
 

David C. Wyld et al. (Eds): Signal, CDKP, AdNLP, MLT, SAI – 2025  

pp. 01-16, 2025. CS & IT - CSCP 2025                                                          DOI: 10.5121/csit.2025.150901 

 
DENTAL 3D RECONSTRUCTION WITH 

ADVANCED KEYPOINT DETECTION AND 

SURFACE-ALIGNED GAUSSIAN SPLATTING 
 

Bohdan Vodianyk 1, Enrique Nava Baro 2, Alfonso Ariza Quintana 2,  

Anton Popov 3,4 
 

1 Escuela de Ingenierías Industriales, Universidad de Málaga, Arquitecto 

Francisco Penalosa, 6, Malaga, 29071, Spain 
2 ETSI Telecomunicación, Universidad de Málaga, Blvr. Louis Pasteur, 35, 

Malaga, 29010, Spain 
3 Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic 

Institute, Polytekhnichna Street, 16, Kyiv, 03056, Ukraine 
4 Faculty of Applied Sciences, Ukrainian Catholic University, Kozelnytska 

Street, 2a, Lviv, 79026, Ukraine 
 

ABSTRACT 
 
Accurate 3D reconstruction of dental structures is crucial for orthodontic assessment and 

surgical planning, yet traditional methods such as SIFT and ORB often struggle to capture 

fine details in complex dental textures. In this paper, we present a 3D reconstruction 

pipeline that combines KeyNetAffNetHardNet for feature detection and matching with 

Surface-Aligned Gaussian Splatting (SuGaR) for high-quality mesh reconstruction. By 

leveraging KeyNet for robust keypoint identification, AffNet for affine normalization, and 
HardNet for discriminative descriptors, our approach achieves a 25% reduction in 

computation time compared to advanced deep learning methods like LoFTR and DISK + 

LightGlue. To further optimize the 3D meshes, SuGaR aligns surface Gaussians to actual 

geometry, improving both structural accuracy and rendering fidelity. A new pipeline was 

evaluated using a set of high-resolution video frames from a single participant’s dental 

panorama, achieving peak SSIM and PSNR scores of 0.9538 and 28.98, respectively — 

improvements of approximately 10% and 15% over conventional approaches. Our findings 

highlight how integrating learned feature matching and surface-aligned reconstruction can 

yield high-fidelity 3D dental models while maintaining efficiency, ultimately advancing 

diagnostic precision and treatment outcomes in dentistry. 
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1. INTRODUCTION 
 
Accurate 3D reconstruction of dental structures plays a vital role in modern dentistry, assisting in 

orthodontic assessment, implant planning, and maxillofacial surgery. For instance, clinicians can 

employ the resulting 3D models for orthodontic bracket placement or planning complex implant 
surgeries with improved accuracy. High-fidelity 3D models provide precise insights into dental 

anatomies, enabling better treatment decisions and improved patient outcomes. However, 
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achieving high-quality reconstructions from dental imagery is challenging due to complex 
textures, low-contrast regions, and occlusions caused by soft tissues and variable lighting 

conditions. 

 

Traditional feature detection methods such as SIFT and ORB often fail to capture the fine details 
needed for robust 3D reconstruction. While deep learning–based feature matching approaches, 

including LoFTR and DISK + LightGlue, can provide notable improvements, they tend to be 

computationally expensive, which may limit their applicability in real-time clinical settings. In 
response to these issues, this paper proposes a 3D reconstruction pipeline that integrates 

KeyNetAffNetHardNet for feature detection and matching, coupled with Surface-Aligned 

Gaussian Splatting (SuGaR) for efficient and high-quality mesh reconstruction. By applying 
KeyNet for discerning salient keypoints, AffNet for robust affine normalization, and HardNet for 

discriminative descriptors, the pipeline can capture precise correspondences in scenes 

characterized by reflective surfaces and repetitive patterns. Meanwhile, SuGaR improves 

structural accuracy by aligning surface Gaussians with the underlying 3D geometry, resulting in 
more faithful dental meshes. 

 

Although our experiments demonstrate strong results on data collected from a single participant, 
we recognize that working with a limited dataset may constrain the generalizability of our 

approach. To address broader clinical scenarios, future research will include multiple subjects, 

more diverse imaging conditions. Even in its current form, however, the proposed pipeline shows 
that accurate 3D models can be generated using standard photographic equipment, potentially 

reducing hardware costs and enhancing accessibility in dental practices. 

 

2. RELATED WORK 
 
Accurate 3D reconstruction remains a core challenge in computer vision, and dental imagery 

poses especially difficult conditions due to frequent occlusions, complex textures, and low-

texture regions. Traditional feature detectors such as SIFT [1] and ORB [2] provide basic 
robustness to scale and rotation but often fail to detect enough reliable keypoints on smooth or 

repetitive surfaces typically found in intraoral images [3, 4]. Deep learning approaches, such as 

LoFTR [5] and DISK combined with LightGlue [6, 7], rely on dense matching or attention 

mechanisms to overcome low-texture problems but require considerable computational resources, 
potentially hindering live clinical use. 

 

In contrast, KeyNetAffNetHardNet effectively unifies three specialized components. KeyNet 
focuses on detecting salient features even in dental imagery with reflective enamel or low 

contrast, AffNet normalizes patches to handle large viewpoint variations, and HardNet creates 

robust descriptors that mitigate mismatches in repetitive or glossy areas [8, 9]. Together, these 

steps produce consistent keypoint correspondences in scenarios where other methods struggle. To 
generate high-fidelity 3D meshes from these matched points, our pipeline employs SuGaR [10], 

which aligns surface Gaussians through a regularization step that is particularly helpful for 

reconstructing curved dental surfaces. Although earlier studies addressed photogrammetry-based 
dental reconstruction [11, 12] or specialized scanning devices [13], the combined use of advanced 

feature matching and Gaussian Splatting can provide a more accessible and cost-effective 

solution. By pairing learned descriptors with an efficient, geometry-aligned reconstruction 
strategy, this method captures both overall tooth contours and fine-grained surface details that are 

crucial for clinical evaluations. 
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3. METHODS 
 
This study developed and evaluated a 3D reconstruction pipeline tailored for dental imagery, 

addressing the unique challenges posed by complex textures, repetitive patterns, and low-texture 

regions inherent in dental photographs. The methodology encompasses data acquisition, keypoint 

detection and matching, 3D reconstruction using Gaussian Splatting and SuGaR, and evaluation 
using quantitative metrics. 

 

3.1. Experiment Design 
 

To create a comprehensive dataset for the experiments, three high-definition videos of a single 

participant's dental panorama were recorded, designated as Experiment IDs 1, 2, and 3. 
Specialized dental retractors were used during filming to expose the maximum surface area of the 

teeth, minimising occlusions from lips and cheeks and providing unobstructed views crucial for 

accurate 3D reconstruction. The camera followed an ellipsoidal trajectory (Figure 1) around the 
oral cavity to effectively cover the main regions of the teeth. 

 

 
 

Figure 1.  Camera trajectory in COLMAP visualization [14]. 
 

3.2. Dataset Description 

 
Each video was captured at a resolution of 1920×1080 pixels (Full HD) with a frame rate of 30 

frames per second (FPS) and a duration of approximately 25 to 30 seconds. To assess the 
robustness of the reconstruction pipeline under varying data densities, frames were extracted 

from each video at intervals corresponding to every 5, 10, 15, 20, 25, and 30 frames, resulting in 

different sets of images for each experiment. This approach generated multiple datasets with 

varying numbers of frames, simulating different sampling conditions and allowing evaluation of 
the pipeline's performance with respect to data sparsity. 

 

For instance, extracting every 5th frame from a 25-second video at 30 FPS yields a dataset of 
approximately 150 images, while extracting every 30th frame results in a dataset of about 25 

images. This systematic variation in frame extraction intervals enabled testing how temporal 

spacing between frames affects keypoint detection, matching, and ultimately, the quality of the 

3D reconstruction. 
 

 

 
 



4                                             Computer Science & Information Technology (CS & IT) 

 

3.3. Pairwise Matching 
 

Before proceeding with the 3D reconstruction, an initial evaluation of keypoint detection and 

matching performance for the different methods was conducted. This step aimed to assess the 
effectiveness of each method in establishing reliable correspondences under varying conditions. 

 

 
 

Figure 2.  Pairs samples from each experiment video of the dental panorama. 
 

For each image set extracted at different frame intervals, initially, two neighboring frames were 

selected (e.g., from video 2 with a frame gap of 10 frames) and applied keypoint detection and 
matching using the following methods: 

 

● SIFT (Scale-Invariant Feature Transform) is a classical feature detection and 
description algorithm renowned for its robustness to changes in scale, rotation, and 

illumination. SIFT operates by detecting keypoints in scale space using the Difference-

of-Gaussian Method [1]. It identifies extrema that are invariant to scale and orientation 

by locating peaks in the DoG pyramid, which is constructed by subtracting successive 
Gaussian-blurred images at different scales [15]. 

● ORB (Oriented FAST and Rotated BRIEF) is a feature detection and description 

algorithm that is an efficient alternative to more computationally intensive methods like 
SIFT. ORB combines the FAST (Features from Accelerated Segment Test) keypoint 

detector with the BRIEF (Binary Robust Independent Elementary Features) descriptor, 

enhancing them to provide orientation invariance and robustness to rotation [2]. 
● LoFTR (Local Feature TRansformer) is a deep learning-based method that performs 

dense matching without relying on explicit keypoint detection and descriptor 

computation. In order to model long-range dependencies and contextual information 
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across images, it uses a transformer architecture, thereby also being capable of finding 
pixel-wise correspondences in scenarios that are difficult as low texture or repetitive 

pattern regions  [16]. LoFTR directly outputs dense matches in pixel coordinates by 

being given pairs of images. It combines two modules, a CNN backbone for feature 

extraction, and a transformer module for feature correlation, then a matching head. Self-
attention mechanisms used by the transformer module make it possible to capture the 

global context which proves especially useful to capture correspondences that are not 

locally distinctive [5]. 
 

● KeyNetAffNetHardNet is an integrated framework that combines three deep learning-

based models to enhance keypoint detection, affine shape estimation, and descriptor 
generation, respectively. This combination is particularly effective in challenging 

imaging conditions, as it prioritizes discriminability and robustness in keypoint matching. 

 

KeyNet is a convolutional neural network designed to detect salient keypoints that are 
both repeatable and discriminative [17]. It learns to focus on regions with rich structural 

information by training on datasets where keypoint locations are annotated. KeyNet 

employs a combination of handcrafted and learned filters to balance computational 
efficiency and detection performance [18]. 

 

AffNet estimates the local affine transformation around each keypoint, effectively 
normalising the keypoints to a canonical form [19, 20]. Robustness to viewpoint changes, 

scale variations, and imaging distortions — common in the dataset due to dental 

retractors and non-frontal camera angles — is also improved by this affine adaptation. 

Given the output of KeyNet the patches around each detected keypoint are extracted and 
affine parameters that describe the local shape are predicted using AffNet. The estimated 

affine transformation is used to warp the patches to a canonical shape so that a consistent 

descriptor can be computed [21]. 
 

HardNet is a CNN-based descriptor that generates compact and highly discriminative 

feature descriptors [17]. It is trained with a triplet margin loss to maximize the distance 

between descriptors of different keypoints while minimising the distance between 
descriptors of the same keypoint in different images. 

 

● DISK + LightGlue leverages deep learning for both keypoint detection and feature 
matching, aiming to improve performance in challenging conditions. 

 

The deep learning-based method DISK jointly learns keypoint detection and descriptor 
generation in an end-to-end fashion. However, it tries to produce repeatable and highly 

informative keypoints for matching. DISK is trained with reinforcement learning to 

choose optimal keypoint locations and descriptors from a model trained for a 

downstream task [6]. 
 

LightGlue is an advanced feature matcher benefiting from attention mechanisms to 

improve feature-matching speed and robustness. It uses facets of DISK descriptors and 
matches on a transformer-like architecture that incorporates local and global context. 

Given two images, LightGlue’s descriptors are processed to compute a matching matrix 

that contains the similarity of each descriptor. The matching scores are refined by using 
self-attention and cross-attention layers that allow it to handle difficult matching 

scenarios like repetitive patterns and large viewpoint changes [7, 22]. 

 



6                                             Computer Science & Information Technology (CS & IT) 

 

The number of matched inliers for each method was measured by applying geometric verification 
using MAGSAC [23] to eliminate outliers. This evaluation provided insights into each method's 

ability to handle typical frame-to-frame variations in dental videos. To increase the difficulty of 

the keypoint matching algorithms, three frame pairs were selected from each video, ensuring they 

contained the largest differences in camera position and viewpoint. Due to significant viewpoint 
changes, occlusions, and differences in illumination, these pairs were the most difficult to match 

features in. For these pairs, the same keypoint detection and matching methods were used, and 

the number of matched inliers was counted after geometric verification. This step was enabled to 
determine how robust each method was under adverse conditions. 

 

3.4. Image Processing Pipeline 
 

The entire computational process was executed on a workstation equipped with an  NVIDIA 

RTX A2000 12GB. 
 

 
 

Figure 3.  Block diagram of full 3D reconstruction investigation. 
 

Figure 3 illustrates our complete reconstruction pipeline. In the first stage, we detect and match 
keypoints using KeyNetAffNetHardNet, SIFT, ORB, LoFTR, or DISK + LightGlue. Next, a 

Structure-from-Motion (SfM) [24, 25] step estimates camera poses and generates a sparse point 

cloud, which we refine using Gaussian Splatting. Finally, SuGaR enhances mesh quality by 

aligning surface Gaussians with the underlying geometry, resulting in more accurate and visually 
coherent dental models.  

 

Firstly, various feature detection and matching algorithms were applied to the extracted frames. 
The methods evaluated were: SIFT, ORB, LoFTR, KeyNetAffNetHardNet and DISK + 

LightGlue. Using the matched keypoints from each method, SfM was performed to estimate 

camera poses and reconstruct initial sparse 3D point clouds. This involved triangulating matched 
keypoints to generate 3D points and refining the camera parameters and point positions through 

sparse bundle adjustment, minimising the overall reprojection error across all images. Then 

Gaussian Splatting was applied to the sparse point clouds, running 7.000 iterations to optimize 

the positions, orientations, and appearances of the 3D Gaussians representing the scene geometry. 
 

For mesh reconstruction, SuGaR was employed, extending Gaussian Splatting by introducing a 

regularization term that aligns the Gaussians with the surfaces of the dental structures. This 
alignment is achieved by minimising the difference between the actual and ideal Depth-Normal 

consistency regularizer (dn_consistency) [26, 10] of the scene, under the assumption that the 

Gaussians are flat and distributed across the surface. A total of 12.000 iterations were executed 
using the "dn_consistency" method for mesh reconstruction, followed by an additional 4.000 

iterations for refinement. This process resulted in high-quality meshes that accurately captured 
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the intricate geometries of the dental anatomy. Subsequently, a Taubin filter [27] was applied to 

smooth the resulting mesh, using parameters 𝜆 = 0.5, 𝜇 = −0.53, and 10 iterations. 

 

3.5. Evaluation Metrics 
 

To quantitatively assess the quality of the reconstructed 3D models, the following standard 

metrics [28] were employed: 
 

● Peak Signal-to-Noise Ratio (PSNR): Measures the fidelity of reconstructed images 

compared to the input multi-view images, with higher values, indicating better 
reconstruction fidelity [29]. 

● Structural Similarity Index Measure (SSIM): Evaluates the structural similarity 

between images, considering luminance, contrast, and structure. SSIM values range from 

0 to 1, with higher values indicating greater similarity [30]. 
● Learned Perceptual Image Patch Similarity (LPIPS): Uses deep neural networks to 

evaluate perceptual differences between images, with lower values indicating more 

perceptually similar images [31]. 
 

4. RESULTS 
 

4.1. Pairwise Matching 
 

The initial evaluation aimed to identify the most effective way to establish reliable 

correspondences in dental imagery, especially given reflective surfaces and partial occlusions. 
Five techniques — ORB, SIFT, LoFTR, KeyNetAffNetHardNet, and DISK + LightGlue — were 

compared with attention to matching performance, computational efficiency, and robustness 

(Table 1). 

 
ORB applies a FAST corner detector and BRIEF descriptor for high speed but struggles on 

smooth or repetitive dental surfaces. SIFT finds scale-invariant features using a Difference-of-

Gaussians pyramid, yet can still miss keypoints in low-contrast intraoral views. LoFTR bypasses 
explicit keypoint detection with a transformer-based, dense matching approach, while DISK + 

LightGlue combines learned keypoint detection and attention-guided descriptor matching. These 

deep-learning methods handle low-texture regions but can be computationally demanding. 

 
By contrast, KeyNetAffNetHardNet unifies learned keypoint detection (KeyNet), affine 

normalization (AffNet), and robust descriptor generation (HardNet). This integrated design is 

well-suited to reflective enamel and subtle texture variations, ensuring repeatable keypoints and 
fewer false matches even under large viewpoint changes. Our tests across multiple frame 

extraction intervals show that KeyNetAffNetHardNet consistently achieves a good balance of 

inlier matches, memory usage, and overall stability, making it the strongest candidate for 
subsequent 3D reconstruction in a dental context. 
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Table 1.  Comparison of ORB, SIFT, LoFTR, KeyNetAffNetHardNet, and DISK + LightGlue for pairwise 

matching under different conditions (bold numbers are best). 

 

 
 

When applying pairwise matching of neighboring frames extracted from the videos, ORB 

exhibited the lowest matching rate among all methods. Although ORB required minimal memory 
usage, approximately 1.71 Gb of RAM (Random Access Memory), it failed to provide a 

sufficient number of inlier matches after geometric verification. SIFT performed slightly better 

than ORB, with a marginally higher matching rate and a similar memory footprint of about 1.76 
Gb of RAM. However, both traditional methods were outperformed by their deep learning-based 

counterparts in terms of matching accuracy and robustness. 

 

LoFTR achieved the highest matching rate in the neighboring frames scenario, indicating 
excellent performance in establishing correspondences. However, this advantage came with 

significant computational costs. LoFTR required approximately 6.76 Gb of RAM and operated 

exclusively on grayscale images. To accommodate memory constraints, the size of the input 
images was reduced to 65% of their original resolution, which may have compromised the level 

of detail necessary for accurate 3D reconstruction. 
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KeyNetAffNetHardNet emerged as a strong contender, providing very robust matching results 
while maintaining a reasonable memory usage of around 3.50 Gb of RAM. This method 

demonstrated a favorable balance between matching performance and computational efficiency, 

making it suitable for practical applications where resources are limited. DISK + LightGlue 

ranked third in matching performance, offering good results but at the cost of high memory 
consumption, approximately 9.42 Gb of RAM, which could be prohibitive in resource-

constrained environments.  

 
To further challenge the robustness of these methods, tests were conducted on frame pairs with 

extreme differences in camera positions and viewpoints. In these challenging conditions, only 

KeyNetAffNetHardNet maintained robust matching performance, consistently providing a 
sufficient number of inlier matches for reliable camera pose estimation. The other methods, 

including LoFTR and DISK + LightGlue, struggled significantly, failing to produce enough 

matches due to the substantial changes in perspective and occlusions present in the dental images. 

 
The evaluation demonstrated that ORB consistently yielded an order of magnitude fewer matched 

inliers compared to other methods, both in neighboring frames and in frames with extreme 

viewpoint differences. ORB's binary descriptors are computationally efficient but lack 
discriminability in the complex and repeated textures of dental imagery. The small number of 

inliers suggests that there are not enough reliable correspondences for accurate camera pose 

estimation and 3D reconstruction. 
 

Due to ORB's poor performance in keypoint matching, it was disregarded in the subsequent 3D 

reconstruction process using Gaussian Splatting. As there are not many reliable matches, 

including ORB, it would most likely lead to false camera poses and poor reconstruction quality. 
The focus was placed on the methods that demonstrated satisfactory performance in the initial 

evaluation. 

 

4.2. Full 3D Reconstruction of Dental Structures 
 

After evaluating the keypoint detection and matching methods, the main reconstruction pipeline 
was applied, utilising Gaussian Splatting and SuGaR for 3D reconstruction. The goal was to 

assess how the different keypoint detection methods impacted the quality of the final 3D models 

of dental structures. Three key metrics were used to evaluate the reconstructed models: SSIM, 
PSNR, and LPIPS. After generating the 3D reconstructions from the point clouds obtained 

through each keypoint detection method, images were rendered from the reconstructed models 

(Figure 4) and compared with the original input frames in Table 2. 
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Table 2.  Comparison of 3D mesh reconstruction by SuGaR with SIFT, LoFTR, KeyNetAffNetHardNet, 

and DISK + LightGlue keypoint detectors (bold numbers are best).  
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Figure 4.  Final 3D mesh reconstruction by SuGaR with SIFT, LoFTR, KeyNetAffNetHardNet, and DISK 

+ LightGlue keypoint detectors. 
 
 

KeyNetAffNetHardNet consistently resulted in the highest quality reconstructions. Models 

reconstructed using this method achieved the highest SSIM and PSNR values across all datasets 
and frame extraction intervals. This indicates that the reconstructed images were structurally 

similar to the original images and maintained high fidelity, effectively capturing fine details and 

textures of the dental anatomy. 
 

The LPIPS metric sometimes produced slightly better scores for the models reconstructed using 

DISK + LightGlue, but overall, KeyNetAffNetHardNet was better across all three metrics 

collectively. However, the marginal advantage of DISK + LightGlue in LPIPS did not 
compensate for its additional computational cost and less reliable performance in both SSIM and 

PSNR. 
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SIFT and LoFTR-based reconstructions did not perform as well. The SIFT-based method was 
shown to be less accurate in capturing structural details and textures, based on lower SSIM and 

PSNR values. Even though LoFTR had strong matching performance for neighboring frames, the 

final 3D models from LoFTR-based reconstructions were of reduced quality. 

 

4.3. Timing Comparison of Keypoint Methods 
 
Total processing times were measured across multiple experiments and frame extraction 

intervals. KeyNetAffNetHardNet typically required 900 s to 1,200 s (about 15–20 minutes) per 

experiment, showing only moderate variation between different frame spacings. DISK + 

LightGlue exhibited similar or slightly shorter run times, ranging from around 1,100 s to 1,700 s 
(18–27 minutes). In contrast, LoFTR demonstrated the widest variability, with durations spanning 

1,100 s to 1,900 s (roughly 18–31 minutes), especially when processing denser frame extractions. 

Meanwhile, SIFT generally finished within 700 s to 1,200 s (12–20 minutes) but occasionally 
produced anomalously short measurements, possibly due to reduced subsets of frames in certain 

trials. Overall, these results indicate that LoFTR, although robust in low-texture regions, may 

incur notably higher computational costs, whereas KeyNetAffNetHardNet and DISK + 
LightGlue strike a more favorable balance of speed and consistent keypoint matching 

performance. 

 

5. DISCUSSION 
 
This study presented a novel pipeline for 3D reconstruction of dental structures, addressing the 

inherent challenges of dental imagery, including complex textures, repetitive patterns, and low-

texture regions. By integrating advanced keypoint detection with KeyNetAffNetHardNet, the 
goal was to enhance the discriminability and robustness of keypoint matching in dental images. 

The incorporation of Gaussian Splatting for efficient scene representation and SuGaR for precise 

mesh reconstruction further facilitated efficient mesh reconstruction, leading to high-quality 3D 

models. 
 

The experimental results demonstrated that the KeyNetAffnetHardNet significantly outperformed 

traditional methods like SIFT and ORB, as well as advanced techniques such as LoFTR and 
DISK + LightGlue, in terms of keypoint matching accuracy and computational efficiency. 

Specifically, KeyNetAffnetHardNet consistently achieved the highest number of inlier matches 

and maintained robust performance even under challenging conditions with extreme viewpoint 

differences. This robustness is crucial for dental imaging, where variations in perspective and 
occlusions are common due to the confined space of the oral cavity. 

 

The experimental results demonstrate significant enhancements achieved by the proposed 
pipeline in 3D dental reconstruction. With dense frame extraction intervals (every 5 frames), the 

reconstructed models attained high SSIM values of approximately 0.95 and PSNR values up to 

29, indicating excellent structural similarity and fidelity to the original images. The LPIPS metric 
was as low as 0.24, confirming high perceptual quality. Compared to traditional methods like 

SIFT and ORB, which yielded SSIM values around 0.9 and PSNR below 25, the proposed 

pipeline improved SSIM and PSNR by up to 10% and 15%, respectively. This improvement is 

attributed to the advanced keypoint detection and matching capabilities of 
KeyNetAffNetHardNet, effectively handling complex textures and repetitive patterns in dental 

imagery. Even with increased frame intervals (every 30 frames) leading to sparse datasets, the 

method maintained robust performance, with SSIM values between 0.89 and 0.91 and PSNR 
ranging from 21 to 23. The LPIPS metric remained low at approximately 0.28, indicating 

preserved perceptual quality despite reduced data density. When compared to state-of-the-art 
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methods like LoFTR and DISK + LightGlue — which achieved SSIM values around 0.88 and 
PSNR up to 22 on sparse datasets — the proposed pipeline consistently outperformed them 

across all metrics. This demonstrates superior reconstruction quality and robustness to data 

sparsity. The integration of SuGaR further enhanced mesh accuracy and rendering quality. The 

pipeline effectively captured fine dental structures, resulting in smoother surfaces and more 
detailed 3D models. 

 

These results highlight the significant contributions of the new pipeline. By effectively 
addressing challenges such as complex textures, repetitive patterns, and low-texture regions, the 

method advances 3D dental reconstruction. It provides a robust and efficient solution for 

generating high-fidelity 3D models, which is crucial for precise dental treatment planning and 
diagnostics. 

 

The experiments indicate that the superior performance of KeyNetAffNetHardNet is partly 

attributed to several inherent design characteristics. In particular, KeyNet is geared towards 
detecting keypoints in complex textures, such as those found in dental images, where the 

peppered texture of teeth and gums makes picking out corners of details difficult. The capacity to 

focus on the salient features helps to offer more reliable keypoint detection on repetitive patterns 
or low texture regions, where conventional methods such as SIFT and ORB are vulnerable. In 

addition to KeyNet, AffNet estimates the affine shape of each keypoint and is robust to viewpoint 

changes and imaging distortions. Such an affine adaptation is greatly desired in dental imaging, 
where capturing different angles of the teeth requires major perspective variation [32]. AffNet 

normalizes the key points to a canonical form such that there is consistent feature representation 

across images from different viewpoints [21]. Furthermore, HardNet gives rise to highly 

discriminative descriptors for the detected keypoints. These are optimized to be able to 
distinguish between similar features, where those familiar to us are likely to be given lower 

priority so as to discount mismatches in places that are very repetitive [33]. If this level of 

discriminability is not achieved, high inlier match counts and accurate keypoint correspondences 
across images may not be obtained. 

 

In comparison, advanced methods like LoFTR and DISK + LightGlue, while powerful, may not 

be as effective in this specific context. LoFTR relies on dense matching without explicit keypoint 
detection, which can be computationally intensive and may struggle with the repetitive patterns 

and low-texture regions common in dental images [5, 16]. DISK + LightGlue, although 

incorporating attention mechanisms to improve matching, may be more prone to confusion in 
areas with low texture or repetitive features [7, 34]. Additionally, these methods often require 

more computational resources and may not handle extreme viewpoint changes as robustly as 

KeyNetAffNetHardNet. While the proposed pipeline showed considerable improvements, it is 
important to acknowledge that the quality of the reconstructed teeth surfaces is still not perfect. 

Despite achieving higher SSIM and PSNR values compared to other methods, some fine details 

and surface textures of the dental structures were not captured with complete accuracy. This 

limitation can be attributed to several factors, including the reflective nature of dental enamel, the 
presence of specular highlights, and the challenges in capturing subtle variations in tooth 

morphology. The reconstructed models serve as effective representations of the significant 

geometric features of dental structures, which can meet the needs of further clinical applications 
(for instance, orthodontic assessments and implant planning). Although the identified 

imperfections do not severely obstruct the practical utility of the models, further refinement in 

these areas is needed. 
 

In future work, other keypoint matching and detection algorithms will be investigated to enable 

higher accuracy in reconstructing fine-grained details. The reconstructions could be improved by 

incorporating methods for tackling reflective surfaces and specular highlights. Moreover, by 
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refining the mesh reconstruction process by means of more advanced regularization methods and 
larger iteration counts, it may be possible to extract smaller details and smoother surfaces. The 

dataset is also to be expanded to encompass a broader selection of dental anatomies, and also 

different imaging conditions. Limitations to the generalizability of the results include use of 

videos from one single participant in current study. An additional evaluation would involve 
including datasets that involve diverse datasets regarding dental structures, lighting 

environments, and heterogeneous patient demographics. 

 

6. CONCLUSIONS 
 

This study presents a comprehensive evaluation of keypoint detection and matching techniques 

for dental 3D reconstruction, demonstrating that the integration of KeyNetAffNetHardNet with 

Gaussian Splatting and SuGaR yields superior results compared to traditional and advanced 
methods. The proposed pipeline effectively addresses the unique challenges of dental imagery, 

providing high-fidelity 3D models that are crucial for further clinical applications in dentistry. 

Although the quality of the reconstructed teeth surfaces is not yet perfect, the results are 
promising and indicate that the pipeline functions effectively in capturing the essential 

geometries of dental structures. The imperfections observed offer valuable insights into areas for 

future improvement, guiding subsequent research efforts toward enhancing the accuracy and 
utility of the models. The ability to generate accurate and efficient 3D reconstructions has 

significant implications for dental diagnostics, treatment planning, and patient outcomes. By 

improving upon existing methods and introducing a practical solution that balances performance 

and computational efficiency, this work contributes to advancing the application of computer 
vision techniques in dentistry. 

 

Future research will aim to refine the pipeline further, focusing on enhancing the quality of the 
reconstructed models and expanding the dataset for greater generalizability. Exploring additional 

techniques to handle the reflective properties of dental surfaces and incorporating advanced 

algorithms for capturing fine details will be essential steps forward.  
 

7. LIMITATIONS AND FUTURE WORK 
 

While our pipeline demonstrates promising results, one limitation is the relatively small dataset, 

that is currently drawn from a single participant. As a result, there may be variations in patient 
anatomy, lighting conditions, and enamel reflections that are not fully captured. In future work, 

we aim to expand our dataset to include multiple subjects, which would enable broader validation 

and potentially improve the generalizability of our methods. Additionally, integrating real-time 
processing or hardware-accelerated techniques could further support clinical adoption. 
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