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Abstract. GitLab’s Merge Request (MR) mechanism is a cornerstone of DevOps, traditionally used
for code review and analysis. This study broadens its scope by leveraging MR data to explore multiple
facets of the DevOps workflow. Using a dataset of 26.7k MRs from 116 projects across four teams in
a networking software company, we first examine the impact of environmental and process changes. We
analyze how external factors, such as the COVID-19 pandemic, and internal adaptations, like the migration
to OpenShift, influence effort, productivity, and collaboration. Our findings indicate that while review
effort increased during the pandemic, productivity remained stable, with up to 70% of weekly activities
occurring outside standard working hours. Similarly, the OpenShift migration initially disrupted workflows
then showed a successful adaptation, with stabilized performance metrics over time. Next, we analyze
branch management practices, revealing that stable branches, particularly those linked to new releases, are
prioritized, leading to faster review completion. Finally, we apply machine learning (ML) to explain the
time to complete code reviews, highlighting the roles of bots and human reviewers in industrial context.
While bots accelerate review initiation, human reviewers play a crucial role in reducing time to complete
code review. Additional factors, such as the number of commits and reviewer experience, also significantly
influence review efficiency. Our analysis contributes to extending the use of MR data beyond code review
by demonstrating how it provides deeper insights into software development workflows, team collaboration,
and process adaptations, offering a framework for leveraging MR dynamics to optimize DevOps practices.
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1 Introduction

Research Background: DevOps represents an integrated approach that emphasizes
collaboration, automation, and continuous improvement throughout the software devel-
opment lifecycle [9, 23]. By integrating DevOps practices, organizations can significantly
enhance their agility, shorten the time to market, increase automation, and ensure more
reliable and consistent software releases [4]. DevOps integrates the efforts of development
and operations teams, facilitates continuous integration, continuous delivery, and continu-
ous deployment, and fosters a culture of collaboration and shared responsibility to address
common bottlenecks and inefficiencies in traditional software development practices [11].
The DevOps process is structured into distinct phases, each crucial for maintaining a
smooth and efficient workflow, which are: development, testing, building and monitor-
ing. Each phase necessitates specific checks and validations before progressing to the next
phase. By leveraging DevOps within the framework of SPI, organizations can achieve
a streamlined and effective software development lifecycle, ultimately leading to higher
productivity, better software quality, and reduced development costs and time [20, 22, 24].

To realize the DevOps process, multiple tools and technologies are employed at each
stage, ensuring seamless execution and continuous improvement throughout the software
development process. For instance, in the development stage, version control systems like
Git are used, while in the testing stage, continuous integration (CI) servers such as GitHub
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Actions or GitLab CI are common. Additionally, there are different mechanisms that help
streamline the workflow, such as GitLab’s merge request and Git hooks.

Research Motivation: GitLab’s Merge Request (MR) mechanism serves as a central
element within the DevOps pipeline, streamlining the submission, review, and integration
of new code changes into the main code base (from source to target branch) 1. Through-
out this process, collaborators actively participate in discussions, offering insights and
improvements to the code under review. In addition, the MR encapsulates various aspects
of the project and team dynamics. Analyzing this data provides a rich perspective on
multiple dimensions of the software system. It facilitates productivity analysis by quan-
tifying effort and contributions, identifies workflow bottlenecks to optimize code updates,
ensures quality of work through thorough reviews, and improves collaboration patterns by
identifying key contributors. It also provides insight into how the development process is
impacted by various factors, such as the impact of new technology integration on release
velocity.

Research Objectives:While MR data have been used in the literature to analyze dif-
ferent aspects of the code review process [8, 5, 18, 10], the goal of this paper is to examine
various aspects of DevOps processes using GitLab MR data to identify and improve areas
affected by different changes in the process. To do so, we analyze 26,7k MRs data from
four teams of our industrial partner, a networking software solution company that deploys
5G and cloud edge fabric technologies for telco, data center, and cloud service provider
customers using a DevOps approach for efficient software development and deployment.
These main aspects are addressed in this study:
(1) Impact of Environmental or Process Changes: Changes within or outside the
company can significantly affect team dynamics and performance. Analyzing MR data re-
veals how these changes impact productivity, collaboration, and effort, helping us address
two key questions:
a- Environmental Changes: The COVID-19 pandemic’s onset in Canada on March
16, 2020, forced an immediate shift from office to remote work, disrupting daily interac-
tions around development and code reviews. This study analyzes MR data to examine the
pandemic’s impact on developer activities and how such external disruptions influence the
DevOps process and organizational adaptability, answering the research question: How
have environmental changes, specifically the shift from office-based work to re-
mote work during the COVID-19 pandemic, impacted workplace dynamics and
productivity? Analyzing MR data shows increased effort and longer times to complete
code review during COVID-19, with more activity outside regular hours and weekends,
which persist after the pandemic, indicating greater flexibility. Despite these changes, pro-
ductivity remained stable, demonstrating team adaptability.
b- Process Changes:Process changes, like integrating new technologies, can disrupt De-
vOps workflows, requiring developers to learn new skills and manage increased bugs. A
key example is the company’s migration to OpenShift (May 1, 2020 – Jan 31, 2021), where
OpenShift-related MRs were separated to ensure a smooth transition. This study compares
OpenShift and non-OpenShift MRs to assess the migration’s impact on the overall pro-
cess. Our research question is: Has there been any impact of the process changes,
specifically the migration to OpenShift technology, on different aspect of the
organization? During the migration, we observe unstable times to complete code review
and smaller MRs on OpenShift due to gradual technology integration and code changes.
By the final sprints of the migration, times to complete code review and MR sizes stabi-
lized, showing increased developer competency with OpenShift.

1 https://docs.gitlab.com/ee/user/project/merge_requests/
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(2) Branch Information Analysis: Branch policies are crucial for efficient DevOps,
enabling teams to work independently without disrupting the main codebase. Analyzing
branch usage helps track progress, detect late-stage bugs, and reveal team workflows, such
as release frequency. MR data, which records source and target branches, offers valuable
insights into branch management. This study explores different branch types and their
management using MR data, answering: How are different types of GitLab branches
used and managed in an industrial DevOps environment? We found that MRs
on stable branches are prioritized, completed faster, and receive quicker responses, likely
due to their connection to release production and bug management.
(3) Code Review Process Analysis: Time to complete code review is crucial for un-
derstanding the review process and is widely regarded as a key metric for estimating MR
effort. Zhang et al. [30] found that faster first comments accelerate pull request closures
but did not distinguish between bots and humans, while Hasan et al. [8] suggested bot
responses weaken this effect. Since automation is central to DevOps, we leverage Machine
Learning (ML) to explain the time to complete code review, focusing on the impact of
human vs. automated bot first comments. Our research question is: To what extent does
the origin of the first comment—bot or human—impact the time to complete
code reviews? We found that bot-generated first comments dominate initial MR interac-
tions, significantly speeding up the initiation of the review process, with median response
times ranging from 4.46 to 23.78 minutes. However, it is the human comments that have
the most significant impact on reducing time to complete code review, explaining over 93%
of the variance in MR completion time. This finding highlights the critical role of timely
human feedback in driving efficient code reviews, while also acknowledging the importance
of bots in initiating the process. Other factors, such as the number of commits and the
experience of the reviewers, were also found to play a significant role in determining the
overall efficiency of the code review process.

Research Contribution: The main contribution of this study lies in highlighting the
broader significance of MR data, extending its analysis beyond traditional code review to
provide insights into various aspects of the DevOps process. By examining MR data, we
gain a deeper understanding of not only the quality of code reviews but also how teams
collaborate and how external factors, such as technological changes or unexpected events,
influence the development workflow. Additionally, this study offers a valuable analysis of
the factors impacting review completion time and the timing of the first comment in an
industrial context. Our research provides practical guidance for practitioners on leveraging
code review data, particularly MR data, to enhance their DevOps processes through more
in-depth analysis and data-driven decision-making. The paper proceeds with related work
in Section 2, followed by the methodology in Section 3. Section 4 addresses the research
questions, concluding with discussions on threats to validity in Section 5 and the paper’s
conclusion in Section 6.

2 Background and Related Work

MR Mechanisms in DevOps: MR mechanism plays a central role in the DevOps pro-
cess, structuring the proposal, review, and integration of code changes. Throughout the
MR lifecycle, contributors engage in discussions, revisions, and quality assurance before
the code is merged. This structured process enforces quality control while streamlining de-
velopment workflows. Similar mechanisms exist on other platforms. GitHub’s pull request
(PR) system and Gerrit’s code review framework offer comparable functionality, though
with variations in review policies and approval processes. As discussed by Tufano et al.
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[29], automated tools supporting review activities play a crucial role in accelerating the
review process while maintaining software quality.

Code Review Practices and Efficiency: Numerous studies have sought to ana-
lyze and improve the efficiency of the code review process. For instance, Chouchen et
al. [5] and Maddila et al. [18] developed predictive models for estimating review dura-
tion based on factors such as code complexity, reviewer expertise, and discussion volume.
Hasan et al. [8] found that shorter time-to-universal-first-response correlates with quicker
pull request completion, though bot-first responses were less impactful than human inter-
ventions. Similarly, Bosu and Carver [3] showed that established developers receive faster
feedback, leading to shorter review times. The number and experience of reviewers also
influence review dynamics. Jiang, Adams, and German [12] demonstrated that increasing
the number of reviewers extends the review process, while Thongtanunam et al. [28] ex-
plored how specific code patch characteristics attract more reviewers. Additionally, Baysal
et al. [2] highlighted that non-technical factors, such as team hierarchy and social rela-
tionships, impact review duration. ML techniques have been widely applied to predict
review outcomes and optimize review processes. Fan et al. [6] and Islam et al. [10] used
ML models to predict whether a code change would be merged or abandoned. Li et al.
[17] analyzed redundant pull requests, showing that duplicate contributions increase in-
efficiencies. Additionally, Khatoonabadi et al. [13] investigated the abandonment of pull
requests, identifying inexperience, high complexity, and prolonged review cycles as key
contributors. Finally, Golzadeh et al. [7] developed a classification model for detecting
bot-generated comments on GitHub, highlighting their benefits in expediting reviews but
also their limitations in nuanced decision-making.

Code Evolution Through Code Review Data: Several studies have also analyzed
development aspects using the data provided from the code review process. For instance,
Nejati, Alfadel, and McIntosh [21] found that build specification changes in projects like
Qt and Eclipse receive less attention during reviews than production and test code, despite
posing a higher defect risk. Similarly, Spadini et al. [25] observed that production code
undergoes more thorough reviews than test code, impacting overall software stability. To
investigate code defects, Thongtanunam et al. [27] demonstrated that defective files often
receive less rigorous reviews, potentially leading to overlooked issues. Additionally, Staron
et al. [26] showed that modifications to existing code can significantly impact software
stability, influencing product reliability.

Branches in Code Review: Researchers used the branch information as a metric
to study the code review. For example, Lal and Pahwa [15] analysed the code review of
software systems using the branches as a metric providing information about code review
category or features. AlOmar [1] investigated how refactoring changes are handled in code
review by analyzing the dynamics of refactoring branches in the Qt project, examining
their impact on review time, feedback patterns, and integration efficiency. Mukadam, Bird,
and Rigby [19] examined which software changes are reviewed, who reviews them, how
long the review process takes, and the nature of discussions and feedback, using branch
information as metric.

Contributions and Research Gaps: Although past studies have explored code re-
view processes and leveraged review data to analyze various aspects—such as defect detec-
tion and quality assurance—they, remain primarily focused on the code verification phase
rather than examining how review data can be utilized to understand broader DevOps
processes. Our study builds on these findings by demonstrating that MR data extends be-
yond code verification, offering strategic value in tracking development trends in response
to environmental and process changes.We also analyze branch management, highlighting
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its crucial role in structuring development workflows, prioritizing stable releases, and ac-
celerating review efficiency. Understanding how branches are used in an industrial context
allows us to assess their impact on software stability and team collaboration. Finally, au-
tomation is increasingly shaping DevOps, with bots assisting in enforcing coding standards
and providing initial feedback. We examine the role of automated comments in the time
to complete code review, comparing their effectiveness to human comments, following the
same work done by Hasan et al. [8] but in industrial context.

3 Methodology

The goal of this section is to discuss the steps we followed to collect and analyze MR
data to investigate different aspects of DevOps processes. Our methodology is structured
around four RQs, each addressing a distinct dimension of the DevOps workflow through
MR analysis. Below, we detail the data collection and metric extraction, keeping details
to the approach of each RQ.

3.1 Research Questions

RQ1: How have environmental changes, specifically the shift from office-based
work to remote work during the COVID-19 pandemic, impacted workplace dy-
namics and productivity?We analyze MR activity trends, collaboration patterns, and
review effort before, during, and after the transition to remote work to assess its impact
on software development productivity.
RQ2: Has there been any impact of the process changes, specifically the mi-
gration to OpenShift technology, on different aspects of the organization? We
investigate how this technological transition affected MR volume, review efficiency, and
developer workflows.
RQ3:How are different types of GitLab branches used and managed in an in-
dustrial DevOps environment? We examine branch management practices, focusing
on the prioritization of stable branches, review speed, and how different branch types im-
pact the software development lifecycle.
RQ4:To what extent does the origin of the first comment—bot or human—impact
the time to complete code reviews? We assess the influence of automated and human-
generated comments on review efficiency, exploring whether early feedback accelerates the
time to complete the code review and how bots contribute to or hinder the review process.

Table 1: Project teams of our industrial partner
Group Description #MR #Projects
Management Plane (MP) Manage the communication with Fabric 6,344k 20
Control Plane (CP) Orchestrate paths for packets and frames 8,396k 31
Data Plane (DP) Forward packet and frames between interfaces 7,416k 16
FPGA designs reprogrammable integrated circuits 735 19
Platform (PF) Manage low-level platforms 4,004k 30

3.2 Data Collection

In this step, we leverage a GitLab extraction tool, initially developed by Legault [16],
as the foundation for our custom MR data extraction tool, which utilizes the GitLab
API2. This tool enables us to systematically collect MR data from four teams working on

2 https://docs.gitlab.com/ee/api/merge_requests.html
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multiple projects that are described in Table 1. We collected data spanning January 1,
2019, to June 30, 2023, encompassing a wide range of MR attributes, including MR ID,
creation date, closure date, associated commits, discussions, notes, and file modifications.
The data was retrieved using relevant GitLab API endpoints3 4 5 6. To ensure transparency
and reproducibility, the MR extraction tool is publicly available7. This comprehensive data
collection framework provides the necessary flexibility for in-depth analysis, allowing us
to examine multiple dimensions of DevOps workflows.

Table 2: List of metrics used in this study
Metric Description
Creation Week ‡ The week during which the MR was created.
Creation Sprint † The sprint during which the MR was created.
End Week ‡ The week during which the MR was closed.
Time to complete code review (Lead Time)
‡ † ∗ ⋆

The duration between the creation and closure of the MR.

Creation Hour ‡ The hour when the MR was initially opened.
Closure Hour ‡ The hour when the MR was closed.
Is ORH ‡ A flag that indicates whether the MR includes activities occurring outside of regular

working hours.
MR Size † ∗ The amount of lines of code added + deleted related to the MR.
Additions † The amount of added lines of code related to the MR.
Deletions † The amount of deleted lines of code related to the MR.
Source Branch ∗ The branch to which the code is added during the MR process.
Target Branch ∗ The branch to which the code is merged upon the closure of the MR.
Time to First Comment ∗ ⋆ Time taken to receive the first comment from the creation of the MR.
#Notes ∗ Number of discussion messages made during the review of the MR.
Description Length ⋆ The length of the description provided for the MR.
Is First MR ⋆ Indicates whether this is the first MR submitted for a given project.
Is Hash-tag ⋆ Indicates whether the ”#” tag is present in the MR’s title or description.
Is At-Tag Presence ⋆ Indicates whether the ”@” tag is present in the MR’s title or description.
#Commits ⋆ The number of commits made at the time the MR was opened.
Project Age ⋆ The number of months from the project’s creation to the time of the MR submission.
#Opened MRs ⋆ The number of MRs that are open for a given project at the time of analysis.
#Merges ⋆ The number of prior merges in the project.
#Previous MRs ⋆ The number of all previous MRs that have been previously created for the project.
Author as Reviewer ⋆ Indicates whether the MR author is also the reviewer.

‡ Corresponds to RQ1, † Corresponds to RQ2, ∗ Corresponds to RQ3, ⋆ Corresponds to RQ4

3.3 Metrics Extraction

Once the raw data is collected, we proceed to calculate various metrics crucial for analyzing
different aspects of the DevOps process using MR data. For example, the time to complete
code review, which is not directly available from the GitLab API, needs to be calculated
as the time between the creation and closure of the MR. In total, 24 metrics, as shown in
Table 2, are collected across three dimensions: the MR dimension, which includes metrics
related to each MR; the project dimension, which consists of project information; and
the developer dimension, which includes metrics related to team members. These metrics
provide a comprehensive view of the DevOps process, facilitating detailed analysis and
insights.

3.4 Metrics Analysis

We conduct different types of analysis for each RQ. To do this, we filter the data by
two time dimensions: by week or by sprint, with a sprint representing the company’s
three-week development cycle. Once the data is filtered, we use mathematical values such

3 https://docs.gitlab.com/api/merge_requests/
4 https://docs.gitlab.com/api/commits/
5 https://docs.gitlab.com/api/discussions/
6 https://docs.gitlab.com/api/notes/
7 https://gitlab.com/ets-devops/merge-requests/mr-analysis-tool
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as mean, median, minimum, and maximum to draw conclusions and compare different
aspects. To ensure our analysis is coherent, we fixed several aspects to be analyzed, such
as productivity (measured by the number of MRs created and closed each week) and time
to complete code review (to measure effort). Each aspect and method is detailed in the
approach of each RQ.

4 Results

RQ1: How have environmental changes, specifically the shift from
office-based work to remote work during the covid-19 pandemic,
impacted workplace dynamics and productivity?

Approach

To investigate the impact of Covid-19 on various aspects of the DevOps process, we con-
ducted a comparative analysis before and after the pandemic, focusing on the following
key issues:

– Productivity: to have clearer vision, we conduct this analysis spanning the first 22
weeks of 2020. This period includes 11 weeks before and 11 weeks after the start of the
pandemic-induced lockdown, which began at week 12. We assessed team productivity
by examining the number of MRs created and ended each week before and after the
Covid-19 outbreak, including transition week 12. Tracking the number of MRs over
time helps us see how fast development tasks are being merged and completed. More
MRs created could mean that more work is being done, indicating higher productivity.
But if there’s a big decrease or change in the number of MRs completed, it could mean
there are problems or delays in the development process. This analysis helps teams
identify trends and issues in their DevOps workflow.

– Efforts: In assessing the impact of Covid-19 on developer effort, we study time to
complete code review on the 22 weeks, which represents the time it takes to complete
a code review. This involved analyzing the time taken to complete code reviews both
before and after the pandemic, as well as the number of successfully merged MRs.
A longer time to complete code review suggests that collaborators spent more time
reviewing, providing feedback, and updating the code, indicating an increased effort
to ensure code quality and accuracy. Alternatively, it could indicate delays in the code
review process, resulting in a slower overall timeline. Conversely, shorter review times
may indicate less effort (a simpler MR) in the review process, or they may reflect the
prioritization of the work, necessitating a quicker completion. Therefore, as supported
by previous research [5, 18, 2, 12], we consider the time to complete code review as a
proxy to analyze the effort to complete the review process.

– Temporal Autonomy: With the transition to remote work, individuals have gained
greater flexibility in their work schedules, allowing them to work during nights, week-
ends, or holidays. In this phase, we examine the impact of Covid-19 on developers’
temporal autonomy by analyzing their activity on MRs before 8 a.m. and after 5 p.m.
This includes actions such as creating or ending MRs, reviewing, and committing. For
each week, we calculate the percentage of these activities occurring outside regular
working hours compared to the total number of activities throughout the entire day.
This analysis includes all data to study the persistence of the pandemic’s impact on
developers’ habits years after the pandamic.
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Fig. 1: Number of MR created and
ended per week from week 1 to 22

Fig. 2: Meantime to complete code
review by week for MR opening and
closing from week 1 to 22

Results

Despite the onset of the Covid-19 pandemic, the productivity of the teams
of the studied company, as measured by the weekly number of MRs created
and closed, remained relatively stable. Figure 1 illustrates this trend, showing that
there was no significant change in the volume of MRs despite the onset of the pandemic.
Specifically, there were 125 MRs created in week 11 (the last week of work in the office),
which decreased slightly to 96 in week 12, a decrease of 23.2%. Similarly, the number
of MRs closed decreased slightly from 109 in week 11 to 93 in week 12, a decrease of
14.68%. Regarding week 13 (the first week after the restriction decision), we observe that
the number of MRs created is the same as in week 12. We also notice that the number of
MRs closed exceeds the number of MRs created in this week. However, we observe this
pattern (number of closed MRs exceeding the number of created MRs) in other weeks
prior to Covid, such as weeks 4, 9, and 10, indicating that this is not solely the impact of
Covid. These results suggest that, contrary to expectations, the Covid-19 pandemic did
not have a significant impact on the productivity levels of the teams when measure based
on their MR activity.

Note: The first week of the year 2020 is empty. Because on this week, no developers
have created (open) or end (close) any MR while it was January holidays.

Contrary to our initial findings, we observe a significant increase in time
to complete code review with the onset of COVID-19. This indicates either
greater effort or more delays during the review process by team members
during this period.. As shown in Figure 2, the mean time to complete code review for
MRs created in week 10 jump from about 3.47 days to about 9.95 and 7.92 days in weeks
11 and 12, respectively, coinciding with the transition to remote work. This trend is similar
to that observed in week 2 (after the January holidays), confirming the impact of Covid-19
on the time to complete code review of MRs created in weeks 11 and 12. Regarding the
average time to complete code review of closed MRs, those closed in week 13 have an
average of about 16.44 days, which is the greater average of the year. These values may
explain the two spikes in MR creation observed in weeks 11 and 12. These results help
explain the first finding, since it takes more effort to create and close the same number of
MRs for the same level of productivity.

As shown in table 3, activities on MRs outside regular working hours (8
a.m. to 5 p.m.) and on weekends nearly doubled after the pandemic, with up
to 70.48% of activities occurring outside regular working hours. As shown in
Figure 3, there was a notable variation in the percentage of activities done before and
after Covid-19. Table 3 shows that the mean and median percentages of weekly activities
outside regular working hours were 38.50% and 39.45%, respectively, before the pandemic,
which increased to 54.56% and 55.91% after the pandemic. Similarly, weekend activities
increased significantly, with the median rising from 3.37% to 7.14%, as shown in Figure 4.
This pattern clearly illustrates the impact of Covid-19 on developers’ temporal autonomy.
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Fig. 3: The distribution of the percentage of out of regular working hours activities by
week before and after Covid-19
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Fig. 4: The distribution of the percentage of weekend activities by week before and after
Covid-19

Working remotely allowed developers more flexibility, not being restricted to the 8 a.m.
to 5 p.m. schedule, a trend that has persisted even after the pandemic.

Table 3: Out of Regular Hours (ORH) and weekend statistics activities before and after
COVID-19

Period #MRs Pattern Mean % Median % Min % Max %

before covid 8.8k
ORH 38.50 39.45 10.52 58.53
Weekends 4.49 3.37 0 17.74

after covid 17.94k
ORH 54.56 55.91 34.72 70.48
Weekends 7.95 7.14 0 25.28

RQ2: Has there been any impact of the process changes, specifically
the migration to openshift technology, on different aspect of the
organization?

Approach

To study the impact of the migration to OpenShift, we categorize MRs (MRs) into
two groups: those created specifically for the OpenShift migration, targeting a dedicated
branch, and other MRs created during the same period of the migration but not related
to OpenShift. Considering company’s three-week sprint cycle, we study three aspects:
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– Efforts:We examine the time to complete code review of MRs, which reflects the effort
spent by teams to integrate OpenShift, compared to the effort of completing the other
MR group.

– Change Magnitude: We assess the MR size, represented by the number of added
and deleted lines, to indicate the magnitude of changes introduced to the code. We also
compare the number of lines added versus deleted to determine whether developers are
primarily adding new code or correcting existing code (by deleting and replacing lines
of code).

Results
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Fig. 5: Mean time to complete code
review by sprint for OpenShift and
other MRs in the migration period
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Fig. 6: Mean size by sprint for Open-
Shift and other MRs in the migra-
tion period

Our results show an inverse relationship between the time to complete code
review of MRs for OpenShift and other MRs during the first eight sprints, as
shown in Figure 5. When significant effort was spent on OpenShift integration, the time
to complete code review for other MRs increased, suggesting that the focus on OpenShift
integration was causing delays in other areas. Beginning in the eighth sprint, the times to
complete code review for both categories began to converge and vary similarly, eventually
converging in the final sprint. This trend suggests that developers initially put extra effort
into learning and integrating OpenShift, but as they became more familiar with the tech-
nology, the time required for OpenShift MRs converged with the time to complete code
review required for other MRs.

The MR sizes for OpenShift initially were smaller than other MRs but
increased as developers gained expertise. As shown in Figure 6, until Sprint 8, we
observe that MR sizes for OpenShift are smaller compared to others, except for Sprint
6, indicating that developers were slowly integrating new changes into the software. This
gradual integration resulted in smaller MR sizes for OpenShift compared to other projects.
Starting in Sprint 8, MR sizes for OpenShift begin to increase, becoming larger than other
MRs except for Sprint 13. This trend suggests that developers have become more skilled
at integrating and reviewing larger chunks of code related to OpenShift.

We observe distinct patterns in the nature of MRs for OpenShift and other
MRs. For other MRs, 86.97% involve more additions (64.49%) or equal additions and dele-
tions (22.48%), indicating that these MRs are primarily for adding new code or modifying
existing code during the review process. Only 13.03% of other MRs involve more deletions
than additions. In contrast, 22.61% of OpenShift MRs involve more deletions than addi-
tions, indicating a focus on removing obsolete code. In addition, 52.43% of OpenShift MRs
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Fig. 7: Comparison of additions and deletions per MR in Ocp and other MRs

involve more additions, reflecting the integration of new technology and the introduction
of new code. In addition, 24.88% of OpenShift MRs involve equal numbers of additions
and deletions, indicating significant rework during the code review process. Such dynamics
highlight that modifying the existed code (in 47.57% of OpenShift MRs) can impact code
stability, that is considered as an indicator to the product (software) stability [26].

RQ3: How are different types of gitlab branches used and managed in
an industrial devops environment?

Approach

To analyze the used branch categories using MR data at the studied company, we begin by
understanding the company’s organization, which operates on a yearly basis divided into
seventeen three-week sprints, from Monday to Sunday. GitLab’s branch structure remains
consistent over the years, with the following categorization:

– Main branch (Master): serves as the primary development branch that remains con-
sistent over time, acting as the base for daily development activities and the integration
of new features for the latest and greatest product version.

– Stable branches: are dedicated to fix bugs and stabilize code quality for a planned
release. Stable branches are branched out upon feature complete milestone of a planned
release to distinguish between future releases development on master/main and the
planned release bug fixes. Different planned releases and their corresponding bug fixes
and patch releases are published and released from these stable branches.

– Temporary branches: are created for short-term development tasks or special ini-
tiatives, such as feature experiments or significant transitions like the migration to
OpenShift, these branches are intended for limited use and are merged or discarded
once the task is completed.

Note: As shown in Figure 9, the number of MRs on the main branch (master) (23K)
is always larger than the number of MRs on other branches (1.4K) and stable branches
(1.9K), as the daily work is done on the master branch.

Analyzing MRs (MRs):

– Effort and Change Magnitude: analyze the effort and the size of MRs similarly to
the previous RQs.
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– Collaboration Aspects: analyze the attention received by developers on MRs on
different branches, looking at the time to receive the first comment on the MR and the
number of discussion notes (messages) required to complete the review process.

By structuring our methodology in this manner, we ensure a comprehensive analysis of
the branches, focusing on both the effort and the collaboration required for each category.
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Fig. 8: Distribution of #notes by branch

Results

Although the MR size distribution of stable and master branches are very
similar, we observe that the review process on the stable branch are completed
faster than those on the master and other branches. As shown in Figure 11, the MR
size on the other branch category is larger than on the stable and master branches, which
have almost the same distribution. Despite the larger size of MRs on the other and master
branches, Figure 10 demonstrates that MRs on the stable branch are merged or closed
more quickly. Table 4 further highlights this point, showing that the mean and median
times to complete code review on the stable branch are three times shorter than those on
the master and other branches. This indicates that developers prioritize completing MRs
on the stable branch, which is related to the publication of new releases and may indicate
the presence of bugs that could impact the delivery of the new version.

As shown in Table 4, the stable branch receives the first comment on MRs
more quickly, with mean times that are 2.81 and 2.01 times faster than those
of the master and other branches, respectively. This is further illustrated in Figure
12, which shows the distribution of time to first comment, where the stable branch consis-
tently has shorter times compared to the other branches. Additionally, Figure 8 displays
the distribution of the number of notes (comments) per MR. For the master and other
branches, the largest distributions have 2 notes (23.5% and 20.8%, respectively), which
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then decrease, indicating fewer MRs with more notes. In contrast, the stable branch shows
a different pattern, with the largest group (18.3%) having 5 notes, followed by 12.4% of
MRs having 6 notes. This indicates that MRs on the stable branch are more frequently
discussed than those on the master and other branches. These observations confirm that
MRs on the stable branch receive more attention from team members, who respond quickly
and engage in more thorough discussions. This increased attention likely helps to prevent
issues or bugs during the delivery process.

Branch Length Time to complete code re-
view Mean

Time to complete code re-
view Median

First Comment Mean First Comment Me-
dian

master 23,574 6,606.12 508.36 1,391.01 12.43
stable 1,923 2,988.93 118.62 494.79 0.16
other 1,467 6,481.96 227.75 997.07 10.94

Table 4: Statistics for Master, Stable, and Other branches

RQ4: To what extent does the origin of the first comment—bot or
human—impact the time to complete code reviews?

Approach

Data Preparation

– Data collection: Similarly to Hasan et al. [8], we gathered data for each MR, including
the discussions surrounding each MR. The collected metrics, indicated by a star (⋆),
are detailed in Table 2.

– Label First Comments: In GitLab, each comment has a ”System” parameter indi-
cating whether it was made by a bot or not. We ran an algorithm through the MR
data to determine the time between the first comment and the creation of the MR,
and label each comment accordingly.
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– Define Comment Categories: Unlike Hasan et al. [8], who used the BoDeGha tool
developed by Golzadeh et al. [7] to classify comments on GitHub, we leveraged the Git-
Lab API, which directly tags system-generated comments. We categorized comments
into three types: (1) Bot-generated comments, which provide automated feedback such
as ”Pipeline failed: check logs for details”, helping enforce technical standards; (2) Hu-
man comments, offering contextual feedback like ”This function could be optimized
for readability”, which directly impacts code quality; and (3) Bot-labeled but human-
driven comments, where system-generated messages, such as ”Approved this MR”,
reflect human decisions despite being tagged as bot comments. Table 5 provides fur-
ther details on these categories.

Data Analysis

– Time to First Comment Speed: Analyze the time to receive the first comment
compared to the overall time to complete code review. This step considers the first
comment, whether by a human or a bot.

– Bot vs. Human Comment Comparison: Compare the speedness of time-to-first-
human-comment, time-to-first-extended-human-comment, and time-to-first-bot-comment
to understand how bots and human reviewers interact during code review.

– time to complete code review Analysis: Explain the time to complete the review
process on GitLab involves the following:

• Construct a regression model to examine the correlation between collected met-
rics (including time to first comment by bot and human metrics) and the time
to complete code review. Similarly to Zhang et al. [31], we train a mixed-effects
linear regression model to explain time to complete code review. A mixed-effects
regression model is appropriate as it accounts for fixed effects (MR characteristics
impacting review time) and random effects (project-specific variations), enabling
generalizable insights while minimizing project structure biases.
We train a single global model using data from the four projects of our industrial
partner, as they yield similar results, allowing for a more concise presentation.
Our model achieves an RMSE of 0.65 and MAE of 0.46, which indicate strong
performance given the high variance of our dependent variable.

• Conduct an ANOVA Type-II analysis to identify statistically significant features
that explain the variance in time to complete code review, similarly to prior studies
[8, 14]. This method evaluates the importance of independent variables without as-
suming interactions, filtering non-significant features and identifying key predictors
using Chi-square (Chisq8 = 0.05) statistics for robust analysis.

• Study the impact of key metrics on time to complete code review using Accumu-
lated Local Effects (ALE) plots, similarly to the approach taken by Khatoonabadi
et al. [13]. A negative impact indicates shorter time to complete code review prob-
ability, while positive implies longer time to complete code review probability

Results

Time to first comment analysis across projects shows generally fast response
times, with median values ranging from 4.46 to 23.78 minutes, as shown in
Table 6. Notably, the FPGA group shows the slowest response times, possibly due to

8 Chi-square statistic: measures how well the independent variables explain variability in the dependent
variable
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Table 5: Definition of used categories in this RQ
Term Definition
Comment A comment in a MR chat in Gitlab
Human response A comment given in a MR by a human ( but not the MR author)
Bot comment A comment given in a MR by a bot
Bot but human comment A suspicious comment, written by a bot but attributable to a human
Human-first MR A MR whose the first comment is given by a human (not the author of the MR)
Bot-first MR A MR whose the first comment is given by a bot
Bot-but-human-first MR A MR whose the first comment is a a Bot but human comment
Time to first comment The time in minute from the MR creation to the first comment
Time to first human comment The time in minute from the MR creation to the first human comment
Time to first bot comment The time in minute from the MR creation to the first bot comment

hardware compatibility considerations impacting the interactions on GitLab. This obser-
vation suggests the need for deeper investigation into the specific hardware factors im-
pacting response dynamics within this group. Additionally, the median time to complete
code review confirms this finding, showing a significant increase for the FPGA group, ex-
ceeding 2600 minutes compared to less than 1200 minutes for the other groups. In other
projects, the median time to first comment is faster than 11.44 minutes. For example, in
the CP group, the median time to first comment is 9.90 minutes, while the median time
to complete code review is 5304.06 minutes, indicating quick initial feedback compared to
the total time required to complete MRs. However, the mean time and standard deviation,
which reach 1992.88 and 13955.30 minutes respectively, indicate the presence of outliers
that can delay the first comment.

Table 6: Time-to-first-comment (TFC) and
review completion time (minutes).
Project Time to Complete Review TFC

Avg Mdn Std Avg Mdn Std
mp 3222.95 312.11 17032.33 717.32 11.44 3865.66
cp 5304.06 5304.06 37724.09 980.60 9.90 6132.76
dp 7690.85 1110.44 49330.31 1992.88 10.51 9096.11
fpga 20505.23 2674.39 54782.82 3992.92 23.30 13955.30
pf 6290.53 202.02 31095.99 1102.52 4.46 8470.01

Table 7: Proportion of bot-first vs human-
first MR comments.
Project % True Bot-

First
% Bot-But-
Human-First

%True
Human- First

mp 42.73% 39.70% 17.58%
cp 59.21% 31.80% 8.99%
dp 66.61% 18.22% 15.17%
fpga 69.77% 17.17% 13.06%
pf 52.55% 39.88% 7.56%

We observe that bot-generated comments dominate the initial interaction
in the MR process and are faster compared to human comments. As shown in
Table 7, up to 69.77% of the initial comments are attributed to bots, with an additional
39.88% of comments initially made by humans but marked as bot. In contrast, human-
authored comments are a minority, ranging from 7.56% to 17.58% across the projects
studied. Regarding time to have the first comment, analysing Table 9, we observe that
humans take significantly more time to post a comment than bots. While the median
time to first human comment for all groups ranges from 212.49 minutes for MP project
to 1611.87 minutes for FPGA project, the global time to first comment ranges from 4.45
minutes for PF to 23.78 minutes for FPGA, which is posted by bots. We observe the
same pattern when analysing the average and the standard deviation. This comparison
highlights the efficiency of the bots in initiating code reviews in a timely manner, and
highlight their prevalence in accelerating the development workflow and team integration.

As shown in Table 8, the time to first human response is the most influential,
explaining 93.97% of the variance in time to complete code review, indicating
that faster human intervention to review the changes can statistically impact the overall
time to complete code review of an MR. The number of commits open at the time of
the MR, explaining 4.66% of the variance, also plays a crucial role in determining time to
complete code review, likely due to the increased complexity and larger size of the changes,
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resulting in more review requirements. When the commenter is the author of the MR, the
variance of the time to complete code review is impacted by 0.60%, suggesting that when
authors review their own work, the process is accelerated. The number of previous MRs
contributes 0.40% to the time to complete code review variance, reflecting the importance
of team experience in expediting reviews. Description length contributes 0.24% of the
variance, highlighting the importance of clear documentation. In addition, time to first
bot response, while less influential (0.12%), shows that early bot interactions can help
initiate the review process. Our interpretation is confirmed by the ALE findings indicated
in Figure 13. Overall, these findings highlight that both human and automated responses,
along with detailed documentation and reviewer experience, are critical to managing the
efficiency of the code review process.

Fig. 13: Impact of the most important fea-
tures on time to complete code review.

Table 8: Statistical analysis of features sig-
nificantly impacting time to complete code
review.

Feature Pr(¿Chisq) Percent
Description Length 5.326583e-03 0.2392008
#Previous MRs 3.103913e-04 0.4006646
Author as Reviewer 9.726386e-06 0.6026754
Time to First Human Comment 0.000000e+00 93.9714120
Time to First Bot Comment 4.705515e-02 0.1214756
#Commits 8.465914e-35 4.6645716

Table 9: Statistical analysis of the groups. Time-to-first-human-comment (TFHC), time-
to-first-bot-but-human-comment (TFBHC), and time-to-first-human-extended-comment
(TFHEC) are given in minutes.

Project TFHC TFBHC TFHEC
Avg Mdn Std Avg Mdn Std Avg Mdn Std

mp 2119.36 212.49 6316.11 690.25 27.81 3084.69 1098.49 42.75 4342.47
cp 4332.32 898.17 16319.31 1491.97 52.14 9686.19 2124.11 78.49 11627.50
dp 6820.87 1357.65 48153.05 2123.68 102.08 10758.76 3865.75 338.37 31395.66
fpga 14111.06 1611.87 40686.73 6381.94 166.59 19846.10 9113.04 921.73 30288.99
pf 4255.92 234.71 13388.22 1161.34 32.30 5099.09 1741.74 40.65 7810.81

5 Threats to Validity

Internal Validity Threats: These threats are related to how we calculated our metrics.
We ensured that our metrics are defined according to established literature and that our
implementation scripts are accurate. However, despite these precautions, there is always
a possibility of implementation errors. We took steps to verify the correctness of our data
and the accuracy of our scripts, but we cannot completely rule out the occurrence of errors.

External Validity Threats: These threats concern the generalizability of our find-
ings beyond the studied company. Our conclusions are drawn from a single industrial
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setting, and DevOps practices can differ significantly across organizations due to factors
such as company size, industry domain, development culture, and tooling preferences. Fur-
thermore, different companies experience unique events—such as organizational restruc-
turings, policy shifts, or external disruptions—that may impact their DevOps processes
in ways that our MR-based analysis may or may not fully capture. For instance, major
process shifts (e.g., adoption of new CI/CD pipelines, teams restructuring, or external
regulatory changes) could alter MR dynamics in ways that are not directly observable in
our dataset. Additionally, the metrics we used may need adaptation or extension to ana-
lyze different organizational contexts effectively. Other code review mechanisms, such as
Gerrit or GitHub pull requests, have structural differences in review workflows, reviewer
roles, and decision-making processes compared to GitLab’s MR system. This means that
while our results provide valuable insights into GitLab-based workflows, they may not
fully translate to companies using other platforms.

6 Conclusion and Practical Implications

This study underscores the pivotal role of MR data in offering comprehensive insights into
multiple dimensions of the DevOps process, extending well beyond traditional code review
analysis. By systematically examining MR data, we have gained a nuanced understanding
of various aspects such as team collaboration, the impact of environmental and process
changes, and the overall efficiency of the software development lifecycle.

Through the analysis of 26.7k MRs from a data center networking software company,
our findings revealed that environmental changes, specifically the COVID-19 pandemic,
led to a temporary increase in effort and a lasting shift in work patterns. These changes
resulted in new habits that allowed greater flexibility with home working hours, with
up to 70% of activities occurring outside regular office hours. Remarkably, despite these
disruptions, productivity remained stable in terms of the number of MRs created and
closed during the pandemic, highlighting the teams’ adaptability and resilience.

The study also explored the impact of process changes, notably the migration to Open-
Shift technology. Initially, this transition caused fluctuations in times to complete code re-
view and the prioritization of OpenShift-related tasks, which affected other development
activities. However, as developers gained familiarity with the new technology, these metrics
stabilized, reflecting successful integration and improved competency in using OpenShift.

Additionally, our research found that MRs on stable branches are consistently pri-
oritized and resolved faster, emphasizing their significance in managing releases and ad-
dressing critical bug fixes. This prioritization illustrates the importance of efficient branch
management strategies in maintaining a streamlined and reliable software delivery pipeline.

Our analysis of the code review process revealed that while automated tools (bots)
play a crucial role in accelerating the initiation of code reviews by providing immediate
feedback, it is the human reviewers who have the most substantial impact on reducing
times to complete code review and enhancing the overall quality of code assessments. Hu-
man interactions were found to be essential in driving thorough code evaluations, with
factors such as the experience of reviewers and the number of commits significantly influ-
encing code review efficiency. This finding highlights the complementary roles of bots in
expediting the review process and human reviewers in ensuring the depth and accuracy
of the feedback provided.

Beyond its academic contributions, this study offers practical value for software teams
and DevOps practitioners aiming to improve their processes. By leveraging MR data,
organizations can gain insights into various dimensions of development beyond code re-
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view—such as productivity, effort, and collaboration—as explored in this study. Addition-
ally, MR data serves as a valuable resource for evaluating the impact of environmental
and process changes on software activities, enabling comparisons across different periods
or transitions (e.g., remote work shifts or infrastructure migrations). Because MR data is
directly tied to developer’s daily activity, it also offers a window into their engagement
patterns and behaviour throughout the review process.

MR-based analysis further supports data-driven branch management. By examining re-
view timelines, branch usage, and MR lifetimes—particularly on stable branches—organizations
can prioritize releases more effectively, optimize integration workflows, and enhance bug
resolution practices, ultimately leading to more reliable and maintainable software.

Moreover, leveraging ML can help organizations explain and predict key DevOps met-
rics. For instance, ML models can uncover the influence of mechanisms such as automated
bot interactions, offering insight into how these tools affect efficiency. ML itself can also act
as an enabler within the DevOps cycle, by supporting continuous analysis and intelligent
feedback loops, making the process more adaptive and proactive.

For organizations adopting DevOps practices, these findings emphasize the strategic
value of systematically analyzing MR data. Doing so enables teams to improve collabora-
tion, automate repetitive tasks, and make informed decisions during the review process.
Ultimately, MR-driven insights help ensure that DevOps workflows remain efficient, scal-
able, and responsive to the evolving demands of software development.

In the future, we aim to expand our analysis by investigating additional factors and
events through MR data to assess its capability in capturing these changes. We also plan
to extend our methodology across multiple organizations and contexts, exploring other
mechanisms such as pull requests to evaluate how different review systems and contexts
influence DevOps workflows.
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