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ABSTRACT 
 

Autoencoders (AEs) are Deep Learning (DL) models that are well known for their ability to 

compress and reconstruct data.  When an AE compresses input data, a latent space is 

created which yields a compressed representation of the original data with a smaller set of 

features.  Genetic Algorithms (GAs)  based on evolutionary principles can be used to 

optimize various hyperparameters of a DL model.  

 
This work involves two tasks.  First, it focuses on the application of an AE on image data 

along with various configurations of the AE structure and its constituent encoder/decoder 

structure using Multi-Layer Perceptrons (MLPs).  Visualizations of the AE loss functions 

during training are provided, along with various latent space results obtained using 

clustering techniques.  The second focus of the paper is on the application of the GA on a 

Convolutional AE where optimization of the Convolutional Neural Networks (CNN) 

encoder/decoder structures is done by converting the architecture into genes for image 

classification. We see that the AE is a flexible and robust model that can successfully be 

applied on a variety of image datasets and the GA model initially surpasses the AE model. 

After discovering the appropriate hyperparameters values the performance of AE can be 
improved and predominate the one of the GA model. 
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1. INTRODUCTION 
 
AEs are encoder/decoder-based DL models that can be used for many purposes such as: 

dimensionality reduction, feature extraction, etc.  The AE has a compressed latent space between 

the encoder/decoder which is a lower-dimensional space that captures the essential features of the 
input data. This latent space is a powerful concept in machine learning that provides a way to 

represent complex data in a manageable form.   

 
The fundamental parameters of the latent space are explored in the experiments to yield improved 

AE performance. Additionally, the experiments focus the application of the AE on the digit 

MNIST dataset, along with various configurations of the AE structure and the application of t-

SNE and k-Means clustering to visualize the latent space in a low dimensional setting. 
 

In [1], an explanation of the principle of a convolutional AE and its primary development process 

are shown. In [2], the different types of AEs along with their operations are described. The 
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description of different variants of AEs along with their relationships are discussed in [3]. In [4], 
an effective and reliable DL method known as stacked denoising AE (SDAE) for process pattern 

recognition in manufacturing processes is presented.  

 

Regarding the second focus of this work, the manual optimization process for a DL model can 
require substantial effort and time. Grid search for DL model parameters is not suitable for many 

hyperparameter combinations.  GAs are optimization techniques based on evolutionary principles 

to find solutions to complex problems. The GA involves the following processes: Encoding the 
solution, initialization, evaluation, selection, crossover, mutation, and creation of the new 

generation. 

  
The CNN is described in [5] with introduction, overview, building blocks of CNN, different 

architecture of CNN, applications in several Domain areas, issues, and challenges. 

 

The study of the application of GA in immunology for the task of solving the OneMax problem, 
which is to maximize the number of 1s in a bit string of length n, is described in [6]. In [7], the 

genetic operators and their usages, considering also hybrid algorithms, are discussed. In [8], an 

algorithm called Genetic Algorithm Based On Natural Selection Theory (GABONST) is 
proposed, along with an extension using Extreme Learning Machine (ELM). The ELM is 

considered as one of the most useful learning models for carrying out classification and 

regression analysis. 
 

In [9] GAs are particularly suitable for optimization problems in which an effective system 

design or set of parameter values is sought. In nature, genetic regulatory networks (GRNs) form 

the basic control layer in the regulation of gene expression levels. A new algorithm is presented 
in [10] named gene-pool optimal mixing evolutionary algorithm (GOMEA) with explicitly design 

to estimate and exploit linkage information. In [11] a Genetic Algorithm-based Scheduling Tool 

(GAST) has been developed for the scheduling of complex products with multiple resource 
constraints and deep product structure. This method produces significantly better delivery 

performance and resource utilization than the Company plans. A chapter in [12] introduces two 

popular methods for unsupervised representation learning using Neural Networks 

namely autoencoders and variational autoencoders. While autoencoders and variational 
autoencoders share the same general idea, they differ significantly in their theoretical foundations 

and abilities. The chapter outlines the theoretical foundations of both methods, discusses their 

advantages and practical challenges, outlines some of their various extensions,  
 

In [13] a novel deep clustering algorithm is presented that utilizes a variational autoencoder 

(VAE) framework with an entangled multi encoder-decoder neural architecture that can produce 
for each cluster high quality synthetic examples. Novel autoencoders for unsupervised feature-

learning from hyperspectral data is presented in [14].  

 

The encoder model comprises the CNN with MaxPooling layers, where the input size is reduced 
per layer. The automatic optimization of a CNN model can be achieved using GAs. Encoding a 

CNN into a variable length gene size sequence is achieved with the rule that all will start with a 

convolutional layer and finish with a dense layer (architecture encoding). The construction 
process deals with the addition of a new convolutional layer, using BN/pooling layer. 

 

Among the usual hyperparameter tuning, the main purpose is concentrated at the network 
architecture itself. The automating hyperparameter optimization of a DL model using 

Evolutionary Methods (EMs) can be advantageous. There are two approaches that are presented 

for Convolutional AEs in this work, both of which are applied on the Fashion-MNIST dataset.  
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In the first configuration, a convolutional AE is applied using CNNs as the encoder/decoder 
mechanism, where the CNN contains dropout and Batch Normalization (BN) layers that can 

reduce memorization and avoid the vanishing/exploding gradient issue, respectively. With this 

approach, the loss function is unsatisfactory.   

 
In the second configuration, the Convolutional AE structure is optimized using the GA, where the 

encoding of the architecture into a gene sequence is carried out.  A construction process for 

individuals includes the creation of the gene sequence, the crossover and mutation, and the check 
for additional layers. The best individual is selected, and with the evolution, better loss 

performance is achieved for network optimization.  
 
The paper organization is as follows. In Section 2 the Autoencoders ML models are included. 

Section 3 deals with Genetic Algorithms and Convolutional Autoencoder. 

 

2. AUTOENCODERS 
 
AEs are deep learning architectures that are used for a variety of tasks such as dimensionality 

reduction, data generation, anomaly detection, and feature extraction.  An AE is an 

encoder/decoder structure that uses an encoder to compress high dimensionality input data, ,  to 

a smaller dimension, , that captures the most meaningful features of the input data.  A decoder 

also exists that is used to reconstruct the original input data from the compressed representation; 

an estimate  is created that aims to replicate .  Both the encoder and decoder are neural 

networks, and the choices of what neural networks to use depends on the input data at hand.   

 

2.1. Autoencoders for Clustering  
 

For our case, we aim to apply the AE to image data, specifically MNIST image data of numerical 

digits, and study its components in detail through performance results and visuals.  We begin by 

taking image data and transforming it into a one-dimensional vector which will be our input 
vector.   

 

The digits MNIST data has standard train/test data that we use to train and test our AE.  We train 
the AE using a cross-entropy loss function over 100 epochs.  To visualize the training procedure, 

we look at the compressed representation of the data, , which we select to be .  We apply t-

SNE to the compressed data to get a 2D representation of the compression that takes place after 

the encoder in the AE.  Figure 1a shows at epoch 0, the color-coded (based on the digit of the 

data point) embedding space color-coded visualizations, where each point represents a data 

sample from the training set. All the points seem scattered as the AE has not yet learned the 

structure of the data.  Figure 1b shows that after  epochs of training, the AE understands the 

patterns in the data and the embedding space representations are in clusters based on the  

different digits in the MNIST data.    
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   Figure 1a. visualization at Epoch 0                       Figure 1b. visualization at Epoch 99.  

 

Figure 2 shows this result from test data where we look at the embedding space representations, 

apply t-SNE to get the data in 2D, and then apply k-Means clustering with  to obtain 

clusters of the low dimensional data.  The same cluster pattern is obtained, as in Figure 1b and 
the obtained clusters correctly match with the test labels.   

 

 
          

Figure 2.  K-means clustered embedding space visualization 

 

The latent space in the AE allows for a smaller representation of the input. For visualization, we 
apply a two-dimensional t-SNE to the latent space representation so we can observe the 

compressed data in the embedding space. As the AE is trained, the data points transition from 

being scattered at the start of training process to being more focused and belonging to specific 
groups of data at the end of training. The t-SNE is an invaluable tool for visualizing and 

understanding the complex relationships within the latent space of an AE. By effectively 

preserving local structure and revealing underlying patterns, t-SNE allows us to gain insights into 

the AE's feature learning capabilities. 
 

By applying clustering algorithms (i.e. K-means) to the latent space representations generated by 

the AE, we can group similar data points together and create clusters.  These clusters represent 
data points that are of the same image label.  

   

If the AE has effectively learned meaningful features, the clusters will correspond to meaningful 

categories or semantic groupings within the image dataset. 
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2.2. Latent Space Size 
 

The choice of the latent space size ( ) can affect the performance of the AE.  As the AE trains, 

we can look at the embedding space outputs, but we can further look at the cross-entropy loss 

function. In Figure 3, we look at how the choice of  affects the loss function. A small  results 

in higher loss values and a slower convergence.   Using a large  can yield small losses, but we 

want to avoid using a large  as the data compression will only be minimal.  Thus, we aim to use 

a medium value, such as 20, which yields a small loss, quick convergence, and a good amount 

of data compression for representing the input data efficiently in low dimensions.     

 

 
 

Figure 3.  Loss function comparisons of various embedding space sizes. 

 

2.3. Hidden Layers and Size 
 

The user choice of the encoder/decoder with different sizes of a single layer and a number of 

hidden layers can affect the performance of the AE.  A single hidden layer MLP of length .  Is 

used. Figure 4 displays loss functions for encoder/decoder MLP sizes of 1, 2, and 3 hidden layers. 

All choices yield similar loss functions, but the single layer choice yields a quicker convergence.  

Figure 5 depicts, for varied length of the single layer MLP, that smaller length hidden layer 
configurations of the MLP yield larger losses; this can be explained as the AE not being able to 

learn a model of the input data due to such harsh compressions. 

   

 
       

Figure 4.  Loss function comparisons of multi-layer encoder/decoder setups. 
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 Figure 5.  Loss function comparisons of single-layer encoders/decoders of varying lengths.  

 

3. GENETIC ALGORITHMS AND CONVOLUTIONAL AUTOENCODER 
 

The focus here is the application of the GA on the Convolutional AE to optimize the parameters 
of the encoder/decoder CNNs in the AE architecture. When applying the GA, the following take 

place; encoding the solution, initialization, evaluation, selection, crossover, mutation, create the 

new generation. During the selection phase, individuals from the current population are evaluated 
based on a fitness function, quantifying how well each solution solves the problem. The 

individuals with higher fitness values are more likely to be selected for further processing, 

simulating the survival of the fittest. The GA continues the selection, crossover, and mutation 

process for a fixed number of generations or until a termination criterion is met. 
 

The pseudocode and the architecture diagram are as below: 

 
Pseudocode for GA  model 

Input: a set of values for GA parameters 

             (population size, the maximum generation number, etc., 
              the image dataset for classification) 

Output: the discovered best architecture of AE. 

P0: initialize a population with the given population 

      size using the proposed encoding strategy 
t=0; 

while t< maximum generation number do 

      evaluate the fitness of each individual in Pt 
      Qt: generate offspring from the selected parent 

      Individuals using the proposed mutation and the  

      crossover operators 
      P t+1 = selection from Pt U Qt ; 

      t= t+1; 

end 

return the individual having the best fitness in Pt. 
 

Specifically, the current population is composed of the parent population and the generated 

offspring population. Finally, the counter is increased by one, and the evolution continues until 
the counter exceeds the predefined maximal generation. Each individual means the particular 

CNN architecture). The population is randomly initialized with the predefined population size, 
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using the proposed encoding strategy. Population initialization are the  layers of encoder and 
decoder (i.e. convolutional layers, pooling layers etc.) 

 

The architecture diagram of the GA model will include a series of evolutionary processes until 

the proposed algorithm can discover the best architecture of the AE to classify the fashion 
MNIST dataset. 

 

 
 
In fitness evaluation each individual of the Pt is evaluated and following the process of selection, 

crossover and mutation create the offspring generating. In the environmental selection process the 

Pt individuals are selected from the current population Pt U Qt and then these selected individuals 
are placed into the next population P t+1. Also, the best individual is selected and placed into P t+1. 

For the computational overhead of GAs, GA can struggle with complex interactions between 

genes and are computationally expensive. These issues make them less efficient for large-scale 

problems and require significant time and resources to find the best solutions. The factors for 
computational overhead of GA are: Fitness Function evaluation, large population size, many 

generations, complex genetic operators, and parameter tuning (it needs significant 

experimentation and computational effort).  
 

The AE uses CNNs to better extract features in images; the GA is applied to the CNNs to 

optimize parameters as an alternative approach to the standard backpropagation used in 
conventional DL problems.  The construction process, which works with both the encoder and 

decoder, deals with the addition of a new convolutional layer, with batch normalization 

(BN)/pooling layer. The encoding of the architecture into a gene sequence is done using GA.  

Encoding a CNN into a variable length gene size sequence is achieved with the rule that all will 
start with a convolutional layer and finish with a dense layer (architecture encoding). 
  
The encoder and decoder are based on CNN. The CNN layers are created (convolutional and max 
pooling, and Batch Normalization -BN-) starting by encoding the network architecture of a CNN 

model into gene sequence (chromosome) of an individual.  After that, additional hyperparameters 

are defined for each layer type. 
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GA can be used as DL optimizers, instead of using back propagation (i.e. gradient descent). GA 
is used with a function that sets the parameters of the GA model (probabilities of crossover and 

mutation, number of genes in the individual, population size, and number of generations) and it 

allows search for values with the use of GA. The number of model parameters is the number of 

genes.   For the architecture of the model, a function can create the needed layers for the encoder 
and decoder and creates the gene sequence. Finally, the build function generates models from the 

gene sequences using the mating and mutation operators. 

 
The convolutional AE model can be created by using different number of parameters (i.e. 

convolutional layers, etc.). The selection of the appropriate parameter values can provide better 

performance. This combination of parameters cannot provide successful results.  Figure 6a 
displays the loss functions for the standard Convolutional AE model. Figure 6b shows the GA 

model (optimized Convolutional AE). The loss functions in 6a can be improved, as shown in the 

result in 6b, where the loss functions drop quicker, and a smaller validation loss is observed over 

training epochs.  The GA optimized model outperforms the standard one due to the advantage of 
selecting the best hyperparameters for the network architecture using the GA process. 

 

 
                      

Figure 6a.  AE model                                  Figure 6b.  GA model 

 

These two experiments show the superiority of the GA model since the AE model’s different 

parameter values are selected manually. After subtracting the BN and dropout layers of the AE 
architecture, the AE can provide better performance than the CA model as in Figure 6c. From the 

above, the problem is based on discovering the values of the optimized hyperparameters for the 

AE model to play a predominate role. The AE model can be competitive compared to the GA 
model after appropriate selection of the architectural structure. 

 

 
 

Figure 6c AE revised model 

                                        
The GA model, which includes the Genetic Algorithm and the Convolutional AE, can be used to 

achieve a degree of generalization in image datasets. This can be realized by feature selection, 
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parameter optimization and model selection. With the feature selection the GA model can 
identify the most informative feature and generalize well to unseen data. The feature selection for 

image classification includes: the representation of each chromosome, and the fitness function. 

The genetic operators, selecting the fittest chromosome based on the classification accuracy/loss 

on the validation set.  GA can optimize the hyperparameters of the model which can lead to 
generalization of unseen data. Also, GA can select the best model architecture for a given dataset. 

This can be achieved by evaluating the performance of different model structures on a validation 

set. In this way GA can identify models that can be generalized well. As an example of medical 
image dataset could be the Breast Cancer Histopathology Images and for natural image dataset, 

the Caltech 101.  

 
The AE can be generalized well and there are some factors that can improve it. Regularization 

that prevents overfitting, data augmentation (i.e. rotating images, adding noises), and careful 

architecture design (i.e. selecting the correct number of layers). As an example of image datasets 

are: CIFAR-10, CelebA. Medical datasets: Chest X-rays, MRI/CT scans, MIMIC-III, natural 
datasets: BCI Competition Datasets, Xero-Canto. 

 

When the gene sequences are relatively small, we should generally expect a quick  convergence. 
Although Genetic Algorithms has proved to be a fast and powerful problem-solving approach, 

some limitations are found embedded in it. Some of these limitations are discussed below. 

 
One of the main issues with GAs is their slow convergence rate. This means that they can take a 

long time to find the optimal solution, especially for complex problems. This is because GAs rely 

on random search techniques, which can be inefficient when the search space is large.  

 
The weak point of a genetic algorithm is that it often suffers from so-called premature 

convergence to suboptimal solutions, getting stuck in local optima. which is caused by an early 

homogenization of genetic material in the population. This means that no valuable exploration 
can be performed anymore. Techniques to mitigate the issue are increasing the population size, 

adjusting the mutation rate, and using crossover techniques (i.e. inversion crossover). 

 

The computational cost can be computationally expensive because of evaluating the fitness of 
each problem especially for a complex one.  This can make the GA model inappropriate for 

large-scale problems. GAs do not scale well with complexity. That is when the number of 

elements exposed to mutation is large there is often an exponential increase in search space size. 
 

Strategies for improving scalability include parallel processing (i.e. embarrassingly parallel 

fitness) using efficient Data Structures (i.e. trees, hash tables0) to store and retrieve information 
about individuals and their fitness values. Also, distributed GAs (i.e.by dividing the population 

into subpopulations (islands) and the Fine-Grained Parallelism (parallelize operations within a 

single generation). 

 

4. CONCLUSIONS 
 

This work focused on the application of AEs on various image datasets.  Using the AE structure, 

the tasks of data compression, low dimensional feature representation, and image classification 
using clustering were completed.  The presented experiments studied many aspects of the AE 

framework, such as their latent embedding space structure and loss function performance under 

various configurations. The digit MNIST dataset was used. 

 
For the optimization of large DL networks, apart from standard DL hyperparameter optimization 

methods, the GA can be used as an alternative approach to optimizing DL models.  The 
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secondary focus of this work, which was the application of the GA on the Convolutional AE, 
showed that the encoder/decoder components could successfully be optimized using the GA and 

this would yield improved model performance.  The fashion MNIST data set was used. 

Future work could benefit from testing on more complex datasets, incorporating additional 

performance metrics, and addressing scalability challenges.  
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