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ABSTRACT 
 
The NHS faces mounting pressures, resulting in workforce attrition and growing care 

backlogs. Pharmacy services, critical for ensuring medication safety and effectiveness, are 
often overlooked in digital innovation efforts. This pilot study investigates the potential of 

Large Language Models (LLMs) to alleviate pharmacy pressures by answering clinical 

pharmaceutical queries. Two retrieval techniques were evaluated: Vanilla Retrieval 

Augmented Generation (RAG) and Graph RAG, supported by an external knowledge 

source designed specifically for this study. ChatGPT 4o without retrieval served as a 

control. Quantitative and qualitative evaluations were conducted, including expert human 

assessments for response accuracy, relevance, and safety. Results demonstrated that LLMs 

can generate high-quality responses. In expert evaluations, Vanilla RAG outperformed 

other models and even human reference answers for accuracy and risk. Graph RAG 

revealed challenges related to retrieval accuracy. Despite the promise of LLMs, 

hallucinations and the ambiguity around LLM evaluations in healthcare remain key 

barriers to clinical deployment. This pilot study underscores the importance of robust 

evaluation frameworks to ensure the safe integration of LLMs into clinical workflows. 

However, regulatory bodies have yet to catch up with the rapid pace of LLM development. 

Guidelines are urgently needed to address the issues of transparency, explainability, data 

protection, and validation, to facilitate the safe and effective deployment of LLMs in 

clinical practice. 
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1. INTRODUCTION 
 

The NHS has faced mounting pressures in recent years, driven by workforce attrition, secondary 
care backlogs, and high vacancy rates, all of which have placed significant strain on services [1]. 
Despite their critical role in ensuring the safe and effective use of medications, hospital pharmacy 

services are often overlooked in discussions on healthcare innovation and resource allocation. 
Pharmacists are an integral part of the multidisciplinary teams involved in patient care, providing 
clinical advice and ensuring appropriate supply of medications. Hospital pharmacies also provide 
a medicines information (MI) service, offering expert advice to healthcare professionals (HCPs) 
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and patients. Innes et al. [2] demonstrated the value of a MI service: HCPs found that 74% of 
cases referred to MI resulted in positive patient outcomes and risks to patients were averted in 
71% of cases. 
 

The NHS has committed to using innovative solutions to find efficiencies. Artificial Intelligence 
(AI) is thought to present opportunities to improve patient care and workforce productivity [3]. 
An LLM could answer clinical queries or be used for clinical decision support. Koman et al. [4] 
conducted a study on physicians’ attitudes to using a chatbot for medication management. They 
found that physicians are willing but stressed the need for validation. Morath et al. [5] 
investigated the use of ChatGPT 3.5 to answer medication queries and found that the majority of 
answers were wrong, with a quarter having a high likelihood of patient harm. 
 

Currently, there are several obstacles to overcome before the use of LLMs, in a clinical setting, is 
feasible. These include wrong and/or inconsistent answers, out of date references, and lack of 
trust in LLMs answers [4, 5]. Parry [6] explored these challenges in an article on the role of AI 
chatbots in pharmacy, highlighting how LLMs can ‘hallucinate’, producing coherent but 
inaccurate answers. The author also stressed the importance of human validation and the use of 
‘guardrails’, such as prompt engineering, to improve the accuracy of responses. 
 

1.1. Retrieval Augmented Generation 
 

One method to reduce hallucinations is to combine an LLM with a retrieval model utilising an 
external knowledge source (EKS), known as retrieval augmented generation (RAG) [7]. Ke et al. 
[8] argued for the use of retrieval augmented LLMs (RA-LLM) in healthcare due to the evidence-
based approach of clinical tasks. Specialty guidelines can be used to form a knowledge source for 

an LLM to leverage when generating answers. During retrieval, relevant texts in the EKS are 
returned using cosine similarity - this method is referred to throughout this study as ‘Vanilla 
RAG’. The quality of a RA-LLM output relies on the results from the EKS [7, 9]. Therefore, pre-
retrieval strategies and/or post-retrieval enhancements (PRE) methods are crucial for optimising 
performance. 
 
Graph RAG is a novel approach that defines an EKS in a logical, hierarchical structure of entities 

(as nodes), their attributes, and their relationships (as edges) as a knowledge graph (KG) [10]. 
These KGs are used as the EKS for a RA-LLM system. Retrieval in Graph RAG returns relevant 
graph elements, leveraging relational knowledge to find connected information. This can result in 
more accurate and holistic retrieval, thereby generating more precise answers [11]. 
 

1.2. Evaluating LLMs in Healthcare 
 
Evaluating LLM outputs is critical for healthcare applications, especially when used as a clinical 
decision support tool [12]. Feldman et al. [13] outlined how the lack of trust in the use of AI is a 
significant barrier to the adoption of AI technologies in healthcare. Therefore, thorough 
evaluations are crucial in establishing that trust, and for safe and effective use in a clinical setting 
[4, 14]. That said, validating LLM outputs is challenging. Ambiguity or nuances in an LLM 
answer may lend itself to a few interpretations, hence, robust evaluations require specialist 

knowledge from subject matter experts (SME). Moreover, there are no industry standard metrics 
for evaluating LLM-generated outputs [15]. Adding to the task complexity, not all methods or 
metrics are suitable for use in all natural language generation (NLG) applications [16]. 
 
There have been several studies assessing the performance of LLMs in a clinical setting. Morath 
et al. [5] evaluated the answers from ChatGPT 3.5 for medication related questions. Six senior 
hospital pharmacists scored the answers by classifying them into categories based on the contents 
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of the answer (correct, incomplete or false) and the risk to patient safety (no risk, low risk or high 
risk). Benary et al. [17] evaluated LLMs’ abilities in recommending personalised treatment plans 
for advanced cancer versus recommendations from a human expert. LLM precision, recall and F1 
scores were recorded where reference treatment options existed. 

 
Hager et al. [18] investigated LLM diagnostic capabilities when given real case studies and 
calculated the percentages of correct diagnoses. Ke et al. [8] evaluated RA-LLMs for 
preoperative instructions given realistic case studies. Researchers judged ‘correctness’ of RA-
LLM outputs based on criteria from established guidelines; Cohen’s H and Chi-squared were 
used to compare RA-LLM performance against junior doctors. Sblendorio et al. [19] investigated 
the feasibility of using LLMs in clinical practice by scoring LLMs on a Likert scale in several 
domains. The average Likert scores were computed per domain and used to navigate a decision 

tree to classify LLMs as ‘recommended’, ‘usable with caution’ or ‘unusable’. 
 
From the literature, there is no consensus on methods for evaluating LLM outputs in healthcare. 
Although, there are recurring themes: a panel of experts score LLM outputs against certain 
criteria [5, 19, 20] or the comparison of LLM answers against reference materials [8, 17, 18]. Lee 
et al. [21] proposed best practices for human evaluation of NLG, advocating for the use of Likert 
scales alongside well defined, domain specific criteria. Similarly, Tam et al. [20], in their 

framework for human evaluation of LLMs in healthcare, outlined principles for evaluation. These 
mirror the NHS UK MI service's guidance on assessing responses provided by medicines advice 
services [22]. The NHS UK MI guidance offers valuable insights into evaluating answers 
provided by pharmacy professionals to medication queries, making it particularly well-suited for 
assessing LLM-generated responses also. 
 

1.3. Evaluating LLMs in Non-Healthcare Domains 
 
Traditional metrics, such as BLEU and ROUGE, measure the n-gram overlap between generated 
outputs and reference texts. However, these metrics do not correlate well with human judgement 
and fail to capture semantic similarities between texts [15]. Embedding-based metrics, such as 
cosine similarity and BERTScore, have shown a stronger correlation with human judgement [15, 
23, 24]. 

 
Cosine similarity provides a broad measure of semantic alignment between two texts by 
comparing their embedding vectors. While useful for identifying overall similarity, it does not 
take granular relationships into account, such as token-level alignment. BERTScore builds upon 
cosine similarity making it better suited for tasks requiring a more nuanced evaluation [24]. 
These metrics rely on embeddings, and the choice of embeddings plays a pivotal role in their 
effectiveness. In specialised domains like healthcare, where the language is often highly 
technical, context specific, and contains jargon [25], it is essential to use embeddings from 

models trained on specialist corpora [23]. Question answering natural language inference (QNLI) 
is another technique used to evaluate the quality of responses. QNLI is designed to assess 
whether the context provided (in this case, the generated answers) can be considered an 
entailment of the original question [26]. 
 
Study Design and Objectives. This pilot study evaluates LLM responses to clinical questions 
using two retrieval techniques: Vanilla RAG and Graph RAG. This includes developing a 

bespoke KG tailored to local protocols. Additionally, this study includes ChatGPT 4o without 
retrieval as a control. ChatGPT was selected as it ranks among the top models used by HCPs 
[27].  
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Both quantitative and qualitative evaluation methods are employed to compare the performance 
of RAG architectures and ChatGPT 4o against human reference answers. Expert human 
evaluation, serves as a critical validation step for all responses, including the human reference 
answers, ensuring mitigation of potential biases. The evaluation framework adopts best practices 

from Lee et al. [21] and Tam et al. [20] and aligns with NHS UK MI criteria [22], focusing on 
relevance, accuracy, and safety. This approach integrates domain specific standards with rigorous 
assessment methodologies, providing a comprehensive evaluation of LLM-generated responses 
in a clinical context. 
 

2. METHODOLOGY 
 

2.1. Data Collection and Preprocessing 
 

Oxford University Hospitals (OUH) Pharmacy offers a MI service, answering medicines related 
questions from HCPs and patients. Questions to the service are recorded and assigned a level 
ranging from one to three for increasing complexity. Answers are provided by specialist 
pharmacy professionals and often written in retrospect where answers are given orally. This 
database was selected to extract ‘gold standard’ question-answer pairs. Analysis of the MI 
database guided the stratified random sampling during data collection. A small representative 
sample size of 53 questions were initially selected, due to the time constraints for SME 
evaluation. The data were screened and excluded against the following criteria:  

 
• The question or answer contained any patient identifiable information 
• The question or answer required referring to external sensitive information to answer the 

question (e.g. a discharge summary or patient notes).  
 
The answers provided by the MI service were standardised for tone, grammar and perspective 
(third person) to facilitate a blinded and unbiased evaluation. ChatGPT 4o was utilised to rewrite 

the answers with instructions to preserve the original content without introducing additional 
information or altering clinical meaning. To mitigate the risk of unintended content expansion, 
the standardised outputs were reviewed and validated by an MI pharmacist, ensuring fidelity to 
the original responses. This process helped control for potential variability in documentation 
practices, making the comparisons between LLM-generated and human reference answers more 
reliable. 
 

2.2. Knowledge Graph 
 

OUH also provided medicines information leaflets (MILs), which are local guidelines to facilitate 
safe and cost-effective clinical practice and medication management. These MILs were used 
alongside summary of medicinal product characteristics (SMPCs) to form the content of the KG. 
Neo4j graph database [28] was chosen to store the data. LangChain [29] was also used as it offers 

tools to interface with the Neo4j database for storing, organising, querying and answer 
generation. 
 
The LangChain LLMGraphTransformer class transforms documents to a graph based document, 
using an LLM to extract entities and relationships [29]. The granularity of the entity-relationship 
extraction differed depending on the size of the document. Recursive document splitting resulted 
in a more detailed knowledge graph at the expense of greater processing times and cost. 
Moreover, the lack of output reproducibility across extraction runs did not instil confidence in the 

quality of the KG. There are numerous methods to ameliorate this such as specifying allowed 
nodes and relationships, setting a temperature of 0, and prompt engineering. However, employing 



Computer Science & Information Technology (CS & IT)                                           43 

these methods still produced inconsistent KGs. Therefore, the KG was manually defined as in a 
content-centric manner as opposed to entity-centric. 
 
The texts from MILs were extracted and processed to extract all medications mentioned in the 

MIL, using a drug named entity recognition (DNER) library [30]. Using the list of extracted 
active ingredients obtained from the DNER exercise, all associated SMPCs were collected. One 
active ingredient could have multiple SMPCs associated with it due to differing strengths or 
formulations etc. SMPCs were chunked based on content, guided by the sections defined by the 
electronic medicines compendium. 
 
The final KG contained 24 MILs, 107 active ingredients and 879 medicinal formulations 
(SMPCs). The architecture and content of the KG was validated by two pharmacists. Thereafter 

embeddings were calculated and stored for texts that were stored in MIL and SMPC section 
nodes. This was done to facilitate the document retrieval using cosine similarities from the same 
database, an overview of this process is shown in Fig. 1. 
 

2.3. Knowledge Graph RAG 
 

2.3.1. Pre-Retrieval Process 

 

Cypher is the query language for the Neo4j graph database [28]. To optimise retrieval, the 
original question was generalised using ChatGPT 4o-mini. This process simplified the question to 
its core components ensuring alignment with the database schema. The refined query was then 
passed to another LLM chain, which utilised dynamic k-shot prompting to identify relevant 
examples. These examples guided another LLM, ChatGPT 4o, in formulating the Cypher query 

and retrieval. Due to the limited context window for answer generation, the number of retrieved 
results was limited to two for MIL texts and five for SMPC sections. 
 

 
 

Fig. 1. Diagrammatic overview of content centric chunking method and subsequent node-relationship 

storage in the Neo4j graph database. The diagram on the left is the Neo4j representation of MIL node 

(blue), with an active ingredient (green), SMPC sections (pink) and the relationships between them. 
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2.3.2. Post-Retrieval Process 

 
The raw results retrieved from the KG were subjected to a post-retrieval pruning process. This 
included summarisation of the context such that only the most relevant and accurate information 

was retained, utilising ChatGPT 4o. Unprocessed results can otherwise contribute to 
hallucinations [7, 9]. Additionally, this process was essential for managing token usage. Without 
pruning, the volume of retrieved data could exceed token limits, particularly for complex queries 
requiring broader or deeper retrieval [31, 32]. 
 
The pruned results were integrated with the original question using carefully designed templates 
tailored to query complexity. Prompting strategies played a pivotal role in meeting the different 
requirements for question levels. Level one templates were designed for simple, fact-based 

questions, focusing on delivering concise responses. Level two templates addressed moderately 
complex queries by incorporating additional context. Level three templates were the most 
sophisticated, ensuring rigorous referencing. The model used to generate the final responses was 
ChatGPT 4o. 
 

2.4. Vanilla RAG 
 
The MILs and SMPC sections were indexed using LangChain’s vector indexing capabilities. The 
embeddings for both indexes were pre-computed and stored in the graph database. SMPC section 
nodes were indexed with a similarity score threshold of 0.7 and k=5; these parameters were 
selected to ensure high precision while maintaining sufficient recall. The MIL nodes were 
indexed with a lower similarity score threshold of 0.6 and k=2, reflecting the inherently larger 
and more diverse text structure of MILs. The retrieved results were then subject further 

processing. The overall process closely followed the approach outlined in 2.3, including pre-
retrieval question refinement, post-retrieval pruning, and answer generation. The key difference 
was in the retrieval method. The same templates for generating the final answers were used as in 
Graph RAG. 
 

2.5. Quantitative Evaluation 
 
The dataset for evaluation was finalised, comprising of four answers for each corresponding 
question sourced from the MI database. These included responses generated using the knowledge 
Graph RAG approach (2.3), the Vanilla RAG approach (2.4), and ChatGPT 4o without any 
context retrieval, relying solely on the generation templates. Standardised human referenced 
answers were also included. 
 

The human reference answers were used as the standard against which the LLM-generated 
answers were evaluated. Cosine similarities and BERTScores were calculated using Clinical 
BERT (CBERT) embeddings. QNLI scores were also calculated using the open-sourced Electra 
QNLI and PubMedBERT-QNLI (PQNLI) transformer models. The latter is fine-tuned for 
biomedical applications therefore was selected for its ability to handle the specific language and 
nuances of medical texts [33]. The human reference answers were also evaluated for entailment 
against the original questions to provide a benchmark, enabling direct comparison with the LLM-

generated outputs. 
 

2.6. Expert Human Evaluation 
 
All answers were evaluated by a panel of four senior pharmacists. The pharmacists recruited for 
this study had specialisations across several clinical fields: surgery and nutrition, maternity, 

obstetrics and gynaecology, and cardiology. While their collective expertise was broad, it is 
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important to consider that the questions themselves span multiple disciplines, or none. The 
distribution of clinical topics could influence scoring consistency, especially for questions outside 
the direct expertise of the evaluators. However, in this study the evaluators aligned with the 
clinical subject matter in 17 out of 24 questions. 

 
The same exercise was also performed with ChatGPT 4o to draw comparison between expert 
human and LLM evaluation. To streamline the evaluation process, the number of questions was 
reduced to 24, striking a balance between evaluation practicality and statistical representation. 
The selection included 12 level one queries, 10 level two queries, and two level three queries, 
reflecting the proportional complexity of queries typically encountered in clinical practice. This 
reduction resulted in 96 individual responses for assessment. 
 

The evaluation criteria were guided by the NHS UK MI service [22], which supports NHS trusts 
in the safe use of medicines and provides evidence-based guidance. Their published criteria for 
grading responses to clinical enquiries served as the framework for developing the evaluation 
questionnaire. Pharmacists were asked to rate their agreement with specific statements using a 7-
point Likert scale, ranging from "strongly agree" to "strongly disagree". The following formed 
the basis for the evaluation: To what extent do you agree or disagree with the following 
statements: 

 
1. The answer provided adequately addresses the proposed question (assessing com-

prehension of the question). 
2. The answer provided is accurate and correct. 
3. The answer provided does not pose a risk to patient safety. 
4. The answer provided was produced by a human. 

 

3. RESULTS 
 

3.1. Embeddings Based Results 
 
Appendix A is a table outlining the summary of statistical results for embedding-based metrics. 
All LLM-generated answers demonstrated high cosine similarity with the human reference 
answer, with means exceeding 0.90 and medians close to or surpassing their respective means. 
CBERT scores, while lower than cosine similarity, were consistent across the three LLM-
generated responses. The lower CBERT scores suggest a greater sensitivity to token-level 

nuances and minor discrepancies in phrasing. Notably, Vanilla RAG exhibited a marginally 
larger interquartile range for both cosine similarity and CBERT scores, indicating slightly greater 
variability. 
 
Graph RAG and ChatGPT 4o responses exhibited near identical cosine and CBERT similarity 
with human reference answers, with differences being negligible. In contrast, Vanilla RAG 
responses showed the greatest variability in comparison to the human reference answers. The 
CBERT F1 scores revealed a notable difference for Vanilla RAG when compared to the human 

reference, particularly for more complex questions. 
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3.2. QNLI Results 

 

 
 

Fig. 1. Violin plots illustrating the density and spread of Electra QNLI and PQNLI scores for all responses. 

 

A QNLI score of 1 indicates a strong entailment between the answer and the original question. 
For Electra QNLI, the scores and distributions of the three LLM-generated responses were high, 
with ChatGPT 4o, Vanilla RAG and Graph RAG showing particularly strong performance. 
Interestingly, human reference answers exhibited lower scores with a wider spread, with many 
responses clustering near 0, shown in the first plot of Fig. 2. Whereas for PQNLI, all responses 
displayed medians very close to 1, reflecting strong entailment overall. Most scores were 
concentrated near 1, with no scores approaching 0, aligning with expectations. These results 
suggest that the fine-tuned PQNLI scores are particularly well suited for evaluating this task 

compared to Electra QNLI. 
 
The human reference answers had the widest distribution of scores, reflecting variability in their 
entailment with the original questions. ChatGPT 4o followed closely, displaying slightly greater 
variability compared to the other models, as shown by the broader range in its violin plot (Fig. 2). 
In contrast, Graph RAG showed the least variability, with scores tightly clustered around the 
median, demonstrating consistency in entailment. Vanilla RAG showed a moderate spread but 

retained high median values similar to the other models. 
 

3.3. Expert Human Evaluation Results 
 

A boxplot of the results from the expert human evaluation are presented in Fig. 3. The median 
scores obtained from ChatGPT 4o performing the same exercise are marked as black diamonds. 

Each model was assessed based on the four evaluation criteria outlined in 2.6. Given the small 
sample size and the likelihood of variability in scoring due to subjective differences among 
evaluators, it was assumed that the results would not be normally distributed. Therefore, the 
Kruskal-Wallis test [34], a non-parametric alternative to ANOVA, was chosen to determine any 
statistically significant differences between the answers, without assuming normality or equal 
variances. 
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Fig. 2. Boxplots of expert human evaluation results. The top plot displays scores across three question 

complexity levels, grouped by evaluation criteria. The bottom plot shows overall scores across all 
complexity levels, grouped by the same criteria. 

 

The null hypothesis was: “responses to clinical questions, whether produced by MI specialist 
professionals or LLM models, are equally scored for relevance, accuracy, and risk to patient 
safety, with no significant difference in their median scores”. When analysing the quality of 
responses across different levels of question complexity, the Kruskal-Wallis test demonstrated 
that the null hypothesis could be rejected (at p<0.05) for accuracy and risk to patient safety in 
level one questions, and for relevance in level two questions. The small sample size of level three 
questions limited the ability to draw meaningful conclusions. 

 
When considering the null hypothesis irrespective of question complexity, the test revealed 
statistically significant differences between the answers for relevance, accuracy, and risk to 
patient safety. Thereafter a post-hoc Dunn’s test was applied. Dunn’s test is designed to identify 
pairwise differences following a significant Kruskal-Wallis test [34]. While Dunn’s test does 
allow for multiple comparisons, no explicit correction method was applied. Instead, statistical 
significance was interpreted in the context of distributional trends observed in the Fig. 3 and 

interquartile ranges. The significant Kruskal-Wallis and post-hoc Dunn’s test are shown in Tables 
1-6, significant p values (<0.05) are marked with an asterisk. 
 
The null hypothesis was not rejected for the criterion: “the answer was produced by a human”, 
indicating that the evaluators were unable to consistently distinguish between human-generated 
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and LLM-generated responses. This suggests that the blinding process was successful, 
minimising the risk of evaluator bias. 
 

Table 1. Question Level 1, Criteria: Accuracy (Kruskal-Wallis H statistic = 16.35, p = 0.001) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 1.000000 1.000000 0.001199* 

ChatGPT 4o 1.000000 - 1.000000 0.043776* 

Graph RAG 1.000000 1.000000 - 0.009109* 

Vanilla RAG 0.001199* 0.043776* 0.009109* - 

 
Table 2. Question Level 1, Criteria: Risk (Kruskal-Wallis H statistic = 15.34, p = 0.002) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 0.579631 1.000000 0.001114* 

ChatGPT 4o 0.579631 - 1.000000 0.227248 

Graph RAG 1.000000 1.000000 - 0.024459* 

Vanilla RAG 0.001114* 0.227248 0.024459* - 

 
Table 3. Question Level 2, Criteria: Relevance (Kruskal-Wallis H statistic = 10.72, p = 0.013) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 0.011069* 1.000000 0.464342 

ChatGPT 4o 0.011069* - 0.132440 1.000000 

Graph RAG 1.000000 0.132440 - 1.000000 

Vanilla RAG 0.464342 1.000000 1.000000 - 

 
Table 4. All Questions, Criteria: Relevance (Kruskal-Wallis H statistic = 12.55, p = 0.006) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 0.018524* 1.000000 0.114398 

ChatGPT 4o 0.018524* - 0.063495 1.000000 

Graph RAG 1.000000 0.063495 - 0.313174 

Vanilla RAG 0.114398 1.000000 0.313174 - 

 
Table 5. All Questions, Criteria: Accuracy (Kruskal-Wallis H statistic = 10.80, p = 0.013) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 0.395476 1.000000 0.092160 

ChatGPT 4o 0.395476 - 0.198422 1.000000 

Graph RAG 1.000000 0.198422 - 0.039647* 

Vanilla RAG 0.092160 1.000000 0.039647* - 

 
Table 6. All Questions, Criteria: Risk (Kruskal-Wallis H statistic = 13.80, p = 0.003) 

 
 Human ChatGPT 4o Graph RAG Vanilla RAG 

Human - 0.297117 1.000000 0.027486* 

ChatGPT 4o 0.297117 - 0.144930 1.000000 

Graph RAG 1.000000 0.144930 - 0.010644* 

Vanilla RAG 0.027486* 1.000000 0.010644* - 
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4. DISCUSSION 
 

4.1. Exploratory Analysis of Answers 
 

Qualitative analysis revealed that the majority of the LLM-generated answers were closely 
aligned in content with the human reference answers. However, there were instances of 

deviations. One third of ChatGPT 4o's answers contained a hallucination, but were confined to 
the references section of the response and did not affect the main content. In contrast, both 
Vanilla RAG and Graph RAG produced responses free from hallucinations. Two Graph RAG 
answers included inaccurate information due to inaccurate context retrieval. 
 
The answers were further assessed for their ability to promote the safe and effective use of 
medications (such as including signs or symptoms for monitoring or medication counselling). 

Vanilla RAG delivered quality counselling advice in 20 out of 24 responses, compared to 15 out 
of 24 for ChatGPT 4o, Graph RAG and human reference responses. 
 
Fig. 4 presents an example of responses to address a query regarding the interaction between 
naproxen and rivaroxaban. All responses highlighted a theoretical interaction between naproxen 
and rivaroxaban, recommending against their concurrent use. However, Graph RAG's response 
captured a particular nuance, acknowledging that while the interaction is theoretical, there is a 
lack of supporting evidence. This variation in responses can be attributed to differences in context 

retrieval mechanisms (see section 2.3 and 2.4). Both retrieval methods successfully returned the 
appropriate interaction sections (and the lack of evidence thereof). However, Vanilla RAG's 
retrieved results mostly consisted of loosely related MIL texts, whereas Graph RAG's results 
contained only the relevant SMPC interaction sections. Subsequently, during the post-retrieval 
process, that nuance in the Vanilla RAG’s response was lost. 
 
4.1.1. Graph RAG Retrieval Inaccuracies 

 
Having said that, the Graph RAG architecture struggled with ambiguous questions, as seen in one 
example: “…how to take their isosorbide mononitrate for their angina”. The query does not 
specify the formulation, leading the Cypher query to retrieve dosage information for all 
formulations in the database but was restricted to five results (see 2.3). This arbitrary cut-off 
resulted in information being retrieved primarily for modified-release capsules, which was then 
included in the generated response. As a result, the answer addressed a formulation that was not 

explicitly stated in the question, introducing potential safety risks. In contrast, Vanilla RAG's 
predefined top-k retrieval mechanism delivered a smaller, more focused subset of results, 
avoiding this issue. A similar limitation in Graph RAG was observed in the second instance of an 
inaccurate response. 
 
As LLMs continue to advance, their ability to extract structured entity-relationship mappings may 
improve, allowing for more replicable and entity centric KG construction. This would 
complement the graph constraints outlined 2.2, ultimately reducing the volume of retrieved text 

and mitigating the need for the arbitrary retrieval limit used in this study. Additionally, LLMs 
fine-tuned specifically for entity extraction could provide more reliable and domain-specific KG 
construction, further enhancing retrieval precision. 
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Fig. 3. Example of a level one question and corresponding answers. 

 
In safety critical domains, granular knowledge graphs would be preferable, as missing node-
relationships may result in incomplete or even dangerous clinical guidance. Recursive document 
splitting, which enables greater granularity, could help mitigate this risk. However, a major 
drawback of this approach is the high cost associated with using closed source LLMs for entity 

extraction, in addition to the rigorous validation required by SMEs. In contrast, content centric 
KGs, like the one used in this study, are simpler to validate due to their fewer nodes and 
relationships. An alternative approach to mitigate retrieval failures is query disambiguation, 
incorporating user in the loop clarification mechanisms. This method could potentially 
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circumvent the resource intensive and highly laborious requirements of KG construction, offering 
a more dynamic and adaptable retrieval strategy. 
 
Beyond managing token sizes, it is also important to consider whether the inherent complexity of 

the task contributes to increased token consumption. Interestingly, ChatGPT 4o’s context window 
was exceeded even when the token count was below the maximum allowable threshold. More 
intricate questions, which involve multiple facets or layers of reasoning, may require a greater 
token allocation for both context and response generation. While direct references discussing this 
phenomenon are scarce, it aligns with broader observations about LLM behaviour in handling 
complex inputs and outputs [31, 32]. 
 

4.2. Comparing Human Reference Answers and LLM Generated Answers 
 

4.2.1. Embedding Metrics 

 

All models achieved consistently high scores, with no significant differences in performance 
between them (Appendix A). This may be due to the fact that all answers, including the human 

reference, were generated or standardised using ChatGPT 4o (see 2.1). The semantic, tonal, and 
structural similarities resulting from this standardisation likely contributed to the uniformly high 
scores. 
 
However, cosine similarity, while effective for measuring general semantic alignment, does not 
capture small nuances or differences in the answers which may hold clinical significance [23]. 
CBERT was employed as it is specifically fine-tuned on medical corpora, making it particularly 
effective at capturing these nuances and semantic subtleties in clinical texts [35]. Pairwise cosine 

similarity is computed for every token embedding in the human reference and LLM-generated 
text, creating a similarity matrix of size M * N where M and N are the number of tokens in the 
reference and generated sentences. Each token from the generated answer is greedily matched to 
the most similar token in the reference answer to compute recall, precision and F1 score [24]. 
 
In a clinical setting, this method of analysis holds potential. A heatmap provides a visual 
representation of which parts of the LLM-generated text align closely with the reference, 

allowing experts to pinpoint areas of strong semantic similarity. Conversely, it can also reveal 
gaps or areas of divergence where critical information is missing or inadequately addressed. For 
instance, if a human reference emphasises specific adverse effects or monitoring parameters that 
are absent from the LLM-generated response, the heatmap would highlight these as regions of 
low similarity. 
 
4.2.2. QNLI 

 

Interestingly, human responses show a broader distribution than expected for Electra QNLI 
entailment scores (Fig. 2), with a significant number of scores closer to 0. This disparity can 
partly be attributed to the original method of recording the gold standard human answers. Human 
responses were mostly written retrospectively, focusing on providing the necessary information 
without explicitly referencing the original question. As a result, the explicit connection between 
the question and the answer may be less apparent, even where the content is clinically accurate, 
leading to lower entailment scores. In contrast, LLM-generated responses often included 

reiterations of the original question, which may have inflated their entailment scores compared to 
human answers. 
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4.2.3. Expert Human Evaluation 

 

The evaluation of four responses to each of the 24 questions across four criteria resulted in a total 
of 384 individual evaluations. This presented a significant challenge in recruiting participants, as 

the scale of the task required considerable time and expertise. The relevance of the answer refers 
to scores from the assessment “To what extent do you agree the answer provided adequately 
addresses the proposed question?” Analysis of the post-hoc Dunn’s test for relevance at level two 
questions (Table 3) alongside Fig. 3 demonstrated that ChatGPT 4o statistically outperformed 
human reference answers. This trend was consistent across all question levels, as reflected in 
Table 4. Overall, relevance scores were consistently high across all models, which aligns with 
expectations since all responses were explicitly designed to address the given questions.  
 

For the assessment of the criterion “The answer provided is accurate and correct”, Vanilla RAG 
outscored all other responses at level one (Table 1), while human reference answers scored the 
lowest. From Fig. 3, both human responses and Graph RAG responses displayed the greatest 
variability in scores. The lower scores and wider distribution observed for Graph RAG were due 
to the two instances of inaccurate context retrieval described in 4.1. 
 
When examining the largest disparities between human and Vanilla RAG responses, key 

differences emerged in depth of explanations, clarity of structure, risk management, and scope of 
advice. Vanilla RAG consistently offered clear reasoning behind recommendations, actionable 
steps, and highlighted red-flag symptoms for escalation. In contrast, while human responses were 
technically accurate, they often lacked explanations, provided minimal counselling, and remained 
narrowly focused on the immediate question. This stems from the retrospective nature of human 
response documentation, where contextual details have been omitted. 
 

Across all question levels, median scores for human reference answers were not statistically 
different from those observed for ChatGPT 4o and Graph RAG (Table 5). However, there was a 
difference between Graph RAG and Vanilla RAG. This could be because the interquartile range 
for Graph RAG was greater than that of human responses, the range was the same (Fig. 3). 
Notably, Vanilla RAG consistently outperformed Graph RAG across levels two and three 
questions, albeit marginally. This suggests that Vanilla RAG's retrieval was more effective at 
maintaining accuracy across increasing question complexity compared to the implemented Graph 
RAG architecture. 

 
Patient safety risk can almost be interpreted as an inverse of the accuracy criterion. If an answer 
is accurate and correct, it is generally more likely to be safe. In this assessment, Vanilla RAG 
statistically outperformed human reference answers and Graph RAG, but not ChatGPT 4o (Table 
6). The trends observed for accuracy were mirrored in the safety scores, with lower accuracy 
scoring responses also being deemed to pose a higher risk to patient safety. 
 

Although, patient safety risk and accuracy are not perfectly aligned. Accuracy focuses on the 
factual correctness of information, while safety extends to how that information is interpreted and 
communicated to minimise potential harm. For example, an answer might be factually correct 
(accurate) but still present a safety risk if it lacks clear warnings or considerations relevant to 
patient care. To mitigate such risks, implementations could integrate automated flags for high-
risk questions, or secondary validation by SMEs. 
 

The use of ChatGPT 4o in the same evaluation exercise revealed a tendency to score towards the 
extremes (strongly agree or strongly disagree), suggesting it struggles to decipher subtleties in the 
evaluation process. In contrast, human evaluators provided more distributed ratings, reflecting a 
more nuanced assessment approach. The results also indicate that expert human evaluation and 
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LLM evaluation are poorly correlated. Interestingly, ChatGPT 4o consistently scored ‘neutral’ for 
the criterion assessing whether an answer was produced by a human. This suggests that ChatGPT 
4o was also unable to distinguish between human and LLM-generated responses, supporting the 
conclusion that the blinding process was effective. 

 

5. CONCLUSION AND FUTURE WORK 
 

This introductory study demonstrated that LLMs achieved strong performance, showing 
substantial alignment with human reference answers in quantitative evaluations and 
outperforming them in expert qualitative assessments for relevance, accuracy, and patient safety. 
Interestingly, the expert human evaluation revealed limitations in the human reference answers 
themselves, which often prioritised brevity over detailed reasoning and context. These limitations 
have a downstream impact on the reliability of embedding-based metrics, as their effectiveness is 
inherently tied to the quality of the reference answers. 
 

The embedding-based metrics proved valuable in assessing semantic alignment between answers. 
However, these methods have limitations. While CBERT F1 scores excel at capturing nuances 
due to fine tuning on medical corpora, it struggles to identify higher-level structural 
inconsistencies or logical gaps in responses. The CBERT pairwise similarity matrix shows 
potential for deeper analysis, offering insights into token level relationships that could be 
leveraged for more granular evaluation. Similarly, QNLI scores, despite their precision, cannot 
fully evaluate appropriateness or contextual subtleties. These limitations suggest that embedding-

based and QNLI evaluation techniques should be interpreted alongside qualitative insights for a 
thorough, holistic assessment. 
 
When comparing retrieval architectures, Vanilla RAG emerged as the most consistent performer 
across relevance, accuracy, and patient safety criteria, suggesting that its controlled retrieval 
process is suited for answering clinical pharmaceutical queries. Graph RAG, while capable of 
flexible retrieval, was hindered by inaccurate context retrieval in certain cases. KG construction 

and Cypher query optimisation are resource intensive tasks, both of which require meticulous 
engineering to ensure reliable performance. 
 
It is also crucial to stress that this study was conducted under controlled conditions, employing 
refined prompt engineering strategies and templates, validated via iterative improvements. These 
controls are essential in guiding LLM responses and mitigating variability. However, such 
‘guardrails’ would not exist in real world settings, where time pressured users may pose 
ambiguous queries. Nonetheless, the results of the expert human evaluation indicated that 

ChatGPT 4o demonstrated strong overall performance, suggesting its potential utility as an ‘out 
of the box’ solution in a clinical setting. To enable safe adoption, clear governance frameworks 
and user training are essential. These must address model limitations, accountability, and ongoing 
human oversight to ensure that LLMs are integrated responsibly. 
 
At present, there is uncertainty surrounding the direct use of LLMs in patient care. While adopted 
in operational tasks to improve efficiency, their clinical potential is increasingly recognised. In 

the UK, AI tools used in patient care are considered medical devices [12]. Therefore, requiring 
compliance with data protection, transparency, and explainability standards. Data protection 
remains an ethical concern, especially for closed source LLMs, where sensitive information may 
be shared with third party proprietary models. Additionally, limited explainability and 
transparency make auditing outputs and reasoning difficult – however RAG approaches do 
provide insights into the generation of answers. 
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A further challenge is the requirement for medical devices to have a defined intended use 
statement. LLMs’ versatility, ranging from clinical note summarisation to differential diagnoses, 
creates a regulatory grey area. As LLMs evolve with multimodal capabilities, regulatory 
frameworks must adapt. Clear standards for defining acceptability, quantifying performance, and 

validating outputs remain underdeveloped and require urgent attention [6].  
 

5.1. Regulatory Considerations and Safe Deployment  
 
To ensure the safe and effective deployment of LLMs within the NHS, several critical 
considerations must be addressed. LLMs, particularly those supporting clinical decision-making, 

require well defined intended use statements to establish their scope and limitations. Engineers 
developing LLM architectures for question-answering systems should prioritise Retrieval-
Augmented Generation (RAG) techniques, as they enhance interpretability and transparency, 
mitigating concerns related to the 'black box' nature of AI systems. 
 
During the design and development phase, adherence to established regulatory and quality 
standards is essential. Developers should align their processes with the following international 

standards: 
 

1. ISO 13485 – Quality management systems for medical devices 
2. ISO 14155 – Clinical investigation of medical devices 
3. ISO 14971 – Risk management for medical devices 
4. IEC 62304 – Software lifecycle processes for medical devices 

 
Compliance with these standards ensures that LLM systems are designed with rigorous attention 

to safety, quality, and risk management. Additionally, developers should complete DCB 0129, a 
framework that assists health IT manufacturers in demonstrating the clinical safety of their 
product. Given the overlap between these international standards and DCB 0129, this process is 
relatively straightforward. Following this, healthcare organisations implementing these systems 
should co-produce DCB 0160, a standard focusing on clinical risk management in deployment, 
typically led by the institution’s Clinical Safety Officer. 
 

Beyond regulatory compliance, a comprehensive data protection impact assessment must be 
conducted in collaboration with information governance teams and the Caldicott Guardian to 
address data security and patient confidentiality concerns. Evaluation criteria should be 
established with clinical teams to assess the LLM’s performance before full deployment. A 
shadow mode deployment should be considered—where the system operates in the background, 
collecting data for evaluation without influencing real world decision making. A robust post-
deployment surveillance plan must also be implemented to continuously monitor system 
performance, ensuring it remains aligned with clinical standards. 

 
Adhering to these rigorous guidelines ensures that LLMs conform to the same safety and quality 
standards as medical devices. Should regulatory bodies formally classify LLMs as medical 
devices in the future, manufacturers that have followed these protocols will already have the 
necessary documentation in place, preventing service disruptions and ensuring seamless 
compliance. 
 

This pilot is a step towards addressing these challenges by exploring robust evaluation 
methodologies for LLMs in clinical contexts. Combining quantitative metrics with qualitative 
expert evaluation offers a holistic understanding of LLM performance. While hurdles remain, 
these findings provide insights for advancing regulatory compliance, clinical integration, and 
performance validation in healthcare. 
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5.2. Limitations and Future Work 
 
This pilot study has limitations warranting further exploration. The small sample size (n=24) for 

expert evaluation affects the generalisability of the findings, particularly given the limited 
number of level three questions. Expanding the dataset to cover a broader range of clinical 
queries would enhance the robustness of the results. Additionally, conducting expert evaluations 
across multiple rounds would improve inter-rater reliability, addressing potential subjectivity in 
qualitative assessments. 
 
Further investigation is required to refine Graph RAG’s retrieval accuracy, particularly in 

mitigating errors from ambiguous queries. Enhancing retrieval mechanisms and evaluating 
alternative post-retrieval processing techniques may improve precision in contextual retrieval. 
 
Lastly, this study does not assess long term performance stability, an essential factor for clinical 
deployment. Future research should explore continuous validation methodologies such as shadow 
deployment evaluations to prospectively track performance drift over time. These approaches 
would ensure the safe and effective integration of LLMs into healthcare workflows. 
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APPENDIX A 
 

Table 7. Summary of statistical results for embedding-based metrics (to five decimal places) 

 

 

Cosine Similarity 

 
CBERT F1 Scores 

ChatGPT 

4o 

Vanilla 

RAG 

Graph 

RAG 

ChatGPT 

4o 

Vanilla 

RAG 

Graph 

RAG 

 

Mean 0.91528 0.90862 0.91146 0.76313 0.75409 0.75214 

Std 0.03439 0.03980 0.03451 0.03428 0.04004 0.02980 

Min 0.82063 0.81234 0.80520 0.67284 0.68803 0.68522 

Lower Q 0.89875 0.88063 0.89416 0.74178 0.72178 0.72743 

Median 0.92404 0.91030 0.91955 0.76653 0.75590 0.75327 

Upper Q 0.91887 0.90626 0.91911 0.76299 0.75411 0.75141 

Max 0.96618 0.96345 0.95790 0.81924 0.81795 0.80894 
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