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Abstract. The lack of trust and fairness in artificial intelligence (AI) systems driven by biases, mis-
classified data, lack of transparency, and limited interoperability, raises significant ethical concerns and
socioeconomic impacts. This study presents a reference architecture for an AI pipeline aligned with Indus-
try 5.0 principles, focusing on human-centered design, sustainability, social responsibility, and resilience. It
enhances human-AI collaboration by involving four user types (data scientists, domain experts, organiza-
tions, and end users) who share decision-making responsibilities during the AI system development process.
The architecture incorporates Active Learning (AL) to address data bias and misclassification issues and
Transfer Learning (TL) to ensure model reusability in resource-constrained environments. Post-modeling
Explainability gives stakeholders insight into model behavior and outcomes, fostering transparency and
trust. Additionally, two user-ranked custom validation metrics evaluate the architecture and calculate Mean
Average Precision (MAP) for Rankings. These metrics ensure the architecture design and outcomes adhere
to ethical AI principles while promoting collaborative, responsible, and sustainable AI development.

Keywords: Artificial intelligence, Human-centric AI, Active learning, Transfer learning, Explainable AI,
Intelligent systems, Industry 5.0.

1 Introduction

The recent industrial revolution known as Industry 5.0, has driven the focus of corpora-
tions to change their business strategies from purely economic to promoting social values
and well-being [1]. Industry 5.0 introduces a new era of industrialization where human-AI
collaboration is expected to drive workplace processes towards optimization [2]. Previ-
ously, Industry 4.0, focused on industrial digitalization with minimal human intervention
and prioritized automation by relying deliberately on AI systems (robots, intelligent mod-
els, etc.) for decision-making and task completion [3]. Continuing with the current pace
of technological advancement which is highly inclined towards implementing intelligent
systems, however, lacks transparency, control, and trust, making it challenging for AI’s
future. The limited involvement of humans in the decision-making and AI system’s devel-
opment process from inception to completion triggers trust and fairness issues that result
in lower acceptance of AI systems. Some negative impacts of AI dominance are unemploy-
ment, economic inequality, reduced human creativity and productivity, ethical and privacy
concerns, security and safety risks, bias and discrimination, and the fear of AI misuse or
exploitation [5]. Therefore, a shift is required that motivates the developers to master AI
rather than relying completely on AI.
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At present, most AI systems are developed using either a model-centric or data-centric
approach, focusing on improving the models or data quality without considering societal
values and well-being [6]. However, recent developments have shifted the focus from de-
signing AI systems prioritizing AI dominance to a more human-centered approach. This
new approach, rather than replacing humans, aims to empower them, enabling them to
complete tasks more actively and efficiently with the collaboration of AI. The objective
is to create business strategies for AI systems that are human-centric [8] and adhere to
human-in-the-loop (HITL) [11] principles by encompassing social values, transparency,
and responsibility. The High-Level Expert Group on AI of the European Union presented
Ethics Guidelines for Trustworthy AI in 2019 [7], that suggested AI systems must be
accountable, explainable, unbiased, and must adhere to three core principles:

– Lawful by following laws and regulations.
– Ethical by following ethical principles and values.
– Robust by being adaptive, reliable, fair, and trustworthy in terms of technical aspects

while considering its social environment.

1.1 Motivation

This study is aimed at presenting a reference architecture for the future intelligent sys-
tems by integrating human-centered approaches and HITL principles throughout the AI
pipeline. The architecture is designed to address key challenges in AI development and
deployment:

– Improvement of Data Quality and Collaboration: An active learning approach is inte-
grated into the data preprocessing step to improve data quality and promote human-AI
collaboration from the beginning.

– Enhancement of Model Reusability and Accessibility: In the model selection step, we
apply transfer learning techniques to significantly improve the model reusability and
accessibility across diverse applications and domains.

– Increased Interpretability and Trust: In the evaluation step, we incorporate post-
modeling explainability to enhance the system’s interpretability and build user trust.

This reference architecture is expected to bridge the gap between AI systems and human
operators. It represents a significant step towards creating AI systems that are not only
technologically advanced but also aligned with human values. By doing so, we aim to:

– Promote collaboration and sharing of responsibilities between humans and AI.
– Ensure informed and equitable human participation during decision-making processes.
– Bridge the gap between next-generation AI technologies and their practical, ethical

application in real-world scenarios.

1.2 Contributions

The major contributions of our study are listed below:

– Design of a conceptual human-centric AI (HCAI) architecture.
– Definition of customized validation metrics to verify the architecture design and out-

comes against effectiveness and ethical compliance.
– Definition of an evaluation criteria for evaluating the architecture through Mean Av-

erage Precision (MAP) for Rankings.
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The remainder of the paper is organized as follows: Section 2 provides a brief overview of
the foundational aspects used in the proposed architecture. Section 3 presents the related
work covering the recent advancements in foundational aspects on which the architecture
is based. Section 4 covers the architecture design in detail and a use case-based application
is given in Section 5. In Section 6, we define customized validation metrics to verify the
design and outcomes of the proposed architecture. Section 7 covers a brief discussion on
the proposed architecture followed by its limitations. Finally, in Section 8, we conclude
the study by highlighting the current research gaps and suggesting directions for future
work.

2 Key Aspects of the Proposed Architecture

The architecture is designed based on the principle of Trustworthy AI [4] and Industry
5.0 [3]. Table 1 defines the factors corresponding to the principles of Trustworthy AI
development. By incorporating these factors, the architecture is aimed to address the var-
ious challenges associated with AI adoption, while promoting responsible AI development
practices [4].

Table 1. Factors to incorporate for Trustworthy AI development [4].

Factors Definition

Trust
Users should have confidence in the AI system to perform its tasks reliably,

ethically, and transparently.

Fairness
Equal treatment of all users by AI systems by avoiding discrimination based

on race, gender, age, or other characteristics.

Transparency
The tasks and decision-making processes of the AI system should be explainable,

understandable, and allow users to see how these decisions are being made.

Interoperability
AI systems’ decisions and outcomes should be understandable and interpretable

for users.

Ethical
AI systems should conform to ethical guidelines and standards and ensure

that they comply with user privacy needs and societal norms.

Responsibility

AI systems should be accountable for their actions and decisions. The

identification of who is responsible for AI’s outcomes and its deployment

should be clear.

2.1 Industry 5.0

Industry 5.0 prioritizes a human-centered approach based on societal values rather than
economic values [1]. The idea behind Industry 5.0 is to implement a collaborative envi-
ronment where humans and AI systems work together to achieve tasks with maximum
efficiency and optimize the manufacturing industry. It involves designing AI systems that
are transparent, sustainable, robust, and efficient through human-machine collaboration
and active human involvement in the decision-making process [2]. Recent advancements in
Industry 5.0 [1–3] include the development of advanced manufacturing robots and indus-
trial automation systems, where robots can assist by taking over repetitive tasks, thereby
enhancing overall productivity and sustainability by promoting systems powered by re-
newable energy sources [19]. An overview of the foundational aspects of the proposed
architecture designed under Industry 5.0 is shown in Fig. 1.
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Fig. 1. An abstract-level overview of the architecture designed under the Industry 5.0 umbrella.

2.2 Human-centric AI

Human-centric AI (HCAI) emphasizes human-machine collaboration and follows HITL
principles by ensuring that technology should be used for the betterment of society and
to support and enhance human capabilities [8]. It focuses on designing AI systems that
work collaboratively with humans towards shared goals unlike traditional AI, which is
a fully autonomous decision-making system and mainly focuses on maximizing efficiency
or performance. HCAI is an iterative process that requires continuous monitoring, feed-
back, and refinement to ensure that the design and implementation of AI systems are
aligned with human needs, social values, and well-being [12]. The underlying characteris-
tics of human-centric AI on which the proposed architecture is based, are briefly defined
in Table 2.

Table 2. Definition of the key characteristics of Human-centric AI [9, 10].

Factors Definition

Human-in-the-Loop

HITL refers to informed and equitable human involvement in AI systems, emphasizing

shared responsibilities where AI is designed to support and enhance human decision

-making rather than replace it.

Transparency

Transparency refers to building user trust and enabling users to rely confidently on AI.

It ensures that users and stakeholders can understand how the AI system operates and

why it produces specific outcomes.

Fairness
Fairness refers to designing AI systems that treat everyone equally, reduce biases, and

promote inclusion across diverse user groups and societal contexts.

Ethics

Ethics refers to designing AI systems around human needs, values, and experiences. It

ensures that ethical guidelines are followed throughout the development process while

ensuring user privacy needs and societal norms.

Sustainability

Sustainability refers to the development and deployment of AI systems while focusing

on responsible use of resources, following ethical practices, and ensuring AI supports

long-term social and environmental well-being.

Usability

Usability refers to the designing of AI systems that are easy to use and people can

interact effectively with them to achieve their goals. It emphasizes on creating simple,

user-friendly designs that anyone can understand and use effectively.
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2.3 Active Learning

Active learning is a data annotation approach where an algorithm (active learner) inter-
actively queries users to label data with the desired outputs [17]. The learner proactively
selects the subset of data to be labeled next from the pool of unlabeled data, embeds it in
a query, and passes the request to the oracle (human annotator) for labeling [17] as shown
in Fig. 2. The involvement of human annotators in learning and utilizing their expert
knowledge to improve the labels makes active learning part of the HITL paradigm [18].
The labeled data is then used to train an ML model that predicts the labels for the remain-
ing unlabeled dataset. Some of the most used and recent techniques for active learning
are Deep Active Learning [20, 21], Adversarial Active Learning [22], Diversity-Based Ap-
proaches [23], Query by Committee (QBC) [24], Uncertainty Sampling [25], and hybrid
approaches by combining multiple techniques [26].

Fig. 2. A typical life-cycle of Active Learning approach [17].

2.4 Transfer Learning

The knowledge of a pre-trained machine learning model is applied to a different but related
problem in the transfer learning approach [27]. The general idea is to utilize the knowledge
and patterns a model has learned from a task with a considerable volume of labeled training
data for a new task with limited data as shown in Fig. 3. Transfer learning has seen
significant advancements in recent years, driven by the rapid evolution of deep learning
and the growing availability of pre-trained models. Some of the most used and recent
techniques in transfer learning are domain adaptation, feature extraction, self-supervised
learning, unsupervised learning, and meta-learning [28–30].

Fig. 3. A typical life-cycle of Transfer Learning approach [27].
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2.5 Explainable AI

Explainable Artificial Intelligence (XAI) focuses on making AI models’ decisions under-
standable to humans. XAI is a set of processes and methods that allows human users to
comprehend and trust the results and output created by machine learning algorithms [31].
XAI implements specific techniques and procedures to ensure that each decision made
during the ML process can be traced and explained as shown in Fig. 4. Some of the most
used and recent techniques in explainable AI are model-agnostic or model-specific expla-
nation methods, interpretable models or post-hoc interpretation methods, interactive and
visual explanation tools, and multi-modal explanations [32–34].

Fig. 4. An overview of the Explainable AI pipeline [31].

3 Related Work

3.1 State-of-the-Art

The current literature explains Industry 5.0 and its recent advancements by recognizing the
importance of integrating HITL approaches in AI tasks, emphasizing human involvement
in automation processes. The authors of [1–3] focused on the recent shift toward Indus-
try 5.0 and its enabling technologies that extend Industry 4.0 by including collaborative
robots, blockchain, and advanced data analytics. A balanced technological advancement
with human needs, environmental concerns, and artificial intelligence is the need of the
hour focusing on personalization, sustainability, and human-machine interaction. With a
widespread application across domains like healthcare, manufacturing, and supply chain,
the authors highlight the challenges associated with the paradigm shift.

A review to identify, evaluate, and analyze human-centered AI papers is carried out by
the authors of [8]. After studying multiple human-centered AI frameworks, the authors
stress that machines should augment human effort rather than replace it, and the key
goal of HCAI should be to produce reliable, safe, and trustworthy systems. Moreover,
it emphasizes the importance of recognizing AI as a product of human values and the
need to explicitly guide its development to benefit all stakeholders and society at large.
Whereas the authors of [12] argue that AI is already human-centric by highlighting that
AI technology is evidence of human activity, as it is designed by humans to help humans.
Later the authors present two community-centered frameworks for developing and deploy-
ing AI systems that are more inclusive of humans and aligned with human values. The
author of [13] focuses on prioritizing reliability, safety, and trustworthiness, and advocates
for a human-integrated approach to developing AI systems keeping humans in mind and
prioritizing human needs and values. The study introduced a framework to balance hu-
man control and AI autonomy during AI systems development. The study [14] presents

32                                       Computer Science & Information Technology (CS & IT)



a systematic literature review of 162 publications from 2016 to 2020, where the authors
explore the integration of deep learning techniques within human-centered machine learn-
ing (HCML). By categorizing the work based on adaptability and usability, the authors
analyzed the machine learning systems that were developed by prioritizing human needs.
The authors have highlighted the challenges and opportunities associated with the HCML
field by emphasizing the need for more human-understandable and collaborative AI sys-
tems. The proposition is to introduce features like explainability and interoperability for
user engagement and control during the AI development cycle.

The authors of [15] introduced TagLab, a software developed with a key focus on the HITL
scheme, with AI-generated segmentation and classification for underwater imagery. The
process of incorporating human intervention and feedback shows significant improvement
in annotation speed and accuracy showcasing an active learning approach as compared to
traditional manual methods. Similarly, the authors of [16] designed a Human4ML frame-
work that looks at the need to have HITL to ensure effective labeling, proper data collec-
tion, consistent data quality, effective feature space construction and incorporating trust
and transparency into AI applications. To validate this, authors from [18] also highlighted
the role of HITL approaches in optimizing ML processes including annotation, active
learning, and transfer learning techniques. The paper [11] offers a thorough overview of
the state-of-the-art in HITL for a machine learning pipeline beginning from the label-
ing and annotation process, followed up with interactive machine learning through human
guidance eventually leading to explainable AI for better comprehension of the pipeline and
the underlying AI strategy, thereby making it easier to identify and rectify errors or biases
in AI systems. Although the authors link various approaches for handling multi-modal
data with human involvement, the overall picture remains unclear.

3.2 Research Gap

In the given state-of-the-art, scattered indications of a formal process are apparent, but
no evidence of a unified architecture is visible. Nevertheless, some of these frameworks
are very well structured and perfectly suitable for comparison. Human4ML [16], for in-
stance, provides a lifecycle perspective in three phases: human-guided data preparation,
human-assisted feature construction and model learning, and interactive model assessment
and explanation. Such phases clearly relate with the data analysis, modelling, and evalu-
ation and deployment steps similar to our work but leave critical gaps. The fundamental
collaboration models and mechanisms remain unclear. Additionally, there is a need for
a deeper understanding of human biases in HITL AI systems. Building on this founda-
tion, our work identifies the key users involved in the development process and provides a
clear outline of their roles, responsibilities, and the areas for collaboration. We are exam-
ining three key methodologies: Active Learning, Transfer Learning, and Explainable AI
and analyzing how these methodologies are collectively applied and implemented within
the AI pipeline. By effectively integrating these methodologies into an architecture, we
aim to illustrate their role in stimulating human-centricity, which contributes to creating
more efficient, trustworthy, transparent, adaptable, and ethically aligned AI systems. The
current literature emphasizes the significance of human involvement in AI processes but
fails to address critical questions such as Who to involve? Where to involve users in the
AI pipeline? What is the role of each user? What tasks will each user perform? How will
user involvement improve the processes? How to measure the improvement? What can be
trusted? Who will be responsible for AI actions?

To bridge these gaps, we propose a comprehensive roadmap as a unified reference archi-
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tecture for AI system development that systematically incorporates users and integrates
advanced methodologies. Our architecture aims to enhance the inclusivity and sustain-
ability of AI systems. It outlines specific points in the AI pipeline where user involvement
is essential, identifies relevant stakeholders, and defines their respective roles and respon-
sibilities. The architecture ensures that user participation is facilitated and optimized to
improve the overall effectiveness, transparency, and ethical alignment of AI processes. This
approach promises a more collaborative and sustainable future for AI development.

4 Human-centered Architecture for AI

The architecture is designed to ensure responsibility in AI systems and enable equitable
involvement of both humans and AI in all major milestones and decision-making processes
during the development of AI systems. The primary objective is integrating human-centric
characteristics mentioned in Table 2 into the AI pipeline. The architecture is detailed in
Fig. 5, outlining the various phases that compose it.

Fig. 5. A detailed overview of the proposed architecture(HCAI Pipeline) with added modalities in the
state-of-the-art AI pipeline.

4.1 Identification of Actors and Key Stakeholders

To incorporate responsibility in AI systems and make it easier to trace who is responsible
for AI actions and deployment, it is important to identify the responsible actors that are
involved in designing and implementing the AI system. To serve this purpose, the proposed
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architecture includes data scientists and domain experts as the main actors. Additionally,
to keep humans in the loop for decision-making processes, it is important to recognize
the stakeholders involved such as organizations, and end users (e.g., medical practitioners,
production employees, etc.) that will be directly benefited or affected by the AI system.
The users involved in the architecture, their activity, collaboration, and associated goals
are shown in Fig. 6.

Fig. 6. An overview of the users involved in the architecture and their collaboration through associated
goals.

4.2 Integration of Human-centric Approaches in the AI Pipeline

We enhance a state-of-the-art AI pipeline by integrating three techniques to promote
trust, ensure fairness, and increase human-AI collaboration to achieve shared goals. We are
explaining below how active learning, transfer learning, and explainable AI are integrated
into the AI pipeline keeping the stakeholders involved.

Scope Definition: The project’s scope involves a clear definition of the problem that
needs to be solved and the objectives of the AI system. To ensure human feedback and de-
cisions are essentially incorporated into the process, project scope definitions and goals are
decided through close collaboration between actors and stakeholders. Once an agreement
is reached, the actors proceed towards the data analysis step.

Data preprocessing through Active Learning Approach: We introduce an active
learning approach based on human-centric principles to address the challenge of limited
labeled data. This approach automates the repetitive data labeling task, enhances labeling
outcomes, and reduces misclassification through equitable collaboration between AI and
domain experts/labelers. Providing data insights to stakeholders ensures transparency and
allows them to identify and correct any bias or misrepresentation. Providing data insights
to stakeholders is crucial for confirming against any bias or misrepresentation, thereby
ensuring transparency in the process.
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Model Selection through Transfer Learning: Transfer learning promotes knowledge
sharing and model reusability within the same domain and problem space. It allows for
rapidly adapting AI models to similar problems, facilitating quicker iteration and collabo-
ration between human developers and AI systems. Although transfer learning is not inher-
ently human-centric, incorporating it into the architecture provides sufficient transparency
for users. It enables stakeholders to understand the problem, the handling approach, and
the critical parameters involved, which helps in validating the results effectively.

Evaluation through Post-Modeling Explainability: The explainability mechanism
is integrated into the evaluation step of the AI pipeline against model predictions to
offer interpretable insights and explanations against the model decisions. The explainable
interface enables users to answer critical questions such as: Do users understand why or
why not the model made a prediction? Do users understand when the model is successful
or when it is a failure? Do users know why the predictions are correct or incorrect? Do
users know when to trust the model? Do users know why the model might have erred? This
transparency fosters trust and allows users to engage with the system more effectively.

4.3 Deployment and Continuous Monitoring

This modular architecture enhances the existing AI pipeline by integrating additional
techniques that improve processes, optimize outcomes, and increase the adaptability of
AI systems. These added modalities build upon the state-of-the-art pipeline without al-
tering its core structure, focusing instead on refining and extending its capabilities. The
modalities can be added or removed without disrupting the overall AI pipeline. The archi-
tecture provides flexibility in selecting the most suitable methods for implementing these
techniques. Continuous monitoring in the architecture is achieved through an integrated
feedback loop, where the predictions are verified and validated, and any misclassifications
are used to iteratively update and improve the model. This iterative process enhances the
robustness, scalability, transparency, and responsibility of the pipeline, ultimately ensuring
the ethical integrity of the AI system.

5 Architecture Application for Pet and Stray Dog Recognition

Applying the architecture to a high-level example of a pet and stray dog recognition
system illustrates a conceptual overview. The idea is to recognize stray and pet dogs to
provide rabies vaccinations. We explain the overall structure, important steps, a broad
understanding of how things fit together, and how our architecture will approach this
problem of building a pet and stray dog recognition system.

5.1 Problem Definition

Use Case: Scheduling of vaccination against rabies for dogs identified as stray.

Identify Actors and Stakeholders:

– Actors: The data scientist is responsible for developing the system in collaboration
with domain experts who validate and verify decisions and outcomes based on their
expertise and knowledge.

– Stakeholders: Organizations responsible for vaccinating the dogs and end users such
as dog owners or people infected with rabies.
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Objective: Identify a dog as a pet or stray based on the characteristics mentioned below.

– Environmental context i.e. location where the dog is found and companionship whether
the dog is accompanied by a human.

– Identification marks i.e. the dog has collars, tags, or microchips.

The objectives are finalized based on a close collaboration between organizations, domain
experts, and data scientists. The objectives are communicated to end users to ensure trust
and transparency during the development of the recognition system.

5.2 Dataset Collection

Identification of Data Sources: Data can be collected from a combination of sources
such as pet owners, social media, animal shelters, street cameras, existing datasets, and
public databases.

5.3 Data Preprocessing

Active Learning Cycle: A small balanced dataset (100 labeled images of dogs, consist-
ing of 50 pets and 50 strays) labeled by data scientists and validated by domain experts
can be used initially to train a model that may not be very accurate but serves as a
starting point. For this classification problem, the uncertainty sampling technique is used.
The model identifies the most ”uncertain” data points that it struggles to classify and
then queries for their labels to data scientists. This conforms to the HITL step. The data
scientist labels these data points and the domain experts validate them to improve the
labeling and model learning efficiency. Once labeled, these uncertain instances are added
to the training set, and the model is retrained with the newly labeled data. The model is
expected to improve performance, especially in difficult-to-classify instances. The process
is repeated and the retrained model is again used to predict labels for the remaining un-
labeled data, identify the most uncertain samples, query them for labels, and retrain until
the performance meets the desired threshold. Once the model’s accuracy is satisfactory, it
automatically labels the remaining unlabeled data. A subset of these labels is still manu-
ally validated to ensure the model’s predictions are accurate. This step is crucial to verify
that the model maintains high accuracy across different subsets of the data and does not
introduce significant bias.

5.4 Model Selection

The idea behind transfer learning is to use a pre-trained model originally trained on a
large dataset for a related task and adapt it for a specific, smaller task like recognizing
pet dogs. To apply transfer learning, we utilize a pre-trained convolutional neural network
(CNN) [35] and customize the model to fit our problem. The first step is selecting an
appropriate pre-trained model. Since our task is related to image recognition, we can start
with a model such as EfficientNet, ResNet, Inception, or VGG, which have been trained
on large datasets like cats and dogs [36] or Stanford Dog dataset [37] that include many
animal classes, including dogs. These models are already mature in extracting important
features (such as shapes, textures, etc.) from images, which we can leverage. The lower
layers of the model are frozen and capture generic features like edges and textures whereas,
the upper layers are modified and retrained to learn the specific differences between the
two categories. To distinguish between a stray dog and a pet dog the presence of a collar
or specific information such as location, environment, etc. is used by the model.
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5.5 Model Evaluation

We can measure the model’s accuracy on unseen test data samples to ensure it can correctly
classify pets from stray dogs. Numerous, evaluation metrics such as accuracy, precision,
and recall, etc. can be used to evaluate the model’s performance based on the true and
false classes. A visual representation can be best illustrated using a confusion matrix for
stakeholders’ understanding of the model outcomes.

5.6 Post-Modelling Explainability

The purpose of including post-modeling explainability is to enable users and stakehold-
ers to understand the model’s outcomes and provide a logical explanation as to why the
model identifies a dog as a pet or stray. To achieve this a combination of explainability
techniques such as SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable
Model-agnostic Explanations) [32, 33] can be employed. These techniques are then inte-
grated into a user-friendly interface that provides interactive visual explanations of pre-
dictions and feature importance by utilizing visualization tools like Tableau [40, 41] and
TensorBoard [38, 39]. Moreover, validating these explanations with stakeholders involved
in the process ensures their relevance and alignment with the desired goals. This trans-
parency and interoperability are expected to create trust in the AI model’s predictions
while enhancing user adaptability and confidence in the AI system.

5.7 Deployment and Monitoring

A suitable approach for deploying a trained and tested AI model is to utilize Docker [44]
to ensure consistency and portability across multiple platforms. The AI pipeline can be
modularized into independent components such as data preprocessing, model inference,
and evaluation. These components can then be deployed as a web service using modern
frameworks like Flask [42] or FastAPI [43], where an image is given as input to the web
service and it processes it through the pipeline and returns a prediction indicating whether
the dog is a pet or a stray. For handling challenges like data drift, continuous monitor-
ing is integrated into the architecture to detect and adapt to new data types or features
not present in the original training dataset. A feedback loop is implemented to validate
and verify predictions, allowing data scientists and domain experts to identify any mis-
classifications, which is then used to refine and update the model, ensuring continuous
improvements and efficiency.

6 Evaluation

The evaluation of the architecture is carried out in two stages: first, the design of the
architecture and later the outcomes generated by the architecture will be assessed. We
have introduced two validation metrics, each comprising multiple factors. The metrics
for validating the design of the architecture are based on the factors defined in Table 3.
The metrics for validating the outcomes (predictions) from the architecture are based on
the factors defined in Table 4. For both architecture design and architecture outcomes,
the users such as data scientists, domain experts, stakeholders, and end users rank each
factor as positive or negative. The rank is binary, with positive being 1, and negative
being 0. Finally, to calculate the effectiveness of both metrics, we are using Mean Average
Precision (MAP) [45] for rankings [46], enabling a comprehensive assessment of how well
the architecture aligns with the evaluation criteria.
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Table 3. Metrics and Factors for validating the architecture design.

Metric Factors

Collaboration

Cooperation: Does the design include human-AI cooperation to achieve a shared goal?

Communication: Does the design include an active feedback system?

Coordination: Do the users interact for important decision-making?

Adaptability

Modularity: Is it possible to test individual components and add or remove modalities

without affecting the overall ML pipeline?

Reconfigurability: Is it possible for the architecture design to adapt to changing requirements

or functionalities through minimal modifications?

Flexibility: Does the architecture design allow for the integration of new techniques or

methods with minimal disruptions?

Robustness: Is the performance being maintained under varied conditions like unforeseen

challenges or disruptions?

Usability

User-Centered: Is the architecture easy to use and incorporates user needs and satisfactions

while developing AI systems?

Learnability: Does the design enable users to quickly understand its features and functions

by reducing the training time?

Reusability: Is it possible for the architecture to accommodate different use cases to meet

varying requirements without significant modifications?

Sustainability

Socially Responsible: Is it possible to ensure fairness, transparency, and inclusivity in AI systems,

following the architecture design?

Energy Consumption: Does the architecture design involve unnecessary computations that

increase power consumption?

Memory Consumption: Does the architecture design introduce unnecessary and repetitive computations

that lead to increased memory consumption?

Scalability

Complexity: Does the architecture design have high component inter-dependencies, where modifications

in one part affect the complete ML process?

Integration: Are the added modalities in the architecture design easily compatible with the existing ML

pipeline?

Time and Cost Effectiveness: Does the architecture design help in optimizing costs and minimizing rework?

Security and Compliance: Does the architectural design comply with defined regulations and standards?

Table 4. Metrics and Factors for validating the architecture outcomes.

Metric Factors

Understandability

Clarity: Are the predictions meaningful for end users?

Correctness: Do the predictions align with true values?

Consistency: Are the predictions free from deviations?

Relevance: Do the predictions align with the desired outcomes or objectives of the system?

Fairness
Unbiased: Are the model predictions equal to the expected true values over the relevant data?

Authenticity: Are the predictions transparent, based on quality data, and accurately reflect the real world?

Ethical

Conformity: Are the predictions fair and aligned with societal values and defined ethical standards?

Reliability: Are the predictions dependable even for new and unforeseen scenarios?

Responsibility: Are the predictions free from harmful biases and support positive real-world implications?

Explainability

Interoperabillity: Are the predictions clear, accurately understandable, and provide actionable insights across

different platforms and user groups?

Reasoning: Do the predictions enable users in decision-making and allow them to understand how and why

specific outcomes are reached?
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6.1 Mean Average Precision (MAP) for Rankings

The evaluation of the architecture based on user ranks by computing MAP against hy-
pothetical values is shown in Table 5. Where, each user involved in the AI pipeline has
ranked the factors fy as either 1 or 0. The precision corresponding to the individual factors
based on positive and negative ranks is calculated by (1).

Table 5. A hypothetical evaluation based on user rankings to calculate MAP for the architecture.

Metric Factors Data Scientist Domain Expert Stakeholders End Users P(fy) AP(Mx) (MAP)AD (MAP)OUT

Architecture Design

Collaboration

Cooperation 1 1 1 1 1

0.83

0.85 N/A

Communication 1 1 1 0 0.75

Coordination 1 1 1 0 0.75

Adaptability

Modularity 1 1 1 1 1

0.81
Reconfigurability 1 1 1 1 1

Flexibility 1 1 0 1 0.75

Robustness 1 1 0 0 0.50

Usability

User-Centered 1 1 1 1 1

1
Learnability 1 1 1 1 1

Reusability 1 1 1 1 1

Sustainability

Socially Responsible 1 1 1 1 1

0.92Energy Efficient 1 1 1 1 1

Memory Efficient 1 1 0 0 0.75

Scalability

Complexity 1 1 1 1 1

0.69
Integration 1 1 1 0 0.75

Time and Cost Effective 1 0 0 0 0.25

Security and Compliance 1 1 1 0 0.75

Architecture Outcomes

Understandability

Clarity 1 0 0 0 0.25

0.75

N/A 0.71

Correctness 1 1 1 1 1

Consistency 1 1 0 1 0.75

Relevance 1 1 1 1 1

Fairness
Unbiased 1 1 1 1 1

0.75
Authenticity 1 1 0 0 0.50

Ethical

Conformity 1 1 1 0 0.75

0.58Reliability 1 1 0 0 0.50

Responsibility 1 1 0 0 0.50

Explainability
Interoperability 1 1 1 0 0.75

0.75
Reasoning 1 1 1 0 0.75

P (fy) =
Total PR

Total PR+ Total NR
(1)

where, Total PR corresponds to the total positive ranks and Total NR corresponds to the
total negative ranks.

Average precision for metric Mx, based on precision per factor fy, is calculated by (2).

AP (Mx) =
1

N

N∑
y=1

P (fy) (2)

where, N is the total number of factors for metric x.

MAP for the architecture design MAPAD based on 5 metrics is calculated by (3).

(MAP )AD =
1

5

5∑
x=1

AP (Mx) (3)

MAP for the architecture outcomes MAPOUT based on 4 metrics is calculated by (4).

(MAP )OUT =
1

4

4∑
x=1

AP (Mx) (4)
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A generic formula for calculating MAP is given by (5).

MAP =
1

K

K∑
x=1

AP (Mx) (5)

where, K is set to 5 for architecture design and 4 for architecture outcomes depending on
the total number of metrics.

7 Discussion and Limitations

The architecture is designed to incorporate human-centricity in AI system development.
We have tried to strengthen AI trust, transparency, safety, and adaptability by involving
HITL in decision-making and enabling human-machine collaboration. The active learning
approach embedded in the architecture optimizes the data annotation process and im-
proves model performance with limited labeled data by reducing the costly and repetitive
data labeling efforts. To increase the reusability of models, transfer learning is introduced
in the architecture to enable the rapid adaptation of AI models to new problems. How-
ever, it is important to recognize its potential risks, especially in the context of fairness.
Pre-trained models can carry biases from their source domain to the target domain as
highlighted in the studies [48, 49]. This transfer of bias can undermine efforts to ensure
fairness, potentially introducing new forms of inequity or amplifying existing ones. There-
fore, to mitigate potential biases from pre-trained models, we involve domain experts Using
an active learning approach, AI and human experts are working together to improve data
quality. After training, we are using explainable AI tools to identify any unfair patterns or
biases in the model’s predictions. Additionally, we have domain experts and stakeholders
review and validate the model to ensure it is fair and ethically aligned. By incorporating
these techniques, we can possibly make transfer learning unbiased. Explainable AI intro-
duced in the architecture provides understandability and enhances user engagement and
trust which as a result makes the AI systems more adaptable. Moreover, the architecture
ensures flexibility and scalability by enabling seamless integration and removal of modal-
ities without disrupting the core functionality of the AI pipeline.

To demonstrate the practical applications of the architecture, we have applied the archi-
tecture to a hypothetical problem, navigating it through the steps of the AI pipeline using
a synthetic working example, as detailed in Section 5. However, the architecture can be
applied in various domains, including healthcare and autonomous systems. In the automo-
tive industry for Advanced Driver-Assistance Systems (ADAS), HCAI can help develop
systems that enhance driver safety and comfort [50]. These systems adapt to individual
driving styles and provide intuitive assistance, ensuring a balanced interaction between
humans and machines. In medical imaging applications, explainable AI techniques can
help interpret complex deep learning models, enabling doctors to understand how deci-
sions are made in tasks like tumor identification and organ segmentation [51]. Moreover,
it can be utilized to provide personalized treatment through AI systems that can analyze
an individual patient’s health and genetic data to identify the most effective treatment
options. In addition, in diagnostic support, AI algorithms can analyze patient data to help
diagnose diseases more accurately and quickly, improving patient outcomes and experi-
ences [52].

This study is focused mainly on defining the key characteristics of human-centric AI and
using these principles to design a human-centered architecture for developing future AI
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systems. However, it is important to consider that utilizing active learning and explain-
able AI in real-world human-centered systems has several challenges. AL requires frequent
model retraining, and especially for large-scale models, it can be time-consuming and
resource-intensive, making AL a computational overhead [53]. Moreover, it is difficult to
embed explainability into complex models like deep neural networks, which often provide
better accuracy but are harder to understand and interpret, which as a result leads to
end-user resistance in adapting such systems [54].

8 Conclusion and Future Directions

This study highlights the importance of Industry 5.0, where more human intervention is
appreciated and work has to be carried out by equally incorporating humans and artificial
intelligent (AI) systems such as robots, AI agents, and intelligent models. The overall goal
is to balance technological advancement with human needs and environmental concerns,
addressing the limitations of Industry 4.0 by focusing on personalization, sustainability,
and human-machine interaction. In response to this, our study introduces a reference
architecture designed to integrate human-centric methodologies such as active learning,
transfer learning, and explainable AI, thereby enhancing the trustworthiness, transparency,
and adaptability of AI systems and ensuring that they are developed to support humans
rather than replacing them and utilized for the benefit of society. The techniques integrated
into the architecture have proven their ability and effectiveness already across various AI
related problems [13, 18, 34, 47]. Additionally, a detailed application-level overview has
been presented in the study which explains how the architecture handles a problem in
different phases of the AI pipeline. Finally, a validation metric is introduced which can
be utilized to investigate, whether the design and outcomes from the architecture con-
form with human-centered and ethical AI principles. Ultimately, this study provides a
human-centered architecture for designing and developing future intelligent systems that
are ethically and morally aligned with human and societal values.

Continuation of our work will involve implementing the proposed architecture with real-
world datasets to solve real-world problems and deploying it to assess its feasibility across
multiple industrial domains. The main focus will be to evaluate its impact on the overall
ML pipeline and analyze key metrics such as cost, time, energy efficiency, and resource uti-
lization. The outcomes will then help to understand and quantify the complexities involved
and determine the viability of the proposed architecture in diverse industrial applications.
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39. Spinner, T., Schlegel, U., Schäfer, H. & El-Assady, M. explAIner: A Visual Analytics Framework for
Interactive and Explainable Machine Learning. IEEE Transactions On Visualization And Computer
Graphics. 26, 1064-1074 (2020)

40. Beard, L. & Aghassibake, N. Tableau (version 2020.3). Journal Of The Medical Library Association:
JMLA. 109, 159 (2021)

41. Pala, S. Advance Analytics for Reporting and Creating Dashboards with Tools like SSIS, Visual
Analytics and Tableau. (IJOPE,2017)

42. Grinberg, M. Flask web development: developing web applications with python. (” O’Reilly Media,
Inc.”,2018)

43. Lubanovic, B. FastAPI. (” O’Reilly Media, Inc.”,2023)
44. Merkel, D. Docker: lightweight linux containers for consistent development and deployment. Linux

Journal. 2014, 2 (2014)
45. Beitzel, S., Jensen, E. & Frieder, O. MAP. Encyclopedia Of Database Systems. pp. 1691-1692 (2009),

https://doi.org/10.1007/978-0-387-39940-9
46. Hast, A. Consensus ranking for increasing mean average precision in keyword spotting. VIPERC

2020, 2nd International Workshop On Visual Pattern Extraction And Recognition For Cultural Heritage
Understanding. Bari, Italy, 29 January, 2020.. 2602 pp. 46-57 (2020)

47. Bhattacharya, M., Penica, M., O’Connell, E., Southern, M. & Hayes, M. Human-in-Loop: A Review of
Smart Manufacturing Deployments. Systems. 11 (2023), https://www.mdpi.com/2079-8954/11/1/35

48. Salmani, P. & Lewis, P. Transfer Learning Can Introduce Bias. (2024,10)
49. Salman, H., Jain, S., Ilyas, A., Engstrom, L., Wong, E. & Madry, A. When does Bias Transfer in

Transfer Learning?. (2022), https://arxiv.org/abs/2207.02842
50. Bellet, T., Banet, A., Petiot, M., Richard, B. & Quick, J. Human-centered AI to support an adaptive

management of human-machine transitions with vehicle automation. Information. 12, 13 (2020)
51. Chaddad, A., Peng, J., Xu, J. & Bouridane, A. Survey of explainable AI techniques in healthcare.

Sensors. 23, 634 (2023)
52. Chen, Y., Clayton, E., Novak, L., Anders, S. & Malin, B. Human-centered design to address biases in

artificial intelligence. Journal Of Medical Internet Research. 25 pp. e43251 (2023)
53. Nenno, S. Potentials and Limitations of Active Learning: For the Reduction of Energy Consumption

During Model Training. Weizenbaum Journal Of The Digital Society. 4 (2024)
54. Joshi, G., Walambe, R. & Kotecha, K. A Review on Explainability in Multimodal Deep Neural Nets.

IEEE Access. 9 pp. 59800-59821 (2021)
55. Welsby, P. & Cheung, B. ChatGPT. Postgraduate Medical Journal. 99 pp. 1047-1048 (2023)

44                                       Computer Science & Information Technology (CS & IT)

                                                                     .This article is published under the Creative Commons
Attribution (CC BY) license.
© 2025 By AIRCC Publishing Corporation

https://airccse.org/



