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ABSTRACT 
 
In cloud computing, efficient resource allocation within data centers is crucial for reducing 

energy consumption and operational costs. Virtual Machine Placement (VMP) isa critical 

aspect, involving the strategic assignment of Virtual Machines (VMs) to physical servers. 

However, inefficient VMplacement can lead to increased energy usage, posing significant 

challenges to operational efficiency and cost-effectiveness. This paper introduces a novel 

approach to VM placement, with the aim of minimizing total energy consumption within 

data centers. Leveraging the Ant Colony Optimization (ACO)algorithm, we customized its 

information heuristic based on the energy efficiency of physical machines (PMs) within 

data centers. Experimental validation demonstrates the scalability ofour approach in large 

data center environments, where it notably out performs the selected benchmark, the 

ACOVMP  (Ant Colony Optimization Virtual Machine Placement) algorithm, in terms of 

energy consumption. Our findings highlight the effectiveness ofour approach in optimizing 

VM placement decisions, contributing to ongoing efforts to enhance energy efficiency and 

operational sustainability in cloud data center environments. 
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1. INTRODUCTION 
 

Cloud computing has revolutionized the landscape of modern IT infrastructure, offering scalable 

and flexible computing resources to meet the ever-growing demands of digital services and 

applications [1], [2]. Central to this paradigm shift are cloud data centers, which form the 

backbone of the cloud computing ecosystem, tasked with efficiently managing and allocating 

resources to ensure optimal performance and cost-effectiveness [3], [4]. However, the rapid 

proliferation of cloud data centers has introduced significant challenges, foremost among them 

being efficient resource utilization and the mitigation of energy consumption and operational 

costs [5], [6]. 

 

In this context, Virtual Machine Placement (VMP) emerges as a critical aspect of resource 

management, involving the strategic allocation of Virtual Machines (VMs) to physical servers 

within data centers [7], [8]. Optimizing VM placement is essential not only for maximizing 

resource utilization but also for minimizing energy consumption and operational expenses. 

Inefficient VM placement can lead to sub-optimal resource allocation, resulting in increased 

energy consumption and reduced operational efficiency [9], [10]. Moreover, as data centers 
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continue to scale in size and complexity, the need for sophisticated optimization techniques to 

address the VMP problem becomes increasingly apparent [11]. 

 

Traditional methods for tackling the VMP problem, such as linear programming, often struggle to 

cope with the scale and combinatorial intricacies of modern cloud environments. Consequently, 

heuristic and metaheuristic approaches have gained traction due to their ability to efficiently 

explore large solution spaces [12], [13]. Among these, Ant Colony Optimization (ACO) stands 

out as a promising metaheuristic inspired by the foraging behavior of ants, known for its 

effectiveness in solving NP-hard optimization problems, including VMP [14], [15]. 

 

In this paper, we address the challenge of inefficient VM placement within cloud data centers and 

its implications on energy consumption and operational costs. Building upon existing research, 

we propose a novel ACO-based approach to VM placement aimed at minimizing total energy 

consumption within data centers. Our approach is enhanced by tailored heuristics that prioritize 

physical machines (PMs) based on their energy efficiency profiles. Through extensive 

experimental validation in large-scale data center scenarios, we demonstrate the efficacy of our 

method. Comparative analyses against benchmark algorithms highlight its scalability and 

superior performance in optimizing VM placement decisions, thereby contributing to the broader 

goal of improving energy efficiency and operational effectiveness in cloud data centers. 

 

2. LITERATURE REVIEW 
 

Efficient resource management within cloud data centers is of paramount importance, as it 

directly influences energy consumption and operational expenses. A significant aspect of this 

endeavor is Virtual Machine Placement (VMP), where the allocation of virtual machines (VMs) 

to physical servers is meticulously orchestrated to ensure seamless operations [1], [3], [4]. 

However, VMP presents a formidable challenge akin to solving a complex puzzle, with 

conventional methods often struggling to yield optimal solutions [2], [5].Ant Colony 

Optimization (ACO) emerges as a sophisticated approach for addressing such intricate problems, 

drawing inspiration from the efficient foraging behavior observed in ants. By harnessing ACO, 

computer algorithms can emulate the communication and problem-solving prowess of ants, 

offering a potent tool for tackling tasks like VM placement with precision [6], [7]. Previous 

research endeavors have explored the application of ACO in VM placement, demonstrating 

promising results. For instance, Liu et al. (2017) devised a method leveraging ACO to enhance 

VM placement intelligence, considering factors such as resource requirements, server capacities, 

and network efficiency [9]. Similarly, Zhang and colleagues (2019) augmented ACO with 

simulated annealing, elevating the efficacy of VM placement algorithms to handle complex 

scenarios efficiently [10]. More recently, Wang et al. (2023) proposed an energy-aware ACO 

strategy that further improves VM placement with a focus on reducing energy consumption in 

cloud data centers [8].Despite its efficacy, challenges persist in optimizing ACO for dynamic 

environments characterized by rapid changes in workload demand. Addressing these challenges 

necessitates refining ACO algorithms to adapt swiftly to fluctuations in demand, alongside 

integrating considerations for energy conservation and environmental sustainability into decision-

making processes [3], [4], [5], [11]. Contemporary studies have also begun exploring the 

integration of machine learning and reinforcement learning techniques with ACO to enhance 

adaptability and efficiency in resource scheduling [6], [7]. 

 

In this study, we leverage insights gleaned from prior research to advance the application of ACO 

in VM placement within data centers. Our approach aims to optimize VM placement decisions to 

minimize energy consumption while enhancing operational efficiency. We augment ACO with 

tailored strategies to prioritize servers with lower energy utilization, thereby contributing to the 

overarching objective of making data centers more energy-efficient and cost-effective. Through 
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rigorous testing in large-scale data center environments, we seek to validate the efficacy of our 

approach and its potential to drive tangible improvements in data center operations. 

 

3. ENERGY CONSUMPTION IN CLOUD DATA CENTERS 
 

Energy consumption in cloud data centers is a multiface issue influenced by several critical 

components, including server operations, cooling systems, networking equipment, and all other 

facility infrastructure. Among these, servers remain the primary consumers of energy, accounting 

for the largest share of total power usage within data centers [1], [2]. The continuous operation of 

servers to handle computational tasks such as processing user requests, running applications, and 

managing data storage leads to significant energy demands. Cooling systems are equally 

essential, as they maintain optimal environmental conditions by dissipating the heat generated by 

servers and other hardware. These cooling infrastructures consume substantial energy to regulate 

temperature and humidity, thereby ensuring equipment reliability and longevity [3], [4]. 

Additionally, networking equipment—including switches, routers, and cabling contributes to the 

energy footprint by enabling data transmission and connectivity within and beyond the data 

center environment [5]. 

 

Statistical data and industry trends further highlight the scale of this energy consumption 

challenge. For instance, global data center electricity consumption was estimated at 

approximately 201.8 terawatt-hours (TWh) in 2010, with projections indicating a steady and 

significant increase driven by the exponential growth of cloud services, data storage demands, 

and computational resource utilization [6], [7]. Recent studies confirm this upward trajectory, 

emphasizing the urgent need for energy-efficient resource management strategies and advanced 

optimization techniques to mitigate the environmental and operational costs associated with data 

center energy consumption [8], [9]. Figure 1 illustrates this growing trend, underscoring the 

importance of innovative approaches such as energy-aware virtual machine placement and 

infrastructure management in addressing this critical issue. 

 

 
 

Fig. 1. Estimated Global Data Electricity Used By Data Centers 2010 and 2018. Source: Masanet et al. 

2020. 

 

Furthermore, studies have shown that server utilization rates in cloud data centers typically range 

from 11% to 50%,indicating inefficiencies in resource utilization and energy consumption [5]. 

Idle servers consume a substantial amount of power, with estimates suggesting that an active but 
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idle server may consume between 50% and 70% of the power consumed by a fully utilized server 

[6]. These inefficiencies underscore the importance of implementing energy-efficient practices 

and optimization strategies in cloud data centers to mitigate energy consumption and reduce 

operational costs. 

 

4. APPLICATION OF NATURE-INSPIRED ALGORITHMS 
 

Nature-inspired algorithms offer versatile and efficient solutions for optimizing various aspects of 

cloud data centero perations, ultimately reducing energy consumption. These algorithms draw 

inspiration from natural phenomena and biological systems to devise innovative optimization 

techniques. In this section, we explore how nature-inspired algorithms can be applied to optimize 

different aspects of cloud data center operations: 

 

4.1. Workload Scheduling 
 

Nature-inspired algorithms, such as Genetic Algorithms(GA) and Particle Swarm Optimization 

(PSO), can optimize workload scheduling in cloud data centers. These algorithms mimic the 

evolutionary process or swarm behavior observed in nature to iteratively search for optimal task 

allocation strategies. By considering factors like task dependencies, resource availability, and 

energy efficiency objectives, nature-inspired algorithms can dynamically schedule workloads 

across servers to minimize energy consumption while meeting performance requirements. 

 

4.2. Resource Allocation 

 
Nature-inspired algorithms can optimize resource allocation in cloud data centers by dynamically 

assigning virtual machines (VMs) to physical servers. Algorithms like Ant Colony Optimization 

(ACO) and Simulated Annealing (SA) emulate the foraging behavior of ants or the annealing 

process observed in metallurgy to explore and optimize resource allocation configurations. By 

considering factors like server utilization, workload characteristics, and energy efficiency goals, 

these algorithms can efficiently distribute computational tasks to minimize energy consumption 

and improve resource utilization. 

 

4.3. Cooling System Optimization 
 

Nature-inspired algorithms can optimize cooling system operation in data centers to maintain 

optimal temperature and humidity levels while minimizing energy consumption. Algorithms like 

Genetic Algorithms (GA) and Artificial BeeColony (ABC) optimization mimic natural selection 

or swarm behavior to optimize cooling system parameters such as fan speed, airflow direction, 

and temperature set points. By dynamically adjusting cooling system settings based on realtime 

data and environmental conditions, these algorithms can reduce energy consumption associated 

with data center cooling while ensuring equipment reliability and performance. 

 

4.4. Hardware Management 

 
Nature-inspired algorithms offer powerful solutions for optimizing hardware management in 

cloud data centers by dynamically adapting hardware configurations to fluctuating workload 

demands and energy efficiency targets. Techniques such as Genetic Algorithms (GA) and 

Evolutionary Strategies (ES) mimic the natural evolutionary process, iteratively evolving optimal 

hardware setups based on key performance indicators and energy consumption goals. These 

algorithms effectively consider critical factors including hardware heterogeneity, varying 
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workload characteristics, and power usage patterns, enabling intelligent optimization of hardware 

provisioning and utilization. 

 

By harnessing the adaptive and self-organizing principles observed in natural and biological 

systems, these algorithms facilitate improvements across several key domains: workload 

scheduling, resource allocation, cooling system operation, and overall hardware management. 

This integrated optimization approach helps reduce energy consumption while boosting system 

performance and sustainability within cloud computing infrastructures. Recent studies have 

demonstrated that leveraging such nature-inspired meta heuristics can achieve significant energy 

savings and contribute to the development of greener, more sustainable cloud data center 

operations [11], [12]. 

 

5. FORMULATION OF THE VM PLACEMENT PROBLEM 
 

A cloud data center comprises numerous physical machines (PMs), each varying in CPU and 

memory capacities, as well asenergy efficiency. Multiple virtual machines (VMs) need to be 

deployed on these PMs, each with its own CPU and memory requirements, along with different 

arrival and execution times. The proposed approach involves allocating these VMs tohosting PMs 

over various time intervals while ensuring that resource capacities are satisfied. Below is the 

formulation forVM placement 
 

A. Inputs 

 

The algorithm is fed the following inputs obtained from the system profile: 

 

• Physical Machines (PMs): 

 

– PMs are denoted as pmj. 

– Each PM has its capacity defined by CPU (CPU_pmj), memory (RAM_pmj), and 

maximum energy consumption (pm.Max). 

 

• Virtual Machines (VMs): 

 

– VMs are denoted as vmi. 

– Each VM has requirements for CPU (CPU_vmi) and memory (RAM_vmi), as well as 

arrival time and execution time. 

 

• Binary Variable Placement of VMs on PMs is represented by a binary variable Xij, where i is 

the VM index and j is the PM index. This variable indicates whether VM i is placed on PM j or 

not: 

 

Xij = 

( 

  1 if vmi is allocated to pmj 

  0 if vmi is not allocated to pmj 

) 

 

B. Objective 

 

The objective is to minimize the total energy consumption of the data center operating for 24 

hours. 
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C. Constraints 

 

1) CPU Capacity Constraint: Ensures the total CPU usage of the VMs on a PM does not exceed 

its CPU capacity: 

∑i Xij × CPU_vmi ≤ CPU_pmj ∀ pmj 

 

2) RAM Capacity Constraint: Similar to CPU, ensures RAM requirements of VMs do not exceed 

the PM's capacity: 

∑i Xij × RAM_vmi ≤ RAM_pmj ∀ pmj 

 

3) VM Allocation Constraint: Ensures each VM is allocated to exactly one PM: 

∑j Xij = 1 ∀ vmi 

 

These constraints ensure that the allocation of VMs to PMs is feasible and satisfies the resource 

requirements of both VMs and PMs. 

 

D. Energy Cost Calculation 

 

The energy consumption of physical machines (PMs) has a direct linear relationship with CPU 

utilization. The formula used is: 

 

Energy cost = ∑j (CPU usage_pmj × Energy unit) × T 

E. CPU Utilization 

Due to the variability of workload on VMs, each time interval is divided into small slots. The 

CPU utilization is calculated as: 

CPU utilization = ∑i CPU usage_vmi / T 

 

This section describes the formulation of the VM placement problem, including inputs, 

constraints, objective function, and energy cost calculation in cloud data centers. 

 

6. EXPERIMENTAL DESIGN AND RESULT EVALUATION 
 

The simulations were carried out using the ACO simulator tailored to the proposed algorithm. 

This simulator provides a platform for implementing and testing Ant Colony Optimization 

(ACO) algorithms in various optimization scenarios, including virtual machine placement in 

cloud data centers. The simulator allows researchers to configure parameters specific to their 

algorithm, such as pheromone update rules, ant behavior, and problem representation. In our 

case, we customized the ACO simulator to implement the Proposed Ant Colony Optimization for 

Virtual Machine Placement (PAVM) algorithm. This involved configuring parameters such as the 

number of ants, the pheromone evaporation rate, and the heuristic information used by ants to 

make decisions about virtual machine placement. Additionally, we adapted the simulator to 

handle the heterogeneous environment of the data center, where physical machines have varying 

capacities and energy efficiencies. By utilizing the ACO simulator, we were able to conduct 

rigorous experiments to evaluate the performance of the PAVM algorithm under different data 

center configurations and workload scenarios. Specifically, we conducted five experiments, 

incrementally increasing the number of VMs from 2 to 5 in steps of 1,and simultaneously 

increasing the number of PMs from 500 to 3000 in steps of 500. These experiments provided 

valuable data for assessing the algorithm’s scalability, efficiency, and ability to minimize energy 

consumption while optimizing virtual machine placement. The implementation of simulation for 

both the proposed approach PAVM and the benchmark algorithm AVOCMP  was coded using 

Python on a desktop computer running Windows 10. The computer was equipped with an Intel 

Core i7-4790 CPU (3.60 GHz) and 16 GB RAM. Table I outlines the specific test problems 
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employed in these experiments. The use of Python facilitated the experimentation process, 

enabling efficient customization and analysis of the results. 

 

PAVM (Proposed Ant Colony Virtual Machine) Algorithm for VM Placement 

Algorithm: PAVM for VM Placement 

Input: Set of PMs, set of VMs V, set of ants antSet, Set of parameters 

Output: Best solution of VM placement 

 

1) for nAnt = 1 to Ant number do 

2) Initialize data structure for each ant; 

3) for interval = 1 to total number of intervals do 

4) Sort VMs list in each interval in descending order of CPU requirements; 

5) Shuffle VMs list; 

6) //Algorithm starts 

7) Energytotal ← 0.0; 

8) for interval = 1 to total number of intervals do 

9) Energyinterval ← 0.0; 

10) Sort active PMs in the interval in descending order based on Energy Efficiency; 

11) Sort inactive PMs in the interval in descending order based on Energy Efficiency; 

12) Add active and inactive PMs to PMs list; 

13) Initialize τ0 = FFD Solution for this Interval using Equation (5); 

14) // ACO Starts 

15) Initialize ACO parameters: nCycleNoImp = 0, ant number; 

16) for iteration until no improvement do 

17) for iAnt = 0 to ant number do 

18) Initialize VMList, PMlist, τi,j for the current ant; 

19) // compute solution 

20) for i = 0 to VM number in the current interval do 

21) for j = 0 to PM number do 

22) if i VM is feasible in PM j then 

23) Calculate information heuristic using Equation (6); 

24) Calculate pseudo-random-proportional using Equation (7); 

25) Calculate random-proportional rule using Equation (8); 

26) Generate a random number q; 

27) if q < q0 then 

28) Choose a PM using Equation (7); 

29) else 

30) Choose a PM using Equation (8); 

31) Calculate the solution; 

32) if the solution improved then 

33) bestsolution = currentsolution; 

34) Reset nCycle = 0; 

35) else if nCycle > iterationMaxCondition then 

36) break; 

37) else 

38) nCycle = nCycle + 1; 

39) // global Pheromone Update 

40) for i = 0 to VM number do 

41) for i = 0 to PM number do 

42) update solutions using Equation (9); 

43) Output the best solution for the interval; 

44) Energyinterval = Energy result from interval solution; 
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45) Energytotal += Energyinterval; 

46) Output the final solution for each interval. 

47.Output: Best solution of VM placement. 

 

VM and PM Specifications 

 

CPU requirements for VMs: 1–8 MIPS. 

Memory requirements for VMs: 10–20 GB. 

Execution times of VMs: 1–100 minutes. 

CPU capacities for PMs: 10–20 MIPS. 

Memory capacities for PMs: 20–40 GB. 

 
TABLE 1- Test Problems 

 
Test Problem 1 2 3 4 5 

VM 600 100 1400 1800 2200 

PM 100 150 200 250 300 

 
TABLE 2 - Parameters of the PAVM Algorithm 

 
nAnt  β δ q0 nCycleTerm  

3 1 0.3 9 5 

 

7. EXPERIMENTAL RESULT 
 

To assess the effectiveness of our proposed approach, we compared it with the AVOCMP 

algorithm [10] in terms of total energy consumption over a 24-hour data center operation period. 

AVOCMP is designed for VM placement aimed at minimizing the number of Physical Machines 

(PMs) in the data center. 

 

The energy consumption results of the test problems produced by both algorithms are presented 

in Table III. Our findings indicate that our proposed approach, PAVM, achieves greater energy 

savings compared to the benchmark AVOCMP algorithm across all test problems, with savings 

of up to 34%. 

 

We performed a paired t-test to compare the mean energy consumption values obtained from 

PAVM and AVOCMP. We formulated the null hypothesis as follows: "There are no differences 

between the paired energy consumption values for both approaches." The t-stat results are 

recorded in Table 3. Our analysis reveals that the p-values are less than the significance level α of 

0.05, and the t-stat values exceed the critical 2-tail value. Consequently, we reject the null 

hypothesis, indicating that the differences between the mean energy consumption values are 

statistically significant. 

 

To demonstrate scalability, we plotted the computation time of the proposed PAVM approach as 

shown in Figure 1. The plot illustrates that the computation time increases linearly with the 

problem size. 
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Table 3.  Energy consumption results of test problems 

 

 
 

 
 

Fig 1. Computation Time of PAVM for Each Test Problem 

 

8. CONCLUSION 
 

Table 4. Comparative Analysis of PAVM vs. AVOCMP for Energy Consumption 

 
Test 

Problems 

AVOCMP Energy 

Consumption 

PAVM Energy 

Consumption 

T-stat P-value %improv

ement 

1 1.17 × 10⁸ 7.97 × 10⁷ 254.74 1.13 × 10⁻¹⁸ 32% 

2 3.20 × 10⁸ 2.10 × 10⁸ 318.23 1.52 × 10⁻¹⁹ 34% 

3 5.99 × 10⁸ 3.94 × 10⁸ 442.13 7.89 × 10⁻²¹ 34% 

4 9.65 × 10⁸ 6.35 × 10⁸ 971.74 6.59 × 10⁻²⁴ 34% 

5 1.40 × 10⁹ 9.12 × 10⁸ 587.18 6.14 × 10⁻²² 34% 

 

In conclusion, our study presents a novel Ant Colony Optimization (ACO)-based approach, 

PAVM, for energy-efficient Virtual Machine (VM) placement in cloud data centers. Through 

empirical validation and comparison with the AVOCMP algorithm, we demonstrate PAVM’s 

superior performance, achieving significant energy savings of up to 34%as shown in Table 

4.Statistical analysis confirms the significance of these results. Additionally, our approach 

exhibits scalability across diverse problem sizes, ensuring its applicability to large-scale data 

center environments.Overall, PAVM offers a promising solution to address the escalating 

energy consumption challenges in cloud computing, contributing to the advancement of 

sustainable data center operations. 
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