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ABSTRACT 
 
The role of regression testing in software testing is crucial as it ensures that any new 

modifications do not disrupt the existing functionality and behaviour of the software 

system. However, the presence of Flaky Tests undermines the reliability of regression 

testing results. In this paper, we propose an LLM-based approach for classifying the root 

cause of identified flaky tests in C++ projects at the code level. We compile a 
comprehensive collection of C++ project flaky tests sourced from GitHub. We finetune 

Mistral-7b, Llama2-7b and CodeLlama-7b models on the C++ dataset and an existing 

Java dataset and evaluate the performance. The results indicate that our models exhibit 

varying performance on the C++ dataset, while their performance is comparable to that of 

the Java dataset. Our results demonstrate the exceptional capability of LLMs to accurately 

classify flakiness in C++ and Java projects, providing a promising approach to enhance 

the efficiency of debugging flaky tests in practice. 
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1. INTRODUCTION 
 

Regression testing is deployed to prevent code changes from causing any disruptions to the 
existing functionality of the software[1]. The presence of flakiness in tests can have an impact on 

the results of regression testing and undermine its reliability [2].  

 

Flaky tests have long been identified as a challenge in software testing [3, 4]. A flaky test is a test 
case that passes or fails randomly without any change made to the test code or the Item Under 

Test (IUT) [5], resulting in multiple problems in the software development process. Flaky tests 

may not consistently reveal faults in the IUT, leading to uncertainty about whether the problem 
originates from the test case or the IUT itself. Failures caused by flaky tests are often attributed to 

issues with test execution or the inherent design of the test case [6]. Flaky tests can affect 

automatic builds with false signals and cause undesirable delays in the Continuous Delivery (CD) 
[7, 8]. An obvious consequence is that flaky tests can cause developers to waste time debugging, 

which decreases their trust in the test suite [4] and negatively impacts their productivity [9, 10].  

 

A study of Google’s tests reported that 41% out of 115,160 test targets show some kind of 
flakiness [11]. Also, a previous work [12] reported that about 4.6% of the tests in five Microsoft 

projects are flaky. One common approach to finding a flaky test is to run the test cases many 

times, which is inefficient and time-consuming [3, 13, 14]. It is also hard to determine the 
appropriate number of reruns to find discrepancies in outputs [15].  
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Researchers have proposed many methods to detect flaky tests with fewer resources. IDFlakies 
[16] suggested running the test cases in a different order, which can detect the flakiness with 

fewer reruns. Zhang et al. [17] studied several real-world dependent tests, then proposed and 

compared four algorithms to detect dependent tests in a test suite. Pinto et al. [18] detected the 

flaky tests in regression test suites using various machine learning algorithms. King et al. [19] 
leveraged a Bayesian network to classify and predict flaky tests. Besides detecting flaky tests, 

some research focused on classifying the category of flaky tests. Luo et al. [20] studied several 

open-source projects and classified the rootcauses of flaky tests into ten categories. Lam et al. 
[16] published a study where they classified flaky tests to be order-dependent or non-order 

dependent.  

 
Recently, Large Language Models (LLMs) have become popular because of their excellent 

performance in text understanding and generation. Significant research has focused on utilizing 

LLMs to address various challenges, especially code-related tasks. However, the application of 

LLMs for classifying test flakiness remains a relatively novel area of exploration. For example, 
FlakyCat [7], a CodeBERT-based multi-class classifier with Few-Shot Learning, categorizes 

flaky tests based on their root causes of them. Furthermore, most research focused on the flaky 

tests in Java and Python projects, not C++ projects. C++ is one of the most used programming 
languages, and it is a good choice for embedded, resource-constrained programs [21]. Hence, it is 

necessary to investigate the method to classify the flakiness in C++ flaky tests.  

 
To address this, we leverage three different LLMs and fine-tune them on a C++ flaky test dataset 

to investigate the efficacy of flaky test classification beyond the scope of previously studied 

languages while concurrently comparing the performance of multiple state-of-the-art large 

language models. We will address the following research questions in this paper: 
 

RQ1: How accurately can our approach classify the flakiness categories of C++ projects 

compared to the existing Java dataset? 
 

In this research question, we aim to study the performance of different models in classifying the 

flakiness in Java and C++ projects. Then, we analyze the F1 score, accuracy, precision, and recall 

to evaluate their abilities. 
 

RQ2: How does our approach compare to previous work for the classification of flakiness 

in Java flaky tests? 
 

This research question examines the performance of different LLMs in classifying flakiness in 

Java projects and then compares the results to previous work. In our study, we use the Java 
dataset of FlakyCat [7], so we compare our results with FlakyCat. 

 

The paper makes the following contributions:  

 
– We present a C++ flaky test dataset for our project and future research. To the best of our 

knowledge, this represents the first publicly available dataset of C++ flaky tests. The 

dataset is valuable for further research on C++ flaky tests.  
– We propose a method to classify the flakiness of C++ and Java flaky tests.  

– We compare the capability of our selected models to classify flakiness categories in Java 

and C++ flaky tests, offering suggestions for model selection in future research.  
 

The datasets used in this study and the scripts are publicly available in our GitHub repository 

(https://github.com/PELAB-LiU/FlakyClassifier) to facilitate reproducibility.  
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The rest of this paper is organized as follows: Section 2 presents the background and related 
works. Section 3 presents our approach. Section 4 shows the results of our approach. Section 5 

discusses our results. Section 6 shows the threats to validity. Finally, Section 7 concludes the 

paper and suggests future work. 

 

2. BACKGROUND 
 

This section presents the background of our study. We list the root causes of flaky tests and 

related works in this area. 
 

2.1. Root Causes of Flaky Test 
 
It is vital to understand the root causes of flaky tests before fixing them. Researchers and 

practitioners conducted many studies to determine the root cause of test flakiness [10,20]. Luo et 

al. [20] conducted an extensive study of flaky tests by analysing the commit history of all projects 
from the Apache Software Foundation. They filtered and analysed the commits, resulting in 201 

commits suitable for inspection. After analysis, the root causes were divided into ten categories: 

Async Wait, Concurrency, Test Order Dependency, Resource Leak, Network, Time, IO, 

Randomness, Floating Point Operations, Unordered Collections. Their results showed that most 
of the flaky tests in their dataset were caused by Async Wait, Concurrency and Test Order 

Dependency. Then, Eck et al. [10] reported four uncovered causes of test flakiness in their study. 

The study suggested that Too Restrictive Range, Test Case Timeout, Platform Dependency and 
Test Suite Timeout could also be the root cause of some test flakiness. In our study, we 

constructed our dataset following the categories they set and fine-tuned the LLMs to classify the 

flaky tests into the categories mentioned above. Table 1lists the root causes and their brief 
definitions used in our study. 

 

2.2. Related Work 
 

A large language model is a statistical model with billions of parameters, and it is trained to 

predict the next few words in a sequence [22]. These models are pre-trained on vast amountsof 
text data and have demonstrated powerful performance in a wide range of Natural Language 

Processing (NLP) tasks, including language translation, text generation, text classification and 

code generation [23–26]. Inspired by the excellent performance on code understanding of LLMs, 

practitioners also tried to deploy them to flakiness classification. 
 

Aklli et al. [7] proposed FlakyCat, a CodeBERT-based approach to classify flaky tests based on 

their root cause category. They also leveraged Siamese networks [27], which consist of a pair of 
networks that share weights and are designed to compute similarities between elements to 

classify the flakiness. Fatima et al. [28] utilized LLMs to classify flaky tests based on how they 

were fixed. They constructed a dataset of fix categories based on existing datasets. Then, they 

built prediction models based on CodeBERT and UniXcoder and trained them on the dataset they 
had created. The approach can output repair advice for flaky tests. Their work alleviates the 

issues of flaky tests to some extent. However, the datasets used in previous work only contain 

Java and Python projects, which is insufficient for the software testing field. 
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Table 1. Root Causes of Flaky Tests 

 
Root Causes Definitions 

Async Wait 
A test makes an asynchronous call but does not properly wait for the result to 

become available before using it. 

Concurrency 
The test non-determinism is due to different threads interacting in a non-desirable 

manner. 

Test Order 

Dependency 
The test outcome depends on the order in which the tests are run. 

Resource Leak 
The test does not properly manage one or more of its resources, such as memory, 

resulting in test failures. 

Network 
The test depends on network connections, and it fails when the network is 

unstable. 

Time The test relies on the system time, which introduces non-deterministic failures. 

I/O The test has I/O operations which may cause flakiness. 

Randomness 
Random numbers can make some tests flaky if all possible values are not 

properly addressed in the test. 

Floating Point 

Operations 
The test with floating point operations can be non-deterministic. 

Unordered 

Collections 

The test outcome can become non-deterministic if you assume the elements are 

returned in a particular order. 

Too Restrictive 

Range 

The test has a restrictive or insufficient assertion, which may cause non-

deterministic behaviour. 

Test Case Timeout 
The test does not produce an output for a fixed amount of time and leads to a 

flaky outcome. 

Platform 

Dependency 
The test fails consistently on a specific platform but passes on other platforms. 

Test Suite Timeout The test suite non-deterministically times out, not a single test case. 

 

3. RESEARCH METHOD 
 

In this section, we introduce an approach based on LLMs to predict the flakiness in flaky test 
cases. We present our datasets and the fine-tuning of the LLMs. Additionally, we illustrate the 

evaluation of our approach. 

 

3.1. Datasets Construction 
 

Data is a vital source of LLM training. A high-quality dataset makes the training more accessible 
and improves the performance of the models. In our approach, we fine-tuned the LLMs on two 

datasets: one is C++, and the other is Java. We collected C++ flaky tests from open-source 

projects on GitHub and applied data augmentation to them to get the C++ dataset. The Java 
dataset we used is from FlakyCat [7]. 

 

C++ Dataset 
 

In our approach, we had to collect a set of C++ flaky tests to construct a dataset for fine-tuning 

LLMs. We decided to extract the flaky tests from open-source projects on GitHub. 
 

Initially, we searched the keyword “flaky” on GitHub, restricting the programming language to 

“C++”. This search yielded over 58,000 results. However, the results contained many irrelevant 

items. To further refine the results, we applied the “Issues” filter on the website, limiting the 
search to issues with “flaky” in their titles. Among these results, some were newly identified and 

remained unresolved. It is hard to assign a category for those issues without any comments from 

the developers. Thus, we removed these issues by filtering out those not labelled as “Closed”. 
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The previous steps yielded a set containing issues about C++ flaky tests. Next, we filtered out 
issues that were hard to classify or duplicated. Additionally, some flaky tests were fixed by 

modifying the production code or other associated files, so we excluded these tests from our data 

to focus solely on the ones caused by external factors or test-specific issues. Finally, we got a 

dataset containing 55 C++ flaky tests and comments from the developers. Based on the 
comments from the developers and the test code, we manually categorized each flaky test 

according to Table 1. 

 

Data Augmentation 
 

The collected dataset was too small for LLM fine-tuning. Thus, we had to deploy data 
augmentation to obtain more flaky tests. Inspired by [7, 29–31], we leveraged GPT-4 and 

Synthetic Minority Over-sampling Technique (SMOTE) [32] to augmentour C++ dataset. 

SMOTE is an over-sampling technique that generates extra synthetic samples from the minority 
class. Similar to the approach used in FlakyCat, in our study, we only changed the variable names 

and constants for each test case from the C++ dataset and added declarations of unused variables. 

In this way, we ensured that the underlying flakiness of the tests remained unaffected, allowing 
the models to learn relevant information about test flakiness without being influenced by 

superficial code changes. Unlike FlakyCat [7], we prompted GPT-4 to achieve this task. GPT-4 

performs well in code understanding and can easily replace the variable names and constants with 

similar words instead of introducing meaningless characters. A meaningful variable name could 
help the LLMs used in our study to understand the tests better and learn more meaningful 

patterns related to test flakiness. We set the prompt as follows: 

 
Here are some C++ flaky test cases. Please use the SMOTE method to augment the given code. 

Please mutate only the variable names, constants or test method names or add declarations of 

unused variables. Do not influence the flakiness of the code. For each given code, please return 
five augmented examples to me. 

 

 
 

Figure 1. The overall process of constructing our C++ dataset 

 
Considering the max length limit of GPT-4, we input one test each time. After the augmentation, 

we filtered some of the generated tests if the number of text variants was fewer than three. This 

ensured that the augmented dataset maintained sufficient diversity in the test cases. Finally, we 

combined the augmented dataset with the collected dataset and got a dataset containing 362 flaky 
test cases.  

Figure 1shows how we built our C++ dataset. 
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Figure 2shows an example of our collected flaky test, and the corresponding augmented flaky test. 

In the left figure, the counter executing [pool id] is modified without proper synchronization, 

which can lead to race conditions if multiple threads update it concurrently. After data 
augmentation, the names of different variables were changed. For example, auto job func was 

replaced by auto task function, GPT4 only changed the name but didn’t change auto, which is a 

keyword used for type inference in C++. Furthermore, GPT-4 added an unused variable at the 
beginning of the code, which is unusedVar1. The flakiness was not affected. With this, we also 

avoided using meaningless variable names, which may help the LLMs understand the tests better 

during classification. 
 

 
 

Figure 2. Code snippet before augmentation (left) and Code snippet after augmentation (right) 

 
Finally, we got a dataset containing 362 C++ flaky tests. Table 2 shows the distribution of our 

C++ dataset. Original means the data were extracted from flaky tests of GitHub projects. 

Augmented shows the data after data augmentation. Final dataset is the combination of them. 

Java Dataset  

 

The approach we adopted involved the utilization of two distinct datasets of different 
programming languages. One dataset was constructed for C++, while the other was initially used 

by FlakyCat [7]. The Java dataset comprises flaky tests from previous work [33–35], GitHub 

projects and data augmentation. We performed a filtering process to eliminate samples with 

missing labels, resulting in the refined Java dataset. The Java dataset contains 1287 Java flaky 
tests. Some categories have less than 15 examples, and it is not feasible for models to learn from 

very few examples. Thus, we removed those categories, which are Float point operation, I/O, 

Platform dependency, and Too restrictive range, from the dataset before fine-tuning and 
evaluation. Finally, we got a dataset containing 1287 Java flaky tests.  
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Table 3 illustrates the information of our two datasets. Both datasets are not distributed evenly 
across categories of flakiness; this means we have imbalanced datasets. As illustrated above, we 

filtered categories with less than 15 flaky tests in the Java dataset. Thus, in our experiment, we 

did not use those categories of each dataset to train and evaluate the models. 
 

Table 2. The distribution of our C++ dataset 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

 
Table 3. The information of our datasets 

 

Category C++ Dataset Java Dataset 

Async wait 90 376 

Concurrency 57 144 

Time 95 122 

Unordered collections 22 153 

Randomness 24 50 

Network - 93 

Test Order Dependency - 291 

Resource Leak - 28 

Platform dependency - 6 

Float point operation 37 9 

I/O 20 6 

Too restrictive range 17 9 

Total 362 1287 

 

3.2. Fine-Tuning 

Category 
C++ Dataset 

Original Augmented Final dataset 

Async wait 12 78 90 

Concurrency 7 50 57 

Time 18 77 95 

Unordered 

collections 
2 20 22 

Float point 

operation 
5 32 37 

I/O 2 18 20 

Randomness 6 18 24 

Too restrictive 
range 

3 14 17 

Total 55 307 362 
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In this section, we describe how we fine-tuned different LLMs to predict and classify flakiness. 

Currently, the two prominent approaches to enhance the capability of LLMs are Finetuning and 

Retrieval Augmented Generation (RAG). RAG uses external data to augment the prompt, while 

fine-tuning injects the additional knowledge into the base model [36]. Both of them are highly 
efficient in adapting LLMs to specific domains. In our study, considering the flakiness 

classification is less popular among code generation, completion and code review, we decided to 

use fine-tuning instead of RAG. The LLMs need to learn new skills specific to this domain. Fine-
tuning can make LLMs provide more precise and succinct responses without needing to perform 

expensive retrieval steps [36], and make the LLMs more efficient for repeated use.  

 
Our approach involves fine-tuning three language models: Llama2-7b, CodeLlama-7b and 

Mistral-7b. Llama2 [37] is a family of pre-trained and fine-tuned large language models. They 

have several versions depending on the number of parameters, ranging from 7 billion to 70 

billion. Llama2 models outperform many open-source models on most benchmarks and can be a 
suitable substitute for closed-source models like GPT-4 [31]. CodeLlama, a family of code-

specialized Llama2 models, shows state-of-the-art performance in programming tasks, especially 

code generation tasks. Mistral-7b [38] is also a large language model. It leverages grouped-query 
attention (GQA) and sliding window attention (SWA). Mistral7b outperforms the Llama2-13b 

model across all tested benchmarks and approaches the performance of CodeLlama-7b in coding 

tasks [38].  
 

To fine-tune the models, we split each of our datasets into the training subsets and the evaluation 

subsets. The three models were fine-tuned on the training datasets and evaluated on the 

evaluation datasets, respectively. We allocated 75% for training and 25% for evaluation, which is 
the same with FlakyCat [7].  

 

The experiments were run on a Nvidia DGX A100 compute node of Berzelius, the premier 
AI/ML cluster at NSC. For the fine-tuning strategy, we used Low-Rank Adaptation (LoRA). 

LoRA [39] is an approach that can freeze the pre-trained model weights and inject trainable rank 

decomposition matrices into each layer of the transformer architecture. In practice, you can use 

lora rank, lora alpha and lora dropout to control the performance of the method. Lora rank 
specifies the rank of the low-rank matrices. Lora alpha is the scaling factor to the LoRA updates. 

Lora dropout helps prevent overfitting during finetuning. Using LoRA can significantly reduce 

the number of trainable parameters, which can accelerate the training process and reduce the 
computation resource requirements.  

 

In the fine-tuning process, we set the same value across all experiments for some finetuning 
parameters based on the work from Li et al. [40]. They fine-tuned Llama2-7b to do similar tasks. 

Following their settings, we configured the LoRA settings lora rank,lora alpha and lora dropout 

to 12, 32 and 0.1, respectively.  

 
We set the epoch to 10 so the model can go through the dataset 10 times to improve its learning. 

Both the training and evaluation batch size were eight, which means the model processes eight 

samples at a time.“Max length” refers to the maximum number of tokens the model can process 
in a sequence. Since most of our test cases are short, we set it to 512. The learning rate for 

training is set to 5e-5 with a decay rate of 0.01, which accelerates convergence and helps avoid 

local minima. 
 

3.3. Evaluation 
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To evaluate the performance of our classifier, we use several standard evaluation metrics, 
including precision, recall, F1 score, and accuracy. Since our datasets have imbalanced 

categories, the F1 score is the primary metric for evaluation. In the evaluation, we used weighted 

averaging [41], which is better for imbalanced datasets. Weighted averaging is a method used to 

aggregate precision, recall and other performance metrics in multi-class classification problems. 
It considers the size of each category when calculating the overall metric. By doing this, it 

ensures that larger categories have a greater influence on the final score. In addition to the 

performance metrics, we evaluated the model’s performance after every epoch. This evaluation 
strategy provides a better understanding of the fine-tuning process, and we can monitor the 

improvement of the models after every epoch. 

 

4. RESULTS 
 
In this section, we present the results of our experiments and answer our research questions 

according to the results. We show the accuracy, the weighted average of the F1 score, precision 

and recall of every model after every training epoch in Table 4. We also presentthe curve of 
accuracy and F1 score of our models on the two datasets in Fig 2 and Fig 3. Finally, Table 5 

presents the precisions and recalls of each category in our dataset. Fig 4 and Fig 5 show the 

comparisons of our models’ precision and recall for the four shared categories on our datasets. 
 

RQ1: How accurately can our approach classify the flakiness categories of C++ projects, 

comparing to the existing Java dataset? 

 
To evaluate our approach, we fine-tuned three models on both our C++ dataset and the Java 

dataset of FlakyCat [7]. We used the highlighted categories from each dataset to train and 

evaluate the three models, with the overall results presented in Table 4.  
 

Table 4 provides a detailed summary of the performance of the models. The results indicate that 

the Mistral-7b model achieved a perfect classification on the C++ dataset, obtaining a score of 
1.0 across all metrics. The Llama2-7b model, by comparison, reached a score of 0.90 for all the 

metrics. However, the CodeLlama-7b model only achieved an F1 score of 0.79 and an accuracy 

of 0.82 on the C++ dataset, which is the lowest among all the results on both datasets. 

 
Table 4. Results of each model on our datasets 

 
 Model F1 Accuracy Precision Recall 

Java 

Mistral-7b 0.85 0.87 0.86 0.84 

Llama2-7b 0.89 0.89 0.89 0.89 

CodeLlama-7b 0.86 0.84 0.87 0.87 

C++ 

Mistral-7b 1.0 1.0 1.0 1.0 

Llama2-7b 0.90 0.90 0.90 0.90 

CodeLlama-7b 0.79 0.82 0.78 0.79 

 

On the Java dataset, all three models showed comparable performance, with the Llama2-7b 
model slightly outperforming the other two models. It achieved an F1 score of 0.89. Mistral-7b 

achieved a slightly lower F1 score than CodeLlama-7b, but it obtained higher accuracy on the 

Java dataset. The results suggest that the Llama2-7b model provides a balanced performance 
across datasets. 

 

 Regarding weighted precision and recall, the Llama2-7b model demonstrated satisfactory 

performance on both datasets. It obtained scores of 0.89 for precision and recall on the Java 
dataset, which increased to 0.90 on the C++ dataset. The CodeLlama-7b and the Mistral-7b 
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model achieved comparable precision and recall on the Java dataset, both around 0.87. However, 
on the C++ dataset, the results of the CodeLlama-7b model dropped below 0.80. 

 

 

Figure 3shows the three models achieve similar performance on the Java dataset. All the curves 
start above 0.40 and stabilize at around 0.80 after six epochs. As shown in Figure 4, our models 

displayed different performance when classifying the flakiness in the C++ dataset. The Mistral-

7b model outperformed the other two models throughout all epochs. The other two models 
exhibited similar performance until epoch four, after which the Llama2-7b model began to 

outperform the CodeLlama-7b model.  

 

 
Figure 3. Results on Java dataset: We evaluated the models after every epoch. The curves show the 

performance of each model after every epoch
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Figure 4. Results on C++ dataset: We evaluated the models after every epoch. The curves show the 

performance of each model after every epoch.

 

To understand the details of the precision and recall, we also examined the performance for each 
category in our datasets. We compared the results of the common categories between both 

datasets, which are highlighted in Table 5. Among all the categories, the Mistral-7b model 

achieved a precision and recall of 1.0 for the C++ dataset. For the CodeLlama-7b model, we 

observed significant variations between precision and recall insome categories. For instance, the 
precision of Randomness was 1.0, while the recall was 0.25. This also made it achieve a lower F1 

score than the other two models. Figure 5 and Figure 6 show a clear comparison among the 

models. The Llama2-7b model performed well in recognizing Async wait and Time but 
underperformed in classifying Concurrency and Randomness in the Java dataset. Additionally, 

the precisions of the CodeLlama-7b model were comparable to those of the other models; 

however, its recalls varied significantly across different categories. This variation in recall was 

the primary factor contributing to its lower F1 score. 
 
Table 5. Precision and recall of each model. The P represents for Precision, and the R represents for Recall. 

 

Category 

Java C++ 

Mistral Llama2 CodeLlama Mistral Llama2 CodeLlama 

P R P R P R P R P R P R 

Async wait 0.87 0.88 0.89 0.94 0.81 0.97 1.0 1.0 0.96 0.96 0.77 0.97 

Concurrency 0.81 0.66 0.88 0.74 0.84 0.71 1.0 1.0 0.88 1.0 0.79 0.79 

Time 0.85 1.0 1.0 1.0 0.90 0.97 1.0 1.0 0.89 0.94 0.80 0.94 

Test case 

timeout 
0.50 0.80 0.67 0.80 0.88 0.70 - - - - - - 

Unordered 

collections 
0.95 0.93 0.90 0.96 0.91 0.96 - - - - - - 

Float point 

operation 
- - - - - - 1.0 1.0 0.87 0.93 0.87 0.93 
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Hash 

operation 
- - - - - - 1.0 1.0 0.80 0.67 1.0 0.17 

I/O - - - - - - 1.0 1.0 1.0 0.33 0 0 

Randomness 0.82 0.75 0.75 0.7 0.73 0.67 1.0 1.0 1.0 0.75 1.0 0.25 

Too 

restrictive 

range 

- - - - - - 1.0 1.0 1.0 1.0 0.50 0.50 

Network 0.92 0.60 0.88 0.75 1.0 0.55 - - - - - - 

Test Order 
Dependency 

0.84 0.91 0.91 0.93 0.95 0.91 - - - - - - 

Resource 

Leak 
1.0 0.60 1.0 0.70 1.0 0.50 - - - - - - 

 
RQ2: How does our approach compare to previous work for the classification of flakiness 

in Java flaky tests? 

 

In our approach, we fine-tuned three LLMs to perform an eight-class classification task on the 
Java dataset. For our datasets, the Java dataset comes from FlakyCat [7], which deployed the 

CodeBERT model and Few Shot Learning to classify the flakiness in Java. FlakyCat compared 

the performance of the CodeBERT-based model with traditional machine learning classifiers. 

Since we used the Java dataset of FlakyCat, we took the results of the CodeBERT-based model as 
a baseline for comparison.  

 

Our findings indicate that the three LLMs we fine-tuned outperform the CodeBERT-based 
method of FlakyCat. As shown in  

 

 

 

 

 

 

Table 6, in our results, the Llama2-7b model achieved the highest F1 score of 0.89, surpassing 
FlakyCat’s result by 0.16. Moreover, the Llama2-7b model attained precision and recall scores of 

0.89 on the Java dataset. Meanwhile, the CodeBERT-based method of FlakyCat got 0.74 and 

0.73 for precision and recall, respectively. 
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Figure 5. Comparison of model recall scores for shared categories on the Java and C++ datasets 
 

 

 
 

Figure 6. Comparison of model precision scores for shared categories on the Java and C++ datasets. 

 
 

 

 

 

 

 
 

Table 6. Comparison of results between our study and FlakyCat. 

 
 Model F1 score Precision Recall 

Our Study Mistral-7b 1.0 1.0 1.0 

Llama2-7b 0.90 0.90 0.90 

CodeLlama-7b 0.79 0.78 0.79 

FlakyCat CodeBERT-based 0.73 0.73 0.73 

 

5. DISCUSSION 
 
Our results indicated that various models exhibited different capabilities in classifying flakiness 

across different programming languages. The Mistral-7b model demonstrated excellent 
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performance on the C++ dataset, achieving a score of 1.0 across all our metrics.However, on the 
Java dataset, it only scored 0.85 for the F1 score, 0.87 for accuracy and 0.84 for recall. Similarly, 

the CodeLlama model exhibited a comparable scenario. It achieved an F1 score of 0.86 on the 

Java dataset, but the F1 score dropped to 0.79 on the C++ dataset. One possible explanation is 

that the Mistral model’s training data may have included a larger proportion of C++ code, which 
enhanced its performance on C++ datasets. In contrast, the CodeLlama model was trained in 

multiple programming languages to offer intelligent suggestions and completions. This could 

explain why the Mistral-7b model performed better in understanding C++ codes. Furthermore, 
the differences in syntax and semantic rules between C++ and Java may explain the variations in 

our results.  

 
Additionally, the performance of the Llama2-7b and the CodeLlama-7b models also reminds us 

that even code-specialized models like CodeLlama may not exhibit better capabilities than their 

base models in some tasks. In our experiment, the CodeLlama-7b model did not outperform the 

Llama2-7b model on both datasets, which was an unexpected result. CodeLlama is a family of 
code-specialized models of Llama2. Thus, they weresupposed to achieve better performance in 

code-related tasks like flakiness classification. However, Fig 3 show they had the same 

performance at the beginning of the fine-tuning. However, they exhibited different performances 
during the fine-tuning. The Llama2-7b model appeared to learn more information from the 

training dataset and achieved better accuracy and F1 score on the C++ dataset. The reasons for 

this can be complex and beyond the scope of our work; we leave this for future research. 
 

Flakiness classification is a code-related task for LLMs. For LLMs, classification tasks are 

simpler than code generation since code generation requires models with higher understanding 

capabilities. Thus, we choose the models with 7-billion parameters. Models of this size have 
sufficient reasoning capabilities, relatively low hardware requirements, and perform well on less 

complex tasks. In general, larger LLMs possess stronger reasoning abilities and better 

performance in code understanding. For example, the Llama2-13b model achieves a pass@1 
score of 24.5 on grouped academic benchmarks. Meanwhile, the Llama2-7b model only achieves 

a pass@1 score of 16.8 [37]. The pass@k metric represents the probability that at least one of the 

top k-generated code samples for a problem passes the unit tests [42]. If possible, one can use 

larger models to achieve better classification results in practice. 
 

Moreover, based on our results, we propose to use different LLMs to classify the flakiness in 

different programming languages. The promising performance of Mistral-7b provides a potential 
solution for classifying the flaky tests for C++ projects. For Java projects, the Llama2-7b model 

can be deployed to achieve better performance. In addition, the precisions and recalls of each 

category are presented in Table 5. The Llama2-7b model achieved a perfect score of 1.0 in the 
Time category for both metrics. In practice, if we are more concerned about a certain type of 

flakiness, then we can use the model that has the best performance in classifying this type of 

flakiness. For example, the Llama2-7b model is good at classifying Time flakiness, so we can 

use it to classify Time flakiness. 
 

LLMs have great potential in text generation and code understanding. Training an LLM from 

scratch requires a significant number of computational resources; however, finetuning a pre-
trained LLM is less resource-intensive and can lead to better performance on specific tasks. For 

example, fine-tuning the Mistral-7b model on our dataset took less than six minutes with the 

given hardware. The fine-tuned model classified the C++ flaky tests perfectly. This model can 
reduce the time engineers spend detecting and determining root causes, thereby significantly 

reducing resource consumption, especially for large software systems. RAG can also be used to 

improve LLMs’ performance in flakiness classification. Currently, there are many LLMs 

specialized for code, they have developed a basic understanding of the test code. In this case, 
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RAG can achieve better performance with less effort in processing the data [43]. In future 
studies, we can explore the combination of RAG and fine-tuning to improve the performance of 

LLMs in flakiness classification. 

 

In our study, we collected the C++ dataset from several open-source projects and applied data 
augmentation. The dataset provides valuable material for further research on C++ flaky tests. 

However, we acknowledge that the dataset is insufficient to solve all practical issues. More 

datasets in this field are needed to help us understand and deal with various scenarios. Although 
our results suggest that LLMs can learn meaningful patterns with the synthetic data, due to our 

random train-test splitting strategy, there is a possibility that the original tests in the training set 

influenced the classification of corresponding mutated tests in the evaluation set. This could have 
inflated the model’s performance, as LLMs like GPT-4 have been shown to recognize mutations. 

Future work should adopt a better data splitting strategy to eliminate this issue. For example, we 

candivide the original data and the corresponding generated data into the same subset to avoid 

this. 
 

6. THREATS TO VALIDITY 
 

In this section, we discuss potential threats to the internal and external aspects of our study, as 
well as the construct validity of our study. 

 

6.1. Internal Validity 
 

The internal threats to validity are concerned with the C++ dataset construction process of our 

experiment. In our study, we collected the C++ flaky tests from open-source projects on GitHub. 
The flaky tests were manually categorized based on developers’ comments about the root cause 

of the flakiness, as explained in Section 3. However, in some instances, the comments did not 

specify the flakiness categories, requiring manual classification by us. Consequently, it is 

possible that the flaky tests were assigned to the wrong label, which could introduce bias into our 
experiment. To mitigate this risk, we reviewed the test code before we assigned the label to a 

flaky test. Then, we categorized the flakiness based on the developers’ comments and our 

understanding. This can reduce the possibility of assigning wrong labels to our data and ensure its 
quality. In our study, we applied data augmentation on the collected C++ flaky tests using GPT-4. 

To make sure GPT-4 worked as we expected and generated accurate examples, we also checked 

all the augmented tests. This additional step helped to prevent issues related to poor data quality 

in our study. 
 

 

 

6.2. External Validity 
 

The generalization of our approach is one of the threats to external validity. In previous works, 
most research investigated the flakiness categorization of a single programming language, which 

is insufficient for the whole industry. The results cannot show the performance of the models in 

different programming languages. To evaluate the generalization of the LLMs, in our study, we 
fine-tuned three LLMs to classify the flakiness in C++ and Java projects. Our finding shows that 

the Mistral-7b model can be used to classify some of the flakiness in C++ and achieve a perfect 

result, but it cannot achieve the same performance on the Java dataset. Similarly, the results only 
show the abilities of the selected three models on the Java and C++ datasets. We recognize that 

the models used in this study may not generate the same results in the other programming 

languages. The other threat to external validity is the dataset used in our study. We collected 55 
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C++ flaky tests from GitHub and applied data augmentation to them. We acknowledge that the 
limited size of our dataset may contribute to overfitting. Also, this dataset may not accurately 

reflect the true distribution of flaky tests across all C++ projects. In addition, in practical 

applications, the coding habits and styles used in some fields will differ from the datasets used in 

our experiments. As a result, the models trained on our datasets might exhibit different 
performance on other datasets, potentially yielding higher or lower results depending on the 

distribution of the new dataset. 

 

6.3. Construct Validity 
 

One potential threat to construct validity lies in the metrics used to evaluate the performance of 
the models. In our study, the dataset was imbalanced across different categories.As shown in  

 

 
 

 

Table 3, we had only 17 samples in the Too restrictive range category, compared to 90 samples in 

the Async wait category. This uneven distribution could lead to inaccurate results. To alleviate 
this threat, we used the weighted average of F1 score, precision and recall instead of their macro 

average. Weighted average considers the size of each category, and large categories have a 

greater weight when calculating the overall result. This approach ensures a more accurate and 
representative evaluation of model performance across all classes. 

 

7. CONCLUSIONS 
 

In our study, we deployed the CodeLlama-7b, Llama-7b and Mistral-7b models to classify the 
flakiness of flaky tests in C++ and Java datasets. We also created a dataset consisting of 362 C++ 

flaky tests, categorizing their flakiness. Each model was fine-tuned on the C++ dataset and the 

Java dataset. To answer our research questions, we evaluated them on the test datasets and 
observed excellent results. 

 

Our empirical evaluation demonstrates that our approach performs excellently on the C++ dataset 

and achieves competitive results on the Java dataset. On the C++ dataset, the Mistral model 
achieved the highest performance among all the models. However, the Mistral-7b model only 

attained a score of 0.85 for the F1 score on the Java dataset. This indicates that the Mistral model 

is more suitable for classifying flakiness in the C++ dataset than the Java dataset. In contrast, the 
performance of all models on the Java dataset was similar, with the Llama2 model slightly 

outperforming the others. The Llama2 model achieved an F1 score of 0.89, whereas the Mistral 

and CodeLlama models scored 0.85 and 0.86. 

 
FlakyCat deployed CodeBERT and Few Shot Learning to classify flakiness on the Java dataset, 

achieving an F1 score of 0.73. For our work, all three models achieved a higher F1 score on the 

Java dataset. The Llama2-7b model obtained an F1 score of 0.89, which is the highest. On the 
C++ dataset, our models, particularly the Mistral-7b, showed excellent performance, 

outperforming other models, with 1.0 for all the metrics. Our study shows the ability of LLMs to 

classify the flaky tests in two mainstream programming languages. The models achieve excellent 
results on both datasets, especially the Mistral-7b model. It obtained an F1 score of 1.0 on our 

C++ dataset. And the Llama2- 7b model also achieved satisfactory results on the Java dataset. 

Our results find that different LLMs exhibit different abilities in classifying the flakiness in Java 

and C++ projects. The results suggest that it is promising to employ these models in the CD 
process, therefore reducing the resource consumed and making the CD process more efficient. 
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