is likely to contain multiple (10-15) channels. Merging together multiple 

frames will result in the same problem as just processing raw hyperspectral data – the number of 
channels is too high, causing the curse of dimensionality. Additionally, frequency of HSI is 

usually much lower than that of normal cameras, which means that each frame is further apart 

from each other, making the assumption of two frames being nearby invalid. 

As such, a multi-pass recurrent neural network is a preferable approach in case of HSI 
restoration. For image restoration, the most commonly used neural network architecture is 

encoder-decoder. This architecture consists of constriction pathway, that slowly extracts a feature 

map from the image by slowly reducing dimensionality through convolution operation, followed 
by the extension pathway that restores the feature vector into the original image. 

 

A traditional U-net [25] architecture was used to build an encoder-decoder core. One notable 
difference is that our approach utilizes residual recurrent connections from past layers to keep 

temporal context. The architecture is presented in the Fig 4. 

 

 
 

Figure 4.  Network architecture (excluding channel compression pathway) 

 

A more detailed layer configuration is outlined in the table 1. In the runtime, 3 frame setup (2 

reference, 1 distorted) are used to restore the image as it allows for great balance of quality and 
performance. The deconvolution pathways are disabled in reference frames to further boost 

performance. 
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Table 1. Neural Network Layer configration 

 

Layer Filter Size Stride Output Shape Activation Function 

I 
  

H × W × 5C  
 

Mi 3 × 3 × 128  1 H × W × 128 ReLU 

C1 3 × 3 × 128 2 H / 2 × W / 2 × 128 
 

MC_1_2 3 × 3 × 128 1 H / 2 × W / 2 × 128 ReLU 

C2 3 × 3 × 256 2 H / 4 × W / 4 × 256 
 

MC_2_2 3 × 3 × 256 1 H / 4 × W / 4 × 256 ReLU 

C3 3 × 3 × 512 2 H / 8 × W / 8 × 512 
 

MC_3 3 × 3 × 512 1 H / 8 × W / 8 × 512 ReLU 

Mconv 1 × 1 × 512 1 H / 8 × W / 8 × 512 ReLU 

D1 4 × 4 × 512 1/2 H / 4 × W / 4 × 256 
 

MD1_2 3 × 3 × 256 1 H / 4 × W / 4 × 256 ReLU 

D2 4 × 4 × 256 1/2 H / 2 × W / 2 × 128 
 

 

4.5. Dataset Generation and Neural Network Training 
 

In this research two datasets – Indian Pines  and Pavia University [2] are used. The datasets 

consist of stitched hypercubes of data, as such additional slicing is necessary to create frames for 
deblurring. Sliding window is used to “slice” the hypercube into multiple overlapping images, 

simulating the data capture during the fly-by. 

 

The set of frames is generated by taking three neighbouring slices from the sliced hypercube, 
chaining them in 3-frame sequences and applying the degradation operator described in 4.2 to the 

final frame to generate “low-quality” samples. This process is repeated until a sizeable dataset is 

built for the model learning. In this research datasets of 10 000 samples were used. 
 

The training process consist of two steps: learning data representation and learning image 

restoration. During the first step the network is trained in the autoencoder mode to learn the 
internal representation of the hyperspectral images. The first stage uses mean squared error loss 

function with ADAM optimizer during the learning process. Empty feature vectors are used in 

palce of recurrent values. Learning rate is set to 0.01, decreasing up to 0.0001 over the training 

period. The network is trained in batches of 64 images with early stopping or for 5000 epochs. 
After the autoencoder is trained, the weights in the channel compression layers are frozen and 

only the restoration decoder is fine-tuned for image restoration. It uses the same settings as the 

auto-encoder stage, however, in this case residual connections are activated and the neural 
network learns the restoration on the sequences of three images. 

 

After the training is concluded, the deconvolution pathways for all recurrent layers but final 
iteration are disabled to minimize the compute required.  

 

5. RESULTS AND DISCUSSION 
 

The evaluation of the dataset was performed on the Indian Pines and Unviersity of Pavia datasets, 
mentioned in the previous section.  
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Both of the datasets are captured by an aircraft-mounted hyperspectral sensor during a fly-by 
over an urban area. The dataset contains 103 specral bands in the range of 430 to 860 nanometes, 

which covers both visible and near-infrared spectra. The resolution of the dataset is 1.3 meters 

per pixel. The datasets were split into a training and validation datasets in a ratio of 80-20%. 

Considering the limited size of each dataset, proposed model were not able to achieve great 
generalization ability, and as such is tested independently on each dataset. After the training, 

validation data is used to evaluate the results. PSNR (3) is used to measure the quality in several 

settings. The results are presented in Table 1 
 

Table 2.  PSNR for the proposed method 

 
Noise Type Dataset PSNR 

No noise / blur Pavia University 23.538 

Weak noise / Weak blur Pavia University 24.281 

Average nosie / Average blur Pavia University 24.351 

Strong noise / Strong blur Pavia University 26.3781 

Average noise / No blur Pavia University 24.3475 

No noise / Strong blur Pavia University 26.287 

No noise / blur Indian Pines 31.258 

Weak noise / Weak blur Indian Pines 33.874 

Average nosie / Average blur Indian Pines 34.561 

Strong noise / Strong blur Indian Pines 37.115 

Average noise / No blur Indian Pines 34.552 

No noise / Strong blur Indian Pines 34.543 

 

These results are comparable to metrics achieved by conventional image restoration methods for 
non-hyperspectral images on NITRE challenge dataset. 

Performance-wise the model was able to achieve approximately 220ms inference time for three 

frame setup, which corresponds to ~6 FPS. Further performance boost is possible by caching 
inference result for previous layers during continuous operation, however the model still requires 

further optimization to be used in the real-time scenario. Near-real-time scenarios, however are 

still possible with the current level of performance. 

 
One of the key observations is that the model has strong resiliency towards strong noise, but 

struggles with a strong blur. It can be seen in both cases that noise strength has limited impact on 

the value of PSNR metric.  
 

On the other hand, strong noise makes severe impact on model quality and is the key contributor 

to model degradation. Likely explanation of this lies in the fact that we use a localized version of 
the noise, which has limited impact. Additionally, noise is additive in nature, which makes 

reversing it’s effects on the image easier. Blur, on the other hand, smothers the features across 

relatively large patches of the image, which makes it much harder to reverse. 

 
Two shortcomings in the proposed approach can be highghlited, namely – small convolutional 

kernel in the channel compression pathways may lead to loss of information in the image 

restoration part. The second problem lies in the way degradation strength is modelled. Due to 
using normal distribution, “strong” blur samples are fairly rare in the overall population. At the 

same time, they are also the hardest to learn the weights for. Increasing the occurrence of 

“strong” blur samples in the training population is likely to increase the performance of  the 

restoration model. 
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6. CONCLUSIONS 
 
The proposed methods shows promising results, although still requires extra tuning to be used in 

the real-world scenarios. Overall neural network architecture is straightforward and is based on 

well studied 3D convolutions and encoder-decoder architecture, although some parameters still 

require fine-tuning. The algorithm can be applied to either real-time UAV feed or to the flight 
footage recording to both improve the visual fidelity for human perception or improve the 

accuracy of subsequent processing by other intelligent methods. 

 
One of the biggest limitations of this research is the lack of dedicated, high-quality dataset for 

hyperspectral image restoration tasks. Datasets used in this research are of high quality, but low 

resolution (1.3 meters per pixel) makes it impossible to test the performance of the algorithm 

when on the scenes that contain small and fast objects, which would introduce additional blur. 
Another limitation of the proposed algorithm is computational intensity of the algorithm due to 

it’s recurrent architecture. This limits the usage of the algorithm to mostly post-processing, as it 

cannot be applied on the UAV itself due to power consumption concerns. 
 

Future research includes two areas of improvement: decreasing the computational complexity and 

improving the stability in the presence of the strong noise.  
 

Apart from the dataset, future research will be focused in two strategic directions: improving the 

performance of image restoration to match the requirements of real-time image processing and 

improving the stability of the model in the presence of strong noise following the 
recommendations outlined in the results and discussion section. 
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