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ABSTRACT 
 
Medical Visual Question Answering (Med-VQA) aims to generate accurate answers to 

clinical questions grounded in medical images. However, existing models often struggle 

with limited generalization across datasets and insufficient understanding of specialized 

medical terminology. In this work, we propose a unified multi-dataset Med-VQA framework 

that integrates general-purpose vision-language models (e.g., BLIP) with domain-specific 

language models such as BioGPT to better capture biomedical semantics. Our architecture 

introduces a novel Mixture-of-Experts (Med-MoE) module that fuses knowledge across 

modalities and datasets, and it is jointly optimized using contrastive loss, image-text 

matching, and language modeling objectives. By combining cross-dataset supervision with 

domain-aware components, our approach achieves improved reasoning and generalization. 

Experimental results on VQA-RAD and PathVQA demonstrate state-of-the-art 
performance, validating the effectiveness of our unified framework. 
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1. INTRODUCTION 
 

Medical Visual Question Answering (VQA) systems hold tremendous potential for supporting 

clinical decision-making by automatically interpreting medical images and answering clinically 

relevant questions. However, this domain presents unique challenges that general VQA 
approaches fail to address effectively: 

 

• The complexity and specificity of medical terminology 
• The high variability across medical imaging modalities (pathology, radiology, etc.) 

• Limited availability of annotated medical data 

• The critical need for domain-specific knowledge and reasoning 

 
In this paper, we propose a unified multi-dataset framework for medical VQA that overcomes 

these challenges through several key innovations: 
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• Novel Multimodal Architecture Integration: We introduce a unified framework that 
synergistically combines BLIP’s vision transformer for robust medical image 

understanding, BERT’s contextual language processing for clinical questions, and 

BioGPT’s domain-specialized language generation—a combination specifically engineered 

to handle the complexity of medical VQA. 
 

• Medical-Specific Mixture-of-Experts (Med-MoE): We present a specialized MoE module 

designed specifically for medical visual-textual reasoning, with dynamic routing optimized 
for clinical context preservation. 

 

• Multi-Objective Training Strategy: We develop a comprehensive training methodology 
that combines contrastive learning, image-text matching, and autoregressive language 

modeling to enforce robust cross-modal alignment specifically for medical imaging and 

terminology. Cross-Domain Medical Knowledge Transfer: Our approach leverages transfer 

learning across distinct medical imaging domains (pathology and radiology), enabling the 
model to build a unified representation of medical visual-textual knowledge. 

 

• Custom Vocabulary Construction: We introduce a medical terminology-focused 
vocabulary construction method that enhances the representation of clinical terms, 

improving text processing and understanding. 

 
Our approach differs from previous medical VQA systems in its end-to-end design that processes 

multiple medical imaging modalities while handling diverse question-answer formats within a 

single model architecture. Through extensive evaluation on the PathVQA and VQA-RAD 

datasets, we demonstrate competitive performance and provide insights into model behavior 
across different question types and imaging modalities. 

 

2. RELATED WORK 
 

Visual Question Answering (VQA) has rapidly evolved from early methods based on 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to more advanced 

transformer-based architectures. Early VQA systems primarily combined CNNs for visual feature 

extraction with RNNs for language processing. However, these approaches were limited by their 
inability to model long-range dependencies and complex interactions between modalities.  

 

Recent advances in transformer-based models, such as the Vision Transformer (ViT) [3] and 
large-scale multimodal pretraining frameworks like CLIP [18] and BLIP [2], have revolutionized 

VQA by enabling more effective joint modeling of vision and language. CLIP demonstrated that 

learning from massive amounts of image–text pairs can produce powerful cross-modal 

representations, while BLIP further improved on these methods by incorporating a bidirectional 
language model and a more sophisticated image encoder. These works have set a new benchmark 

for general-domain VQA, but their direct application to the medical domain remains challenging 

due to domain-specific language and visual nuances. 
 

In the medical domain, specialized datasets such as PathVQA [6] and VQA-RAD [7] have been 

introduced to address the unique challenges of clinical image interpretation and question 
answering. The PathVQA dataset focuses on pathology images and provides extensive 

annotations that cover both open-ended and closed-ended questions. VQA-RAD, on the other 

hand, offers a benchmark for radiology by presenting clinically relevant questions over a limited 

but high-quality set of radiological images. These datasets have spurred the development of 
methods that specifically target the intricacies of medical VQA.  
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Several recent studies have proposed innovative approaches for medical VQA. For instance, 
MEVF [13] addresses the data scarcity problem by leveraging data augmentation and domain 

adaptation techniques. MMQ [14] and VQAMix [15] propose meta-model and mixup-based 

strategies, respectively, to enhance the robustness of VQA models against the heterogeneous 

nature of medical images and language. AMAM [16] introduces an asymmetric cross-modal 
attention mechanism with multimodal augmented mixup to better capture the nuanced 

relationships between medical images and questions.In addition, models such as M3AE [21] and 

MUMC [22] further refine cross-modal alignment by integrating contrastive learning and 
advanced autoregressive language modeling. These works utilize various loss functions, such as 

image-text matching (ITM) loss and contrastive loss, to improve the fusion of visual and textual 

representations. Furthermore, BioGPT [5] and related methods highlight the importance of 
domain-specific language models in generating clinically accurate and coherent responses. 

 

Despite these advances, many existing methods either rely on single-dataset training or lack the 

ability to generalize across different medical imaging modalities. Moreover, while some 
approaches have explored the incorporation of dynamic fusion mechanisms such as Mixture-of-

Experts (MoE), their benefits in the medical VQA context have been limited. Our work addresses 

these gaps by proposing a unified multi-dataset framework that integrates the strengths of state-
of-the-art pretrained models (BLIP, BERT, and BioGPT) and employs a robust training strategy 

combining contrastive, ITM, and autoregressive language modeling losses. In doing so, our 

model not only achieves competitive performance on both open-ended and closedended questions 
but also demonstrates improved generalizability across the diverse clinical settings represented in 

the PathVQA and VQA-RAD datasets. 

 

By leveraging multi-dataset pretraining, domain-specific text processing with a custom 
vocabulary, and carefully designed loss functions, our approach advances the field of medical 

VQA. It provides a comprehensive solution that bridges the gap between the general success of 

transformer-based VQA systems and the unique challenges posed by medical imaging and 
clinical language. Future work will explore further refinements in multimodal fusion and fine-

tuning strategies to address the remaining performance gaps, particularly in the closed-ended 

task. 

 
Table 1.  Comparison of our approach with previous medical VQA method. 

 

 
 

This comparison highlights the unique combination of components in our approach. Unlike 

previous methods, we leverage BLIP's strong visual foundation while incorporating domain-
specialized language models (BioGPT) and a medical-adapted Mixture-of-Experts fusion 

mechanism. Our approach also employs a more comprehensive set of training objectives and 

domain adaptation techniques, specifically designed to address the challenges of medical VQA. 

 

3. DATASETS 
 

In this study, two benchmark datasets are utilized: PathVQA, introduced by He et al. in 2020 [6], 

and VQA-RAD, presented by Lau et al. in 2018 [7]. Both datasets focus on the medical domain 
but differ in terms of image modalities, annotation scope, and question types. 
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3.1. PathVQA Dataset 
 

The PathVQA dataset, introduced by He et al. [6], is the first large-scale VQA dataset focused on 

pathology. It includes 4,998 pathology images and 32,795 expert-annotated question-answer 
pairs. Questions cover both open-ended (47%) and closed-ended (yes/no) formats, making it a 

challenging benchmark for models that must understand subtle visual details in pathology 

images. The dataset is split into training (3,998 images, 26,796 QA pairs), validation (500 
images, 3,000 QA pairs), and test sets (500 images, 3,000 QA pairs).  

 

PathVQA focuses on testing a model’s ability to understand fine-grained visual features typical in 

pathology and requires specialized domain knowledge for accurate reasoning and answering 
 

 
 

Figure 1: Example of a question-answer pair from the PathVQA dataset, as presented by He et al. [6]. 

 

The image shows GMS-stained organisms with a corresponding question such as ‘What are these 

GMS-stained organisms?’ and possible answers provided. 
 

As shown in Figure 1, the dataset contains questions that require domain-specific knowledge in 

pathology, including recognition of staining techniques and identification of microscopic 
organisms. 

 

 
 

Figure 2: Distribution of question types in the PathVQA dataset. 

 

In the PathVQA dataset, the distribution of question types is highly imbalanced. As illustrated in 
Figure 2, the majority of questions belong to the ‘Yes/No’ and ‘What’ categories, accounting for 

approximately 16,300 and 13,300 questions, respectively. These two categories dominate the 

dataset, reflecting the prevalence of binary and fact-based inquiries in medical visual question 

answering tasks. 
 

In contrast, other question types such as ‘Where’, ‘How’, ‘How much/How many’, ‘When’, and 

‘Whose’ are significantly less frequent. For example, ‘Where’ and ‘How’ questions only appear 
around 1,200 times each, while ‘How much/How many’, ‘When’, and ‘Whose’ categories are 

rare, with less than 500 occurrences each. 
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This uneven distribution suggests that the dataset primarily emphasizes binary decision-making 
and factual recognition, which could influence model performance and generalizability on less 

represented question types. 

 

3.2. VQA-RAD Dataset 
 

The VQA-RAD dataset, introduced by Lau et al. [7], is a benchmark dataset for radiology VQA, 
containing 315 de-identified radiology images and 3,515 expert-annotated QA pairs. The dataset 

encompasses multiple modalities such as CT, MRI, and ultrasound. Approximately 60% of its 

questions are binary (yes/no), and 40% are open-ended. Although smaller in size compared to 

PathVQA, VQA-RAD provides clinically relevant questions that reflect real-world radiology 
challenges.Question Types, as stated by Lau et al., include: 

 

• Modality-Specific Information: Questions about the imaging modality (e.g., ‘What 
imaging modality is used?’). 

• Abnormality Detection: Questions regarding the presence of an abnormality (e.g., ‘Is there 

a lesion present?’). 
• Organ System Identification: Questions on the anatomy shown (e.g., ‘Which organ is 

shown in the image?’). 

• Size and Measurement: Questions requiring quantitative reasoning (e.g., ‘What is the size 

of the lesion?’). 
• Yes/No Questions: Binary answers that simplify evaluation. 

 

Dataset Splits (as described by Lau et al. [7]): 
 

• Training set: 207 images with 2,390 QA pairs. 

• Validation set: 103 images with 1,025 QA pairs. 
• Test set: 5 images with 100 QA pairs. 

 

The limited size of VQA-RAD poses challenges for training large deep learning models. 

However, it remains an essential dataset for evaluating AI models in radiology VQA due to its 
expert-annotated quality and clinically relevant questions. 

 

 
 

Figure 3: Example of a question-answer pair from the VQA-RAD dataset, as presented by Lau et al. [7]. 

 

The example illustrates a radiology image (e.g., CT or MRI) with a question such as ‘Where is 

the lesion located?’ and the answers provided by different methods 
 

Figure 3 demonstrates the type of clinically oriented questions and answers found in VQA-RAD, 

emphasizing lesion location and recognition of the anatomical system. 
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Figure 4: Distribution of Question Types in VQA-RAD Dataset. The dataset consists of 11 question types, 

but only the top 6 most frequent categories are shown. 
 

Presence and Abnormality questions dominate the dataset with 483 and 373 instances, 

respectively. 

 
Figure 4 illustrates the distribution of question types in the VQA-RAD dataset. While the dataset 

includes a total of 11 distinct question categories, only the top 6 most frequent types are 

presented in the figure for clarity. Among them, ’Presence’ and ’Abnormality’ questions are the 
most prevalent, comprising 483 and 373 instances, respectively. Other frequently occurring 

question types include ’Modality’, ’Organ System’, ’Plane’, and ’Positional’. This distribution 

highlights the emphasis of the data set on detecting the presence of findings and identifying 
abnormalities on medical images. 

 

3.3. Comparison 
 

Table II shows a comparison of the two datasets used in this study, as summarized from He et al. 

[6] and Lau et al. [7]. 
 

Table II: Comparison of PathVQA and VQA-RAD datasets. 

 

 
 

These datasets complement each other by covering different areas of medical imaging—

PathVQA focuses on pathology while VQA-RAD emphasizes radiology. Utilizing both datasets 

allows for a more comprehensive evaluation of the proposed VQA model’s ability to generalize 
across medical domains. By utilizing both datasets, this research enables a more comprehensive 

evaluation of the proposed VQA model’s ability to generalize across different medical domains. 

 

4. METHODOLOGY 
 

This section describes the methodology of our proposed model for medical visual question 

answering (VQA). The system consists of several components, including image and question pre-
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processing, a multimodal encoder-decoder architecture, and specific optimization strategies. The 
design leverages state-of-the-art models such as BLIP [2], Vision Transformer (ViT) [3], BERT 

[4], and BioGPT [5], as well as training practices inspired by prior works like PathVQA [6] and 

VQA-RAD [7]. 

 

4.1. Model Architecture 
 

The architecture integrates visual and textual modalities in an end-to-end framework. It consists 

of: 

 

Visual Encoder: We employ the BLIP visual encoder based on the Vision Transformer (ViT) 
architecture [3]. The encoder processes input images—resized to 224 × 224—by dividing them 

into patches, applying linear embedding, and using multiple transformer blocks (each with self-

attention, feed-forward, and layer normalization) to extract robust visual features. A global 
pooling operation produces a 768-dimensional representation. 

 

Textual Encoder: Clinical questions are processed using a pretrained BERT-base model. 
Tokenized inputs are converted into embeddings, and the [CLS] token is used as a 768-

dimensional summary representation. BERT’s parameters are frozen to preserve its general 

linguistic understanding. 

 
Multimodal Fusion Module: Dedicated projection layers align the 768-dimensional visual and 

textual features into a common embedding space. These features are concatenated (resulting in a 

1536-dimensional vector) and fed into parallel classification heads: 
 

• Question Type Classifier: Determines whether the question is open-ended or binary. 

• Yes/No Classifier: Specifically handles binary questions. 
 

These projected features are concatenated to form a joint representation, which is then fed into 

two parallel classification heads: 

Medical-Adapted Mixture-of-Experts (Med-MoE) A key innovation in our architecture is the 
Medical-Adapted Mixtureof-Experts (Med-MoE) module, specifically designed to dynamically 

fuse visual and textual features for medical VQA tasks. Unlike standard MoE implementations, 

our Med-MoE contains experts that specialize in different aspects of medical visualtextual 
reasoning. 

 

Our implementation includes eight expert networks, each following a two-layer feedforward 

architecture with dimensions 1536→3072→768 and GELU activation. During training, we 
observed that individual experts naturally developed specialized roles in medical reasoning. 

Experts 1 and 2 focus on anatomical structure recognition, while Experts 3 and 4 specialize in 

pathological feature identification. Experts 5 and 6 interpret modality-specific information, 
whereas Experts 7 and 8 establish clinical correlations. 

 

To optimize expert selection, we introduce a medical context-aware routing mechanism. The 
router network assigns experts based on both visual and textual features, incorporating input-

dependent gating with temperature scaling (t=0.1) to refine expert selection. A top-k expert 

selection strategy (k=2) is employed, ensuring only the most relevant experts contribute. 

Additionally, we apply a clinical term attention bias, enhancing routing decisions for medical 
terminology. 

 

To maintain balanced training and prevent over-specialization, we incorporate a modified 
auxiliary loss that regulates expert utilization while preserving medical domain expertise. A 
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tracking mechanism ensures expert usage remains evenly distributed across batches, regulated by 
a specialized coefficient (λ=0.01). Furthermore, clinical term frequency is integrated into the load 

balancing process, reinforcing proper specialization for medical terminology. 

The Med-MoE module enables our model to adaptively process different types of medical images 

and questions by selecting the most relevant experts for each input. This mechanism is 
particularly important for handling the diversity of medical imaging modalities and question 

types present in medical VQA datasets. 

 
Decoder Module: For open-ended questions, the fused features are further processed by a 

Mixture-of-Experts (MoE) module. Our initial MoE design envisioned dynamic expert fusion to 

adaptively handle diverse input contexts. To enhance the generation and understanding of 
domain-relevant vocabulary, we integrate BioGPT, a biomedical-specific language model trained 

on large-scale medical corpora. Unlike general-purpose models such as BERT or GPT-2, 

BioGPT is pre-trained exclusively on biomedical text, which enables it to better capture and 

generate precise medical terminology, disease-specific entities, and contextually relevant 
descriptions. This is particularly valuable in medical VQA, where nuanced terminology (e.g., 

“pneumothorax,” “atelectasis,” “cardiomegaly”) plays a critical role in both visual grounding and 

answer accuracy. By incorporating BioGPT into our framework, we allow the language branch of 
the model to more effectively align with the domain-specific semantics required by the task, 

leading to improved medical reasoning and answer generation. Our ablation results confirm that 

models leveraging BioGPT produce more clinically coherent responses and exhibit improved 
accuracy on datasets with complex, multi-word medical answers. 

 

The fused representation is projected to match the BioGPT embedding space (from 768 to 1024 

dimensions) and then passed to the BioGPT-based decoder, which generates the answer using an 
autoregressive language modeling loss. 

 

Following the MoE, the fused representation is projected via a dedicated layer to match the 
BioGPT embedding space. BioGPT, pretrained on biomedical text, is then employed as the 

language generation backbone. An output projection layer maps the BioGPT hidden state to the 

vocabulary space for token generation. 

 
Efficient Generation and Repetition Penalty: To ensure coherent and non-repetitive 

generation: 

 
• KV Cache: A key–value caching mechanism stores intermediate representations during 

generation, accelerating autoregressive decoding. 

• Repetition Penalty: We implement dynamic penalties based on recent token history and n-
gram repetition checks to prevent the model from generating repetitive sequences. 

• Medical Term Boosting: Token IDs corresponding to key medical terms are boosted during 

generation, ensuring that the model emphasizes clinically relevant vocabulary. 

 
Fine-Tuning Branches: In the fine-tuning stage, the fused multimodal features—obtained by 

concatenating the projected visual and textual features—are directed into two distinct branches 

based on the question type. For binary (yes/no) questions,these features are fed into a dedicated 
classifier that outputs a binary decision, and the branch is optimized using a binary cross-entropy 

loss. Conversely, for open-ended questions, the same fused features serve as the input to an 

autoregressive decoder based on BioGPT, which generates detailed answer sequences. The 
decoder’s output is refined by applying a language modeling loss that predicts the next token in 

the sequence using cross-entropy. The losses from both branches are aggregated, and the entire 

model is updated using backpropagation with the AdamW optimizer, employing a cosine learning 

rate schedule and mixed precision training. This dual-branch design ensures that our model can 



Computer Science & Information Technology (CS & IT)                                            59 

 

effectively leverage its robust multimodal representations to generate both precise binary answers 
and coherent open-ended responses. 

 

Figure 5: Overview of the proposed MedVQA model architecture The model consists of an 

Image Encoder, Text Encoder, and Multimodal Encoder. The encoders extract features from 
medical images and text, which are fused and processed through cross-attention and self-attention 

layers. A routing mechanism selects top K-experts to enhance representations. The Question 

Type Classifier guides response generation, while a Contrastive Learning Branch with ITM 
improves feature alignment. The final output is produced by a language model (LM). 

 

 
 

The entire model is trained in an end-to-end manner, jointly optimizing both visual and textual 
components for better synergy, as practiced in BLIP [2] and PathVQA [6]. 
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4.2. Data Preprocessing 
 

Image Preprocessing: The images from both datasets (PathVQA and VQA-RAD) are 

preprocessed as follows: 

 
 

Figure 6: The image preprocessing pipeline. 

 

• Resizing: All images are resized to 224 × 224 pixels to be compatible with the vision 

model, as described by Li et al. in BLIP [2]. 
 

• Normalization: Pixel values are normalized using ImageNet mean and standard 

deviation, ensuring consistency with pretrained vision models. 

 
• Data Augmentation: To enhance model generalization, we use random flipping, rotation, 

and normalizing approaches to improve model generalization. We also use a masked 

image strategy, which is a data augmentation technique that further improves the model’s 
performance by randomly masking the image’s patches with a probability of 25% 

 

Text Preprocessing: We employ a robust subword tokenizer (e.g., the BERT tokenizer) to split 

input questions into subword units. This method is particularly effective in handling the 
complexity of medical language by breaking down rare or compound clinical terms into more 

manageable pieces. The tokenizer also preserves important special tokens like [CLS] and [SEP], 

which are vital for capturing the context in transformer-based models. 
 

 
 

Figure 7: The question text preprocessing pipeline. 
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Figure 8: The answer text preprocessing pipeline. 

 

To enhance the representation of domain-specific terminology, we construct a custom vocabulary 
that emphasizes key medical terms. This involves aggregating terms from clinical literature, 

medical ontologies, and domain-specific lexicons. The vocabulary creation process ensures that 

critical diagnostic, anatomical, and procedural terms are well represented in the token space. 

These domain-specific tokens are then mapped to token IDs within our pretrained language 
models (e.g., BioGPT), facilitating more accurate processing and understanding of medical 

questions. 

 
Given that medical questions can be either binary (yes/no) or open-ended, our preprocessing 

pipeline includes a dedicated question type classifier. Utilizing the [CLS] token representation 

from the BERT-based question encoder, this classifier predicts the type of each question. This 
prediction guides the subsequent processing pathway: binary questions are directed to a 

specialized classifier to generate yes/no responses, while open-ended questions are routed 

through a more sophisticated generation module. This separation enables the model to handle 

different answer formats more effectively, ultimately leading to more accurate and contextually 
relevant responses. 

 

Answer Preprocessing: Answers are processed as follows: Answer preprocessing is a crucial 
step in our medical VQA framework, as it ensures that the model’s target responses are 

standardized, structured, and aligned with the clinical domain’s unique linguistic characteristics. 

The primary components of answer preprocessing include: 

 
• Tokenization: Similar to question processing, answer preprocessing begins by tokenizing 

the raw text responses into subword units. A robust tokenizer (such as the one used in 

BioGPT) breaks down complex clinical terms into manageable components while 
preserving essential tokens like [CLS] and [SEP]. This process converts variable-length 

text answers into a consistent sequence of token IDs that the model can efficiently process 

during training and evaluation. 
 

• Vocabulary Mapping: To capture the nuances of medical language, we employ a custom 

vocabulary tailored to the clinical domain. This step ensures that key medical terms are 

properly represented and mapped to their corresponding token IDs. A specialized 
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vocabulary reduces out-of-vocabulary issues and enhances the model’s ability to generate 
accurate, domain-specific answers. 

 

• Normalization and Standardization: Preprocessing also involves normalizing the 

answer text. This includes converting text to lowercase, removing extraneous punctuation, 
and handling common abbreviations or synonyms. Standardization helps in reducing 

variability in the target responses, allowing the model to focus on the semantic meaning 

rather than superficial differences in wording. 
 

• Answer Type Formatting: Given that medical VQA tasks typically involve both binary 

(yes/no) and open-ended responses, preprocessing routines are designed to format the 
answers appropriately. Binary answers are often simplified to a standardized form (e.g., 

“yes” or “no”), while open-ended answers undergo further refinement to ensure clarity and 

consistency. This step is essential for aligning the answer format with the evaluation 

metrics and the model’s generation capabilities. 
 

4.3. Loss Functions and Optimization 
 

Image-Text Matching (ITM) Loss and Language Modeling (MLM) Loss are two pivotal 

components of our training objectives that enhance cross-modal understanding and robust 

language generation. 
 

Image-Text Matching (ITM) Loss: The ITM loss is designed to enforce strong alignment 

between visual and textual representations. In this task, the model is presented with both 
matching and non-matching image–text pairs. It then classifies whether a given pair is correctly 

matched. The training objective typically uses a cross-entropy loss that penalizes the model for 

misclassifying negative pairs while rewarding high similarity scores for positive pairs. This loss 
encourages the model to pull together embeddings from corresponding images and texts while 

pushing apart those from unrelated pairs, effectively learning a joint embedding space that is 

critical for downstream VQA tasks. 

 

 

where yi is the ground truth label for the ith image-text pair (yi = 1 if matching, 0 otherwise), li is 
the logit output from the binary classifier, and σ(·) denotes the sigmoid function. 

 

Language Modeling (LM) Loss: Under this objective, the model is trained in an autoregressive 

manner, where the task is to predict the next token in the sequence given all preceding tokens 
along with the corresponding visual context. This approach encourages the generation of coherent 

and fluent sequences and is particularly effective for open-ended answer generation. The 

language modeling loss is computed as the cross-entropy between the predicted tokens and the 
ground-truth tokens, ensuring that the model learns a robust sequential structure during text 

generation. This results in more coherent, contextually rich, and accurate answer generation—a 

crucial requirement for clinical applications. 
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where w1, w2, . . . , wT are the ground truth tokens, w<t represents all tokens preceding time step 
t, f is the fused multimodal feature, and pθ is the probability distribution over the vocabulary 

predicted by the decoder. 

 

Contrastive Loss: Aligns image and text embeddings in a shared 256-dimensional space using 
cosine similarity and a learnable temperature parameter. 

 

Binary Cross-Entropy Loss: Applied to the yes/no classifier for closed-ended questions. 
Together, the ITM and LM losses provide complementary signals: ITM strengthens the cross-

modal alignment, ensuring that the model’s vision and language components work 

synergistically, while LM directly enhances the quality of language generation. This dual-
objective approach is instrumental in enabling our model to deliver precise and contextually 

appropriate answers in the medical VQA domain. 

 

In our framework, we incorporate cross-entropy losses tailored to the type of question. For yes/no 
questions, we apply a binary cross-entropy loss through a dedicated classifier, while for open-

ended questions, we rely on a standard cross-entropy loss during answer generation. These losses 

work alongside the ITM and MLM objectives to ensure robust cross-modal alignment and 
effective language generation. 

 

4.4. Implementation Details 
 

Pretraining: Our pretraining phase is designed to align visual and textual representations via a 

combination of contrastive learning and self-supervised objectives. The model is pretrained on 
dedicated English-language medical VQA datasets: ROCO [20]. During pretraining, we freeze 

the weights of the BLIP visual encoder and the BERT-based question encoder to retain their 

robust pretrained representations. Instead, we fine-tune the projection layers, the Mixture-of-
Experts (MoE) module, and the BioGPT-based decoder. 

 

Key objectives during pretraining include: 

 
•  Contrastive Learning: Contrastive losses are applied. Separate projection layers map 

image and text features into a shared 256-dimensional space. The cosine similarity 

between corresponding image–text pairs is maximized while non-corresponding pairs are 
pushed apart. A learnable temperature parameter controls the sharpness of the similarity 

distribution. 

• Image-Text Matching (ITM): These auxiliary losses further enforce cross-modal 

alignment and improve language generation. ITM is treated as a binary classification task 
(matched vs. mismatched pairs), while LM requires the model to predict masked tokens in 

the clinical text, conditioned on both text tokens and visual context. 

 
Pretraining is performed using the AdamW optimizer with a weight decay of 0.002 and an initial 

learning rate of 1e-4, following a cosine learning rate schedule. The model is pretrained for 40 

epochs with a batch size of 64 on NVIDIA Tesla V100 GPUs. Mixed precision training (using 
torch.cuda.amp) is employed to accelerate computation and reduce memory usage. 

Training (Fine-Tuning): After pretraining, our model is fine-tuned for downstream medical 

VQA tasks, adapting the learned representations to the specific requirements of clinical question 

answering. In this fine-tuning stage, the model optimizes two primary loss functions. For binary 
(yes/no) questions, a dedicated classifier processes the fused image–text representation to predict 

outcomes, with binary cross-entropy loss guiding the learning. For open-ended questions, the 

same fused features are fed into a BioGPT-based autoregressive decoder that generates the 
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answer sequence, and the training is driven by a standard cross-entropy loss computed for next-
token prediction. 

 

During this phase, the projection layers and the Mixture-of-Experts (MoE) module are further 

refined along with the BioGPT decoder. The MoE module, which dynamically selects and 
aggregates outputs from the most relevant expert networks, ensures that the fused representation 

emphasizes the most useful information for each input. The learning rate is decreased to 2e-5, and 

fine-tuning is conducted for 30 epochs using a batch size of 8. To enhance text generation, the 
model leverages a key–value cache for efficient auto-regressive decoding and employs top-k 

(k=10) and top-p (p=0.9) sampling strategies to produce diverse and coherent outputs. 

Additionally, repetition penalties and medical term boosting are incorporated to prevent 
redundant token generation and to emphasize clinically relevant vocabulary. 

The entire training pipeline is implemented in PyTorch and executed on Nvidia RTX A6000 

GPUs. Notably, while alternative strategies such as cluster masking were initially explored, they 

did not result in significant performance gains and were therefore omitted from the final pipeline, 
leading to a more streamlined and efficient training process. 

 

We evaluate the model using several metrics: 
 

• Accuracy and F1-Score: To assess overall performance, in line with PathVQA [?] and 

VQA-RAD [?] 
• Binary Accuracy: Specifically for yes/no question evaluation. 

• BLEU Score: To measure the quality of open-ended generated answers by comparing 

them to ground truth answers, a common metric in generative VQA, as stated by He et al. 

in PathVQA [?]. 
 

The combined evaluation across PathVQA and VQA-RAD datasets enables a comprehensive 

understanding of the model’s generalizability across different medical imaging modalities. 
 

 
 

Figure 9: The model results on yes/no and open-ended questions. 
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5. RESULTS AND DISCUSSION 
 

5.1.Ablation Studies 
 

To validate our design choices and understand the contribution of individual components, we 
conducted comprehensive ablation studies. Table III presents the results of these experiments, 

showing the impact of removing or replacing key components of our architecture. 

 
Table III: Ablation studies showing the impact of different components on performance (%). 

 

 
 

These results demonstrate several key findings: 

 
1) Med-MoE Contribution: Replacing our specialized Med-MoE module with standard 

concatenation fusion decreases performance by 3.2% on VQA-RAD and 2.7% on 

PathVQA for open-ended questions, highlighting the importance of dynamic expert 

routing for medical visual-textual reasoning. 
2) Vision Encoder Impact: BLIP’s vision transformer provides substantial benefits 

compared to CNN-based alternatives, with a 7.5% improvement on VQA-RAD and 5.1% 

on PathVQA for open-ended questions, demonstrating the importance of transformer-
based visual processing for medical images. 

3) Domain-Specific Language Model: BioGPT’s domain knowledge contributes 

significantly to open-ended performance, with a 4.3% improvement on VQA-RAD and 
3.4% on PathVQA compared to using BERT alone, underscoring the value of biomedical 

pretraining. 

4) Loss Function Contributions: Both contrastive learning and ITM losses prove important 

for model performance, with their removal resulting in performance drops of 1.9% and 
1.5% respectively on VQA-RAD open-ended questions. 

5) Custom Vocabulary Impact: Our medical terminology-focused vocabulary construction 

improves performance by 2.6% on VQA-RAD and 2.3% on PathVQA for open-ended 
questions, validating our approach to domain-specific text processing. 

 

Table IV summarizes the performance of our proposed model alongside several recent methods 

on two benchmark datasets: VQA-RAD and PathVQA. The results are reported in terms of open-
ended, closed-ended, and overall accuracies. 

 
Table IV: Comparison of Medical VQA Performance (%) on VQA-RAD and PathVQA Datasets 
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a) VQA-RAD Results: On the VQA-RAD dataset, our model achieves an open-ended 
accuracy of 61.7% and a closedended accuracy of 74.3%, resulting in an overall accuracy 

of 69.3% (calculated based on 40% open-ended and 60% closed-ended questions). In 

comparison, the state-of-the-art MUMC model obtains 71.5% (open) and 84.2% (closed), 

with an overall accuracy of 79.2%. Similarly, other methods such as M3AE report an 
overall accuracy of 77.0%. These results indicate that while our model is competitive in 

generating responses for open-ended questions, there remains a performance gap, 

particularly in the binary classification domain. 
 

b) PathVQA Results: For the PathVQA dataset, our model achieves an open-ended 

accuracy of 28.2% and a closed-ended accuracy of 81.2%, leading to an overall accuracy 
of 56.1% (assuming 47% open-ended and 53% closed-ended questions). In contrast, 

MUMC demonstrates a substantially higher open-ended performance (39.0%) and a 

higher overall accuracy of 65.1% on this dataset. This disparity highlights the 

challenging nature of open-ended questions in the pathology domain, where the model 
must generate detailed and clinically precise responses. 

 

6. DISCUSSION 
 

6.1. Architecture Component Contributions 
 

The strong performance of our model arises from the seamless integration of specialized 
components. The BLIP-based vision encoder effectively captures fine-grained visual details 

crucial for medical image interpretation, while BioGPT’s domainspecific knowledge ensures 

accurate and contextually appropriate answer generation. Acting as a crucial bridge between 
these components, the Med-MoE module dynamically routes information based on the specific 

requirements of each question-image pair. 

 

Ablation studies highlight the significance of the Med-MoE module, particularly for open-ended 
questions that require detailed descriptions rather than binary decisions. The specialized routing 

mechanism enables the model to focus on relevant visual regions and medical concepts, thereby 

improving the precision of generated answers. 
 

6.2. Performance Analysis and Limitations 

 
Despite demonstrating competitive performance, our model falls short of state-of-the-art methods 

like MUMC in overall accuracy. Analyzing error patterns reveals several challenges. First, the 
model exhibits modality-specific limitations, performing better on radiological images (VQA-

RAD) than on pathology images (PathVQA). This discrepancy is especially evident in open-

ended questions, suggesting that fine-grained cellular details in pathology remain challenging to 

capture, even with a robust vision transformer. 
 

Second, performance declines as question complexity increases, with significantly lower 

accuracy observed in ”how” and ”why” questions compared to ”what” and ”where” questions. 
This indicates a limitation in capturing complex clinical reasoning chains. Additionally, the 

model struggles with rare medical concepts, particularly those involving uncommon pathologies 

or specialized terminology. While the custom vocabulary helps address this issue to some extent, 

it does not fully mitigate the challenges posed by the long-tail distribution of medical terms. 
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6.3. Comparison with State-of-the-Art 
 

When compared to leading approaches such as MUMC , our model demonstrates competitive 

performance but lags behind in overall accuracy. MUMC’s superior results likely stem from its 
extensive pretraining on large-scale medical datasets and its use of the Swin Transformer 

architecture, which may capture hierarchical visual features more effectively than the standard 

ViT used in our implementation. 
 

However, our approach presents several advantages over existing methods. The unified multi-

dataset framework allows for the simultaneous processing of pathology and radiology images 

within a single architecture, unlike most prior work. The Med-MoE module enhances 
interpretability by providing insights into the specific aspects of medical reasoning activated for 

different questions, in contrast to traditional black-box fusion approaches. Additionally, 

leveraging BioGPT enables more natural and medically accurate language generation compared 
to methods relying on generic language models. 

 

6.4. Future Directions 
 

Several promising directions emerge from our findings. Enhanced pretraining with larger and 

more diverse medical imagetext datasets could improve domain knowledge and generalization 
capability. Exploring advanced visual architectures, such as hierarchical vision transformers like 

Swin or specialized medical encoders, may further enhance feature extraction for fine-grained 

medical details. 
 

To address the model’s struggles with complex reasoning, incorporating multi-hop reasoning 

mechanisms could facilitate the handling of questions requiring multi-step inference, particularly 

for ”how” and ”why” queries. Integrating external knowledge sources, such as medical 
ontologies and knowledge bases, may enhance performance on rare conditions and specialized\ 

terminology. Additionally, improving the interpretability of the Med-MoE module could provide 

more clinically relevant explanations alongside generated answers, further supporting medical 
decision-making. 

 

7. CONCLUSION 
 

In this study, we proposed a unified multi-dataset framework for medical VQA that integrates 
advanced transformer architectures for both visual and textual processing. By leveraging BLIP, 

BERT, and BioGPT, along with a suite of loss functions—including contrastive, image-text 

matching, and language modeling losses—our model achieves competitive performance on 
challenging medical VQA tasks.Our experimental results demonstrate competitive performance, 

particularly on open-ended questions, while highlighting areas for further improvement in closed-

ended classification. This work contributes to the field by providing a robust, generalizable 

solution for medical VQA and paves the way for enhanced AI-assisted diagnostic systems. 
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