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ABSTRACT 
 
Recent advancements in multimodal large language models (MLLMs) have demonstrated 

remarkable capabilities in processing diverse data types, yet significant disparities persist 

between human cognitive processes and computational approaches to multimodal 

information integration. This research presents a systematic investigation into the parallels 

between human cross-modal chunking mechanisms and token representation methodologies 

in MLLMs. Through empirical studies comparing human performance patterns with model 

behaviors across visual-linguistic tasks, we demonstrate that conventional static 

tokenization schemes fundamentally constrain current models' capacity to simulate the 

dynamic, context-sensitive nature of human information processing. We propose a novel 

framework for dynamic cross-modal tokenization that incorporates adaptive boundaries, 

hierarchical representations, and alignment mechanisms grounded in cognitive science 

principles. Quantitative evaluations demonstrate that our approach yields statistically 

significant improvements over state-of-the-art models on benchmark tasks (+7.8% on 

Visual Question Answering, +5.3% on Complex Scene Description) while exhibiting more 

human-aligned error patterns and attention distributions. These findings contribute to the 

theoretical understanding of the relationship between human cognition and artificial 

intelligence, while providing empirical evidence for developing more cognitively plausible 
AI systems. 
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1. INTRODUCTION 

 
The human cognitive system demonstrates remarkable efficiency in integrating information 
across sensory modalities, organizing complex stimuli into meaningful units or "chunks" [1]. 
This cross-modal chunking process operates dynamically across linguistic and visual domains, 
adapting to contextual demands and task requirements [2, 3]. When encountering multimodal 
stimuli, such as images with accompanying text, humans naturally align relevant portions of each 
modality, allocating attentional resources to semantically related elements while suppressing 
irrelevant information [4]. This capacity represents a fundamental aspect of human cognition, 

enabling efficient processing despite well-documented limitations in working memory capacity 
[5]. 
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In contrast, large language models (LLMs) extended to handle multiple modalities typically 
employ relatively static tokenization schemes for representing different types of information [6, 
7]. While recent architectural innovations have improved multimodal integration capabilities in 
these systems [8, 9], they frequently rely on fixed, predetermined token boundaries and 

representations that fail to capture the dynamic, context-sensitive nature of human chunking [10]. 
This methodological divergence constitutes a significant gap between artificial intelligence and 
human cognition, potentially constraining the capabilities of current systems in complex 
multimodal reasoning tasks [11]. 
 
This research presents a systematic investigation of the relationship between human cross-modal 
chunking mechanisms and token representation in multimodal LLMs. We first establish 
theoretical parallels between these processes, drawing on evidence from cognitive psychology 

and neuroscience. We then conduct a series of controlled experiments comparing human and 
model behavior across varied visual-linguistic tasks, identifying specific limitations in current 
tokenization approaches. Finally, we propose and empirically evaluate a novel framework for 
dynamic cross-modal tokenization that better approximates human information processing. 
 
The primary contributions of this work are: 
 

① Empirical characterization of human cross-modal chunking patterns through eye-
tracking and neuroimaging data 

② Systematic analysis of limitations in current multimodal token representation 
methodologies 

③ Development and validation of a dynamic cross-modal tokenization framework that 
demonstrates improved performance and greater cognitive plausibility 

④ Quantitative and qualitative evaluation of the proposed approach against existing 
methods, demonstrating improvements in both task performance and human-model alignment 
 

2. RELATED WORK 
 

2.1. Cognitive Chunking in Human Information Processing 

 
The concept of chunking in cognitive psychology was formalized by Miller [1], who observed 
that human working memory capacity is limited to approximately seven discrete units of 
information. Subsequent research has demonstrated that expertise development involves the 
creation of increasingly complex and meaningful chunks [5], enabling experts to effectively 
process larger amounts of domain-specific information. In the context of language processing, 
chunking mechanisms have been extensively studied in reading [2] and speech perception [3], 
revealing that humans naturally segment continuous input into hierarchically organized units 
based on semantic and syntactic relationships. 

 
Recent neuroimaging studies have provided insights into the neural correlates of chunking, 
identifying specialized regions involved in multimodal integration [4]. Functional magnetic 
resonance imaging (fMRI) studies have demonstrated synchronized activity between visual 
processing regions and language areas during cross-modal tasks, suggesting integrated rather than 
modality-specific representations [12]. Furthermore, electrophysiological studies using 
electroencephalography (EEG) have identified distinct neural signatures associated with chunk 

boundaries during information processing [13]. 
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2.2. Tokenization in Multimodal Language Models 

 
Large language models have traditionally relied on subword tokenization methods such as Byte-
Pair Encoding [14] to decompose text into manageable units for processing. With the extension to 
multimodal capabilities, various approaches have been developed to incorporate non-linguistic 
information, particularly visual data. 
 
Vision-language models such as CLIP [7] and DALL-E [15] typically process images by dividing 

them into fixed-size patches, which are then projected into the same embedding space as textual 
tokens. More recent approaches like Flamingo [6] and BLIP-2 [9] employ specialized cross-
attention mechanisms to facilitate interaction between modalities, but still maintain 
fundamentally separate tokenization processes for each input type. 
 
While these models achieve impressive performance on benchmark tasks, they differ 
significantly from human processing in their static tokenization approaches. Human perception 

dynamically adapts boundary detection based on context and semantic relationships [16], 
whereas current models typically employ predetermined, context-independent tokenization 
schemes [10]. 
 

2.3. Human-Aligned AI and Cognitive Plausibility 

 
Recent work has highlighted the importance of developing AI systems that align with human 
cognitive processes [17]. This alignment can lead to systems that are more interpretable, 
trustworthy, and effective at collaborating with humans [18]. In the context of language models, 
efforts have been made to incorporate cognitive constraints and processing patterns observed in 
humans [19]. 
 

The concept of cognitive plausibility in AI systems refers to the degree to which their internal 
processing mechanisms resemble those of human cognition [20]. While perfect simulation of 
human cognition is neither necessary nor sufficient for achieving human-level AI, incorporating 
cognitively plausible mechanisms can provide useful inductive biases that improve performance 
on tasks that humans excel at [11]. 
 
Our work builds upon these foundations by specifically addressing the gap between human cross-

modal chunking and token representation in multimodal LLMs, with the goal of developing more 
cognitively plausible approaches to multimodal integration. 
 

3. METHODS 
 

3.1. Human Studies 
 

3.1.1.Participants 

 

We recruited 48 adults (aged 18-65, 25 female) with normal or corrected-to-normal vision to 
participate in eye-tracking and behavioral studies. A subset of participants (n=16) additionally 
completed functional magnetic resonance imaging (fMRI) scanning. All procedures were 
approved by the institutional ethics committee, and participants provided informed written 
consent prior to participation. Figure 1 presents key findings from these human studies, showing 
both eye-tracking data and neuroimaging results that demonstrate cross-modal chunking patterns. 
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3.1.2.Stimuli 

 

A dataset of 240 images paired with descriptive text was created for experimental purposes. 

Stimuli were systematically varied along dimensions of complexity (1-10 distinct objects) and 
included controlled manipulations of cross-modal congruence, spatial relationships, and semantic 
associations. Text descriptions were carefully balanced for length (M=42.3 words, SD=5.8) and 
linguistic complexity (average Flesch-Kincaid grade level: 8.2). 
 
3.1.3.Eye-tracking Procedure 

 

Eye movements were recorded using a Tobii Pro Spectrum eye tracker sampling at 1200 Hz 

while participants viewed image-text pairs presented on a 24-inch monitor (resolution: 
1920×1080 pixels). Viewing distance was maintained at 65 cm using a chin rest. Participants 
were instructed to naturally explore the image-text pairs, with each stimulus presented for 12 
seconds. Areas of interest (AOIs) were defined a priori for each distinct object in images and 
corresponding textual references. 
 
3.1.4.Neuroimaging Procedure 

 

Functional MRI data were collected using a 3T Siemens Prisma scanner with a 64-channel head 
coil. A multiband echo-planar imaging (EPI) sequence was employed (TR=1000ms, TE=30ms, 
flip angle=62°, multiband factor=6, 2mm isotropic voxels, 72 slices). Anatomical images were 
acquired using a T1-weighted MPRAGE sequence (1mm isotropic resolution). Preprocessing and 
analysis were conducted using fMRIPrep version 20.2.0 [24] and custom Python scripts. 
 

3.1.5.Working Memory Assessment 

 

To quantify cross-modal working memory capacity, we employed a modified change detection 
paradigm. Participants viewed image-text pairs for 5 seconds, followed by a 1-second mask and a 
modified version of the original stimulus. They then identified whether changes had occurred 
across modalities. Change detection accuracy was analyzed using a threshold estimation 
procedure to determine capacity limits. 
 

3.2. Computational Modeling 
 

3.2.1.Baseline Models 

 

We evaluated our approach against state-of-the-art multimodal models, including BLIP-2 [9], 
Flamingo [6], and GPT-4V [25]. All models were assessed using publicly available 

implementations with default parameters to ensure fair comparison. Model outputs were collected 
for identical stimuli presented to human participants, enabling direct comparison of performance 
patterns. 
 
3.2.2.Dynamic Cross-Modal Tokenization Framework 

 

Our proposed Dynamic Cross-Modal Tokenization (DCMT) framework extends the standard 

transformer architecture with the following novel components, as illustrated in Figure 3: 
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Figure 3  : Dynamic Cross-Modal Tokenization Framework 

 
Adaptive Token Boundaries: Instead of employing fixed tokenization schemes, we implemented 
differentiable boundary detectors that optimize token segmentation based on cross-modal 
prediction objectives, as shown in Figure 3a. The boundary detection function is defined as: 

𝐵(𝑥; 𝜃) = 𝜎(𝑓𝜃(𝑥) − 𝑇) 
 
Hierarchical Representation Networks: We implemented multi-level transformer encoders 
operating at different semantic scales, with bidirectional connections enabling information flow 
between levels, as depicted in Figure 3b. The representation at level $l$ is computed as: 

ℎ𝑙 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑒𝑟𝐵𝑙𝑜𝑐𝑘(ℎ𝑙−1 + 𝑇𝑜𝑝𝐷𝑜𝑤𝑛(ℎ𝑙+1)) 
This is a common way to turn a raw model score into a (soft) binary prediction. 

Cross-Modal Alignment Modules: We incorporated contrastive learning objectives and mutual 
information estimators that promote correspondence between visual and linguistic tokens, 
visualized in Figure 3c. The alignment loss is computed as: 

 

ℒ𝑎𝑙𝑖𝑔𝑛 = −𝑙𝑜𝑔

exp(𝑆(𝑉𝑖 , 𝑡𝑖)
𝑇⁄

𝛴𝑗
exp(𝑆(𝑉𝑖 , 𝑡𝑗)

𝑇
⁄

 

This formula is the contrastive alignment loss (often used in models like CLIP) which trains 
paired embeddings—here an image embedding 𝑣𝑣and its matching text embedding 𝑣𝑣—to be 
more similar than mismatched pairs. 
The model was trained using a combination of supervised task-specific losses and self-supervised 
objectives that promoted alignment between modalities. To address computational efficiency 
concerns, we employed gradient checkpointing, mixed-precision training, and attention 
sparsification techniques. 

 
 
 

3.3. Evaluation Methods 
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3.3.1.Benchmark Tasks 

 

All models were evaluated on standardized multimodal benchmarks, including VQA v2 [21], 
COCO Captions [22], and GQA [23]. Additionally, we developed a specialized Cross-Modal 

Chunking Evaluation (CMCE) dataset designed to specifically assess aspects of multimodal 
integration that rely on human-like chunking abilities. 
 
3.3.2.Human-Model Comparison 

 

To facilitate direct comparison between human and model behavior, we presented identical 
stimuli to both humans and computational models. For attention pattern comparisons, we 
normalized model attention weights and human fixation densities to create comparable heatmaps, 

computing Earth Mover's Distance (EMD) between distributions. Error pattern analysis was 
conducted by categorizing mistakes according to a taxonomy of integration failures and 
comparing distributions using Kullback-Leibler divergence metrics. 
 
3.3.3.Statistical Analysis 

 

Statistical significance of performance differences between models was assessed using paired t-

tests with Bonferroni correction for multiple comparisons. Correlations between human and 
model behavior patterns were evaluated using Pearson's correlation coefficient, with bootstrap 
procedures (10,000 iterations) employed to compute confidence intervals. Effect sizes were 
reported using Cohen's d for mean comparisons and Pearson's r for correlational analyses. 
 

4. RESULTS 
 

4.1. Empirical Evidence of Cross-Modal Chunking in Human Cognition 

 
Analysis of eye-tracking data revealed distinctive patterns of cross-modal integration in human 
participants. When text mentioned specific objects, participants rapidly shifted visual attention to 
corresponding regions (mean latency = 267ms, SD = 42ms), demonstrating automatic cross-
modal alignment. Fixation transitions between semantically related elements across modalities 
occurred significantly more frequently than transitions between unrelated elements (t(47) = 
14.32, p < 0.001, d = 2.07), supporting the hypothesis of integrated cross-modal chunking (Figure 

1a). As shown in Figure 1a, the heatmap visualization of gaze patterns demonstrates clear 
alignment between visual fixations and textual references, with concentrated attention on 
semantically relevant regions. 
 
Neuroimaging results revealed synchronized activity across visual processing regions (fusiform 
gyrus, lateral occipital complex) and language areas (superior temporal sulcus, inferior frontal 
gyrus), with functional connectivity patterns modulated by semantic relationships between 

modalities (Figure 1b). Figure 1b illustrates the network analysis showing these synchronized 
activation patterns between visual cortical regions and language processing areas. Independent 
component analysis identified networks specifically involved in cross-modal integration, with 
connectivity strength predictive of task performance (r = 0.64, p < 0.001). 
 
Working memory assessments demonstrated that participants effectively retained approximately 
4-6 cross-modal chunks (M = 4.8, SD = 0.7), regardless of the number of individual elements 
contained within each chunk. Performance declined sharply when the number of semantically 

distinct units exceeded this capacity, even when the total number of visual or textual elements 
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remained constant. This finding aligns with established chunking theories while extending them 
to the multimodal domain. 
 

 
 

Figure 1  : Evidence of cross-model chunking in human cognition 

 

4.2. Analysis of Current Tokenization Approaches 
 

Detailed examination of tokenization schemes employed by current state-of-the-art multimodal 
models revealed several limitations relative to human processing. As illustrated in Figure 2a, 

most approaches employ separate encoding processes for each modality, with images typically 
divided into fixed-size patches (e.g., 16×16 pixels) and text segmented using subword 
tokenization methods. Figure 2 provides a comprehensive visualization of these tokenization 
approaches across multiple models. 
 
Quantitative analysis identified the following specific constraints: 
 

Static Boundaries: Current models predominantly use fixed tokenization schemes that do not 
adapt to semantic context or task demands, unlike human chunking which demonstrates 
substantial contextual flexibility. Figure 2b explicitly demonstrates this limitation through 
comparative visualizations of boundary adaptability. We quantified this by measuring the 
variance in token boundaries across different context conditions, finding significantly lower 
variability in model tokenization compared to human segmentation (F-test: F(47,3) = 31.8, p < 
0.001). 
 

Modality Isolation: Despite cross-modal attention mechanisms, fundamental tokenization occurs 
independently for each modality, limiting integration at the representation level, as shown in 
Figure 2c. Mutual information analysis revealed substantially lower cross-modal information 
sharing in early processing stages compared to human neural data (MI reduction: 68%, p < 
0.001). 
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Figure 2 (part 1) : Analysis of tokenization approaches in multimodal LLMS 

 
Hierarchical Limitations: Most models lack explicit hierarchical token structures that would 

allow composition and decomposition of information units based on semantic relationships. 
Figure 2d provides a clear visualization of these hierarchical constraints. This was particularly 
evident in tasks requiring multi-level reasoning, where models exhibited characteristic failure 
patterns when information needed to be integrated across hierarchical levels. 
 
Context Insensitivity: Token representations typically remain fixed regardless of the broader 
context, unlike human chunking which dynamically adjusts based on contextual factors, as 

demonstrated in Figure 2e. We measured this through contextual modulation indices, which were 
significantly higher in human processing (t(47) = 11.3, p < 0.001, d = 1.63). 
 
These limitations were particularly pronounced in tasks requiring fine-grained cross-modal 
reasoning, such as complex spatial relationship judgments, where models exhibited characteristic 
error patterns distinct from human performance profiles. Figure 2f illustrates these divergent error 
patterns through comparative error distribution visualizations. 

 

 
 

Figure 2 (part 2) : Limitations in current multimodal token representations 
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4.3. Performance of Dynamic Cross-Modal Tokenization 
 

Our DCMT framework demonstrated significant performance improvements across all 

benchmark tasks, as detailed in Table 1. Table 1 presents a comprehensive comparison of our 
approach with baseline models across standard benchmarks, showing consistent performance 
improvements. Most notably, substantial gains were observed on the Cross-Modal Chunking 
Evaluation dataset specifically designed to test integration capabilities (+13.7% compared to 
GPT-4V, p < 0.001). 
 
Performance comparison of our Dynamic Cross-Modal Tokenization (DCMT) approach with 

baseline models across standard benchmarks and our specialized Cross-Modal Chunking 
Evaluation (CMCE) dataset. 
 

Table 1: Performance comparison on multimodal benchmarks 

 

Model VQA (%) Complex Scene (%) GQA (%) CMCE (%) 

BLIP-2 78.3 69.4 63.7 58.9 

Flamingo 80.1 72.6 65.2 62.3 

GPT-4V 86.5 79.8 72.4 68.7 

DCMT (Ours) 94.3 85.1 77.9 82.4 

 

Note: Bold values indicate the best performance. The CMCE dataset was specifically designed to evaluate 

cross-modal chunking capabilities. All models were evaluated using the same testing protocol to ensure 

fair comparison. 

 
Beyond aggregate performance metrics, we conducted detailed analyses comparing model 
behavior with human cognitive patterns, visualized in Figure 4: 
 
Attention Alignment: Attention patterns in our DCMT model showed significantly higher 
correlation with human gaze distributions compared to baseline models (r = 0.68 vs. r = 0.41, p < 
0.001). Figure 4a provides a direct comparison of attention heatmaps between our model and 

human participants, revealing qualitatively similar patterns of focus on semantically relevant 
regions across modalities. 
 
Error Patterns: The distribution of errors produced by our model more closely resembled human 
error patterns than baseline models, particularly in cases requiring integration of multiple 
information elements (KL divergence from human distribution: 0.31 vs. 0.79, p < 0.001). Figure 
4b illustrates these comparative error distributions, suggesting that our approach encounters 

similar challenges as humans when processing complex cross-modal information. 
 
Context Sensitivity: Our model demonstrated human-like adaptation to contextual factors, 
adjusting token representations based on task demands and semantic relationships (contextual 
modulation index: 0.43 vs. 0.12 in baseline models, p < 0.001). As shown in Figure 4c, this was 
particularly evident in scenarios where identical visual or textual elements required different 
interpretations based on context. 

 
Transfer Performance: When evaluated on novel tasks not encountered during training, our model 
showed superior generalization capabilities (average performance reduction on novel tasks: 8.4% 
vs. 21.7% for baseline models, p < 0.001). Figure 4d presents a comparative analysis of transfer 
learning performance, suggesting more robust and flexible representations that better capture the 
underlying structure of cross-modal information. 
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Ablation studies revealed that all three components of our framework (adaptive boundaries, 
hierarchical representations, and cross-modal alignment) contributed significantly to the overall 
performance improvement. The combination of all components demonstrated synergistic effects, 
with performance exceeding what would be predicted by summing the individual contributions 

(interaction term in regression analysis: β = 0.16, p < 0.01). 
 

 
 

Figure 4 : Human-model behavior comparison 

 

5. DISCUSSION 
 

Our research demonstrates that bridging the gap between human cross-modal chunking and token 
representation in multimodal LLMs yields significant benefits for artificial intelligence systems. 
By incorporating dynamic, hierarchical, and aligned token representations, our approach achieves 
both improved task performance and greater cognitive plausibility. 

 
The parallels between human chunking and computational tokenization extend beyond superficial 
analogies. Both processes fundamentally transform continuous, high-dimensional sensory input 
into discrete, manageable units that can be efficiently processed and combined. However, the 
dynamic nature of human chunking—its context sensitivity, task adaptability, and semantic 
awareness—represents a crucial capability that conventional AI systems have yet to fully 
replicate. 

 
Our findings have several theoretical implications for understanding the relationship between 
human cognition and artificial intelligence. First, they suggest that incorporating cognitive 
constraints and processing mechanisms observed in humans can provide useful inductive biases 
for AI systems, particularly in domains where humans excel. Second, they highlight the 
importance of considering representational structures in addition to architectural innovations 
when developing multimodal models. While attention mechanisms have been the primary focus 
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of recent research, our results indicate that the fundamental units of representation (tokens) play 
an equally critical role in determining model capabilities. 
 
From a methodological perspective, our work demonstrates the value of detailed comparisons 

between human and model behavior beyond simple performance metrics. By analyzing attention 
patterns, error distributions, and context sensitivity, we gain insights into the underlying 
information processing mechanisms that would not be apparent from accuracy scores alone. This 
approach aligns with recent calls for more comprehensive evaluation methods in AI research 
[26]. 
 
Several limitations of our current approach warrant discussion. First, the computational demands 
of dynamic tokenization present practical challenges for deployment in resource-constrained 

environments. While our optimization techniques reduced memory requirements significantly, 
further efficiency improvements will be necessary for widespread adoption. Second, the human 
studies were conducted with relatively small sample sizes, particularly for the neuroimaging 
component, which may limit the generalizability of our findings regarding human cognitive 
patterns. Finally, our evaluation focused primarily on visual-linguistic integration, and additional 
research is needed to determine whether similar principles apply to other modality combinations 
(e.g., audio-visual). 

 
Future research directions include extending the dynamic tokenization framework to incorporate 
temporal dynamics, which would better capture the sequential nature of human information 
processing. Additionally, neuromorphic approaches that more directly simulate neural circuitry 
might provide further insights into effective cross-modal integration mechanisms. Finally, 
exploring the application of our framework to embodied AI systems could reveal additional 
constraints and opportunities for aligning computational representations with human cognition. 

 

6. CONCLUSION 
 

This research has presented a systematic investigation of the relationship between human cross-
modal chunking and token representation in multimodal large language models. By developing a 
novel framework for dynamic cross-modal tokenization that incorporates principles from 
cognitive science, we have demonstrated significant improvements in both task performance and 
human-model alignment. Our findings contribute to the broader goal of developing artificial 
intelligence systems that not only perform well on benchmark tasks but also process information 
in ways that are more cognitively plausible and aligned with human capabilities. 
 

The broader implications of this work extend to fields such as educational technology, assistive 
systems, and human-computer interaction. By aligning computational representations more 
closely with human cognitive processes, we can develop AI systems that better complement 
human capabilities, communicate more naturally, and reason in more intuitively understandable 
ways. As multimodal AI systems become increasingly integrated into various aspects of human 
activity, ensuring their compatibility with human cognitive patterns will be essential for effective 
collaboration and communication. 
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