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ABSTRACT 
 
Maintaining dependability, performance, and security in modern cloud environments—

characterised by scattered, dynamic, and extensively monitored services—requires timely 

anomaly detection.   Many times, conventional monitoring systems generate an excessive 

amount of alerts—many of which are repeated or delayed—which causes alert fatigue and 

missed events.   This work presents a signal-based approach for anomaly detection using 

the interaction of log data and system measurements.   We generate a multi-dimensional 

view of system activity by extracting ordered signals from unstructured logs via Log 

Insights and aggregating them with real-time data collected by Prometheus.   The approach 

detects subtle trends and anomalies that can indicate breakdowns or disruptions, hence 

surpassing threshold-based monitoring.   This method distinguishes itself by combining the 

quantitative depth of Prometheus measurements with high-fidelity log signals, therefore 

enabling a more contextually aware and proactive detection system.   While measurements 

provide consistent, time-series performance indicators, logs offer comprehensive contextual 

narratives. Together, they help to cross-validate anomalies and reduce false positives.   

Our system continuously gathers and analyses data streams using statistical methods based 

on rules to find abnormalities as they develop.   Through the connection of reactive alerting 

with predictive knowledge, this hybrid monitoring system enhances observability.   

Moreover, it helps teams in cloud operations to see problems early, understand their main 

causes faster, and, if at all possible, automate solutions.   We show by practical case 

studies and performance benchmarks that the integration of Log Insights with Prometheus 

metrics improves the accuracy, timeliness, and applicability of anomaly detection. The 

result is a strong but simplified operational intelligence layer that improves system 

resilience and reduces downtime in systems built on clouds.   This paper describes our 

approach's design, implementation, and results, therefore supporting a shift to signal-

based, integrated observability in cloud operations. 
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1. INTRODUCTION 
 

Modern apps have been transformed by cloud-native designs in building and running. These 

ecosystems are dynamic, distributed, and quite scalable; yet, this adaptability brings complexity.   

Maintaining system integrity, preventing disturbances, and ensuring a seamless user experience 
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all depend on the identification of aberrant conduct. Even little mistakes in fast changing systems 

can grow rapidly if not found early on. 

 

Many times, conventional anomaly detection methods rely on set criteria or human log analysis.   

While these can point up some issues, they sometimes generate too strong alarms or, more 

importantly, completely ignore complex problems. Usually seeing logs and metrics as separate 

data silos, these systems limit their effectiveness and response times. Engineers so often find 

themselves handling events rather than preventing them. 

 

Over the past few years, more sophisticated, signal-based methods have been welcomed 

significantly in the industry. They reach not only the simple data but also a step further to pull out 

significant information from various telemetry sources (e.g. system logs and performance 

measures). The signal-based recognition of anomalies does not immediately manifest itself as a 

numerical value. It rather tries to find correlations, context, and patterns that are a real failure 

cause rather than treating each spike or every error equally.  

 

This paper serves as a practical guide to integrating two effective software tools, namely, 

Prometheus and Log Insights. Conversely, it is the Prometheus tool that sends real-time system 

performance measurements to Log Insights for further analysis and interpretation. If we use the 

best from each of these, we can have a system that is more adaptable and at the same time covers 

a large part of the unknown anomaly detection world. However, it can also occur that a fault 

happens that nothing anyone else has yet discovered and which eventually leads to problems for 

the end consumers. Thus, it follows that there is a shift towards better observability, by which we 

mean that the data becomes no longer just collected data but also data properly understood. 

 

2. BACKGROUND AND MOTIVATION 
 

In today's rapidly evolving digital world, cloud-native environments are used to support a 

multitude of applications and services. Keeping these systems operational in an environment 

where they are growing more complex and more dynamic entails more than mere reactive 

monitoring – a proactive, intelligent approach is needed. Therefore, anomaly detection has a key 

role in this. The capability to spot anomalies in time to avert breakdowns is not only beneficial to 

the health of the system but also for keeping the users up and running and minimizing their 

disruption. 

 

2.1. Evolution of Cloud Observability 
 

The necessity to appreciate the main mechanisms has correspondingly increased in quality along 

with the growth of cloud systems. Focused on three principal data types—logs, metrics, and 

traces—observability becomes a basic idea. Traces are employed to delineate the routes of 

requests in a system with distributed components; logs provide an enriched stream of records 

about the system events; metrics offer the provisioning of numbers indicating a performance level 

over time. When combined, they become a complete representation of the operational state of the 

system. The issues are graver in the case of the expanding systems; the volume of telemetry data 

increases, the speed of new entries accelerates, and the process of finding the useful details in the 

flood of the data becomes more complicated. Observability in the cases of high-throughput and 

real-time is indeed an uphill task. 
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2.2. Traditional Anomaly Detection Approaches 
 

Traditional anomaly detection in cloud applications has been heavily reliant on fixed thresholds, 

for instance, by sending an alert if CPU usage exceeds 80%. But the problem with this method is 

that while it is easy to set up it is oftentimes that this type of rule may either be overwhelmed 

with irrelevant alerts or even not be able to track subtle issues. More sophisticated methodologies 

have been implemented, in which more sophisticated models based on machine learning have 

been utilized to make predictions about the behavior of the system by taking into account the 

history of the system. Besides improving detection accuracy, these methods usually have one or 

more of these issues: dynamic, recognized patterns, the need for a vast amount of training data, 

and still, there would be unknown cases or too late ones (Archarula & Nair, 2019). The outcome 

is that it is not the monitoring system that first detects an anomaly, but the system. 

 

2.3. Why Signal-Based Anomaly Detection? 
 

Signal-based detection is another approach that has a new outlook. It abandons the idea of using 

raw log files or metrics only and introduces the concept of tracing and modeling the "normal" 

patterns of system behavior. It then becomes the task to quickly recognize a new pattern of 

behavior or one which does not cause any trouble and is not known to exist; it can still be done, 

without waiting for a specific level or match. Also, it is the one that is capable of performing 

adaptive actions, following the behavior of the system and not being in need of continuous 

reconfiguration. By utilizing both logs and metrics, and applying a joint analysis to both of them, 

it is possible for the teams to obtain more precise and timely insights. In the abstract, such an 

approach would lead to early detection, fast track finding the source of the disturbance and 

making decisions that are more weighted than before, considering the facts. 

 

3. SYSTEM ARCHITECTURE AND COMPONENTS 
 

Signal-based anomaly detection makes use of log and metric data to quickly find issues. This 

chapter provides an overview of the main parts of the system, the way they work with each other, 

and how all of them jointly construct a detection pipeline that is consistent.  

 

3.1. Overview of Solution Stack 
 

The architecture follows a clear path from raw data to actionable alerts: 

 

Logs are first collected from applications and infrastructure. 
 

Log Insights parses these logs, identifies useful patterns, and extracts key signals. 
 

These signals are converted into metrics—structured, numerical values that represent 

system behavior. 
 

Prometheus collects, stores, and analyzes these metrics continuously. 
 

An anomaly detection engine monitors these values and triggers alerts when something 

unusual is detected. 
 

This creates a feedback loop where logs inform metrics, and metrics enable smarter alerting. 
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Figure 1: System Architecture for Signal-Based Anomaly Detection 

 

3.2. Role of Log Insights 
 

Log Insights assists in translating some form of data which is in a very untidy state to easy-to-

understand format. It goes through logs that come in varying shapes and then uses them to come 

up with vital details. These details could be anything like knowledge about user actions, the 

performance of the system, or the type of mistake that happened. Moreover, the tool isn’t only 

searching for the keywords but it has a deep understanding of the context of what log lines say. 

 

Log Insights, for example, can identify a trend when numerous logs show regular login failures 

linked to timeouts and produce a signal such as "elevated login timeout rate."  This signal is then 

compiled—more precisely, the count of timeouts during the last five minutes—and presented as a 

statistic. 

 

3.3. Role of Prometheus 
 

Prometheus tracks these signals longitudinally.  It provides a good estimate of treatment length, 

incident frequency, and any usage variances.  It helps one to spot trends and strange surges. 

Prometheus, for instance, can quickly spot a break from everyday activity if login times usually 

happen once or twice but suddenly jump to 50 within a few minutes.  This can then set off alarms 

to notify the operations team before the problem compromises additional users with effect. 

 

 

3.4. Integration Patterns 
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The integration flows smoothly from log parsing to actionable metrics: 

 

● The system logs multiple failed login attempts across different services. 

● Log Insights detects a pattern—specifically, that these failures are due to request 

timeouts. 

● It transforms that insight into a signal like “login timeout rate,” which is made available 

as a metric. 

● Prometheus sees this metric, tracks its rise, and compares it to normal patterns. 

● If it notices a sharp increase, it sends out an alert with context—like which service is 

affected and how severe the spike is. 

 

4. SIGNAL EXTRACTION TECHNIQUES 
 

Good anomaly detection begins with first obtaining important signals from unprocessed 

operational data. While logs offer important data about system activity, often their fragmentation 

or chaos makes them insufficiently useful on their own. From unstructured or semi-structured log 

data, signal extracting creates ordered, structured metrics fit for monitoring, comparison, and 

analysis in real time. This part looks into exact detection based on consistent signals and log 

processing towards those signals. 

 

4.1. Feature Engineering from Logs 
 

The first step in signal extraction is identifying useful patterns in the logs. This process, often 

referred to as feature engineering, involves several techniques: 

 

Pattern Matching: By scanning logs for recurring formats or key phrases (like 

"timeout", "authentication failed", or HTTP status codes), the system can categorize 

events and assign them to relevant signal types. 
 

Frequency Extraction: Instead of analyzing every individual log line, it’s more practical 

to count how often certain events occur—such as “number of 500 errors per minute” or 

“login failures per user session.” These frequencies become metrics that are easy to track 

over time. 
 

Custom Aggregations: Depending on the service, custom groupings or rollups may be 

needed. For example, tracking error rates by endpoint, by region, or even by deployment 

version helps isolate problems quickly and accurately. 
 

These engineered features form the raw material for downstream metric creation and anomaly 

analysis. 

 

4.2. Signal Normalization 
 

Once features are extracted, the next step is normalization—ensuring that the signals are stable 

and comparable across time and contexts. 

 

 

Time Normalization: Logs often fluctuate over time due to load patterns. Applying 

smoothing techniques like moving averages or comparing values against historical 

baselines helps highlight real deviations instead of temporary spikes. 
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Value Normalization: Some services naturally generate more logs than others. To avoid 

bias, signal values can be adjusted using techniques like standard scores (z-scores) or 

min-max scaling, ensuring anomalies are recognized relative to a service’s usual 

behavior, not just raw counts. 
 

This helps avoid false positives and ensures alerts are meaningful in context. 

 

4.3. Metric Enrichment 
 

Finally, raw signals are turned into full-fledged metrics with added context. This enrichment step 

is key for making the data useful to Prometheus and for downstream analysis. 

 

Adding Labels: Each metric is tagged with labels like service name, environment (e.g., 

dev, staging, production), instance ID, or user segment. This makes it easier to filter and 

understand where issues are coming from. 

 

Linking Metadata: By tying each metric back to its source log—such as which server or 

container it came from, what user initiated the request, or what API endpoint was 

called—teams get better visibility and faster root cause identification. 

 

For example, rather than just saying “25 login failures,” an enriched metric might say “25 login 

failures on the auth service, from region-us-west, during deployment v1.3,” giving far more 

actionable insight. 

 

5. ANOMALY DETECTION MODELS 
 

Discovering discrepancies in cloud infrastructures signifies moving away from the "normal" 

albeit the normalcy concept could be subject to great variations only due to context, workloads, 

and time. An outlier detection method is not a one-size-fits-all approach. Reliability, precision, 

and appropriateness of measures rely on components being combined. This section covers the 

main parts of our system's anomaly detection system i.e. from simple rule based alerts to 

advanced machine learning and hybrid algorithms that incorporate various strategies for better 

accuracy. 

 

5.1. Rule-Based Detection 
 

This is the most straightforward approach and a common starting point in most monitoring 

setups. Rule-based detection works by defining limits—either static or dynamic—that, when 

crossed, trigger alerts. 

 

Static thresholds involve hardcoded values. For instance, if CPU usage goes over 85%, an alert 

is raised. These are simple to implement but don’t account for time-of-day patterns or workload 

variations. 
 

Dynamic thresholds, on the other hand, adapt over time using moving averages or rolling 

windows. They learn the system's typical behavior over recent time periods and adjust the 

thresholds accordingly. This helps reduce false positives during expected high-load periods. 
5.2. Statistical Methods 
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Statistical models offer more nuance than basic thresholds by understanding the data’s natural 

variability. 

 

Z-score detection calculates how far a data point deviates from the mean, normalized by 

standard deviation. If a signal is too many standard deviations away from what’s normal, it’s 

flagged as an outlier. 
 

Time-series decomposition breaks down data into components—trend, seasonality, and 

residuals (the noise). By understanding these patterns, the system can isolate true anomalies in 

the residuals while ignoring expected fluctuations (like daily usage cycles). 
 

5.3. Machine Learning Approaches 
 

When systems are too complex or dynamic for manual tuning, machine learning helps automate 

detection. 

 

Unsupervised clustering methods, like Isolation Forests or DBSCAN, group data based on 

behavior. Points that don’t belong to any cluster—or that lie far from the majority—are 

considered anomalies. These models work well when labeled training data isn’t available. 
 

Forecasting models, such as Prophet (developed by Meta) or Holt-Winters, predict what should 

happen based on historical trends. When actual values deviate significantly from these forecasts, 

anomalies are flagged. These are especially effective for time-series signals with recurring 

patterns. 
 

5.4. Hybrid Techniques 
 

No single method fits all scenarios, which is why hybrid techniques are often the most robust. 

These combine rule-based logic, statistical thresholds, and machine learning outputs to improve 

detection accuracy. 

 

For instance, an alert might only fire when: 

 

A value exceeds a dynamic threshold, 
AND it is flagged as an outlier by a statistical method, 
AND it’s isolated by a machine learning model. 

 

6. IMPLEMENTATION CASE STUDY 
 

6.1. Environment Setup 
 

The answer depends on a Kubernetes cluster that provides microservices deployment with 

required scale and adaptability. On this cluster Prometheus and Grafana represent a visual and 

metric collecting tool.  Fluent Bit uses low resources, hence it is used for log aggregation; yet, 

Fluentd is also appropriate in more challenging conditions. 

 

Fluent Bit provides logs straight for Log Insights or a processing backend housed on Kubernetes-

based containers.  Prometheus is supposed to routinely compile metrics from application 

endpoints and custom exporters into a time-series database for analysis and alerts. 

6.2. Building Log Insights Pipelines 
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Review Log Insights' Kubernetes logs. Real use would be retaking latency and error data from 

logs connected to an API service.  Response times and status codes in examined logs enable one 

to create metrics including service delay and error rate for every endpoint by means of relevant 

data. 

 

 Imagine the system finds many log entries showing 500-series failures during a specific period.       

Presenting the data as a Prometheus-compatible metric derived from aggregation into a signal 

approaching the "error rate" for the service is difficult. 

 

6.3. Prometheus Configuration 
 

Designed to include log-derived signals into the Prometheus ecosystem, custom exporters are: 

From these exporters, Prometheus gets measurements—such as error counts or latency spikes. 

Alert manager is programmed to respond to specified unique criteria. Should the error rate of a 

given service double relative to its baseline, an alert is set off. Alerts direct appropriate 

channels—like Slack or PagerDuty—along with relevant metadata to enable quick team triage. 

 

6.4. End-to-End Scenario Walkthrough 
 

To test the setup, an anomaly is simulated—for example, by introducing artificial latency into a 

service or triggering repeated login failures. 

 

Here’s how the end-to-end detection unfolds: 

 

● Anomaly begins: A surge in failed login attempts starts appearing in logs. 

● Log Insights parses the logs, extracts failure signals, and calculates their frequency. 

● Custom metrics are exposed, showing a spike in the failure rate. 

● Prometheus detects the spike, compares it against historical baselines, and matches it to 

an alerting rule. 

● Alertmanager sends a notification, and Grafana visualizes the spike on dashboards for 

further analysis. 

 

From unprocessed logs to instantaneous warnings and visual analytics, this process—from which 

a cohesively integrated signal-based system may greatly boost responsiveness and transparency 

in cloud operations—showcases how.  It helps engineering teams to always enhance observability 

with less work, react more rapidly, and more precisely grasp challenges. 

 

7. EVALUATION AND RESULTS 
 

To assess the pragmatic efficiency of the proposed signal-based anomaly detecting system, we 

carried out a set of controlled studies in a controlled setting. This section addresses the system 

evaluation, the relevant measurements, the experimental design, and the comparison of the results 

on conventional detection methods. The goals were to assess reliability of performance and speed 

as well as system accuracy in anomaly detection. 

 

 

 

 

 

7.1. Evaluation Metrics 
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We used several standard metrics to assess performance: 

 

Precision tells us how many of the alerts raised were actually correct—essentially 

measuring how well the system avoids false alarms. 
 

Recall reflects how many actual anomalies were detected—indicating the system’s 

sensitivity. 
 

F1 Score is the harmonic mean of precision and recall, providing a balanced overall view 

of detection accuracy. 
 

Time to Detection (TTD) captures how quickly the system reacts to the onset of an 

anomaly, which is crucial for minimizing the impact of incidents in production. 

 

7.2. Experimental Setup 
 

Along with measurements taken from an application stack housed on Kubernetes, we replicated 

an environment using synthetic and real logs. The material addressed both normal events—

standard workloads, traffic spikes, and routine service operations—and aberrant events—

artificially introduced failures, latency spikes, and request floods. 

 

From sluggish memory leaks to unexpected increase in failed API calls to random service 

failures, every kind of anomaly was gradually included to mirror actual events. This lets us 

evaluate instantaneous one as well as system slow change sensitivity. 

 

7.3. Results 
 

The signal-based system demonstrated strong performance across all key metrics: 

 

Detection accuracy was significantly higher than traditional static threshold methods. 

Precision and recall were both above 90% in most test cases, and the F1 score 

consistently reflected a healthy balance between the two. 
 

False positives were reduced, especially when using hybrid detection models that 

combined statistical and machine learning methods. Traditional systems flagged many 

benign spikes, but the signal-based system contextualized them better, avoiding 

unnecessary alerts. 
 

False negatives were also minimized, thanks to log-based signals that picked up early 

signs of degradation that weren’t yet visible in the metrics alone. 
 

In terms of time to detection, the system typically identified anomalies within seconds to 

a few minutes, depending on the signal type and detection method used—an 

improvement over conventional methods, which often lagged behind due to static rule 

limitations. 
 

Prospects for real-time, intelligent monitoring of cloud operations were shown by clearly early 

detection capabilities, improved interpretability of alarms, and much lower noise than a baseline 

threshold-based system showed. 

8. CHALLENGES AND FUTURE DIRECTIONS 
 



336                                       Computer Science & Information Technology (CS & IT) 

Signal-based anomaly detection is not without difficulties even if it offers a more sophisticated 

and flexible way for managing cloud operations.  If success is to last, using and developing these 

technologies in practical settings results in technical and operational issues needing solutions.         

Furthermore present are excellent chances to enhance the technique to contextual awareness, 

resilience, and development of flexibility. This part examines relevant issues we have discovered 

and looks at potential ways forward. 

 

8.1. Challenges 
 

Noisy Data: One of the biggest challenges in log-based detection is separating valuable signals 

from noise. Cloud environments generate a massive volume of logs, many of which are verbose, 

repetitive, or irrelevant. Extracting meaningful patterns without being overwhelmed by noise 

requires careful parsing and filtering logic—and even then, edge cases may slip through. 
 

Configuration Drift: As applications evolve and teams deploy new versions or infrastructure 

updates, log formats, metric labels, and service behaviors can change. This drift can break 

parsing rules, invalidate existing alerting logic, or introduce inconsistencies in historical 

baselines. Maintaining alignment between observability tools and a moving application landscape 

requires continuous effort. 
 

High Cardinality in Prometheus: While Prometheus is excellent for handling time-series data, 

it can struggle with high cardinality—a situation where too many unique label combinations are 

generated (e.g., per-user metrics or per-request identifiers). This can strain storage and query 

performance, making it difficult to scale reliably in complex environments. 

 

8.2. Future Improvements 
 

● Auto-Tuning Detection Thresholds: One promising area is automating the tuning of 

anomaly detection thresholds. Rather than relying on static limits or manual tuning, 

future versions of the system could learn and adjust thresholds based on historical 

patterns, seasonal behavior, and feedback from alert responses. 

 

● Incorporating Traces and Spans: While logs and metrics are powerful on their own, 

integrating distributed tracing data would add a new dimension to detection. Traces 

can reveal how requests move through systems, uncovering latency bottlenecks or 

service dependencies that aren’t obvious from logs or metrics alone. Including spans in 

the signal set could greatly enhance root cause analysis and anomaly context. 

 

● AI/ML-Based Auto-Baselining: Looking ahead, the use of machine learning models 

for dynamic baselining could further improve detection accuracy. These models could 

continuously learn from data trends, flag subtle deviations, and even anticipate anomalies 

before they fully materialize. Techniques like online learning or reinforcement learning 

could help systems adapt to new patterns in near real-time. 

 

9. CONCLUSION 
 

This work integrates log analysis with metric-based monitoring to explore a signal-based 

anomaly detecting mechanism combining the contextual richness of logs with the quantitative 

strength of time-series data. We have demonstrated by means of the integration of Log Insights 

and Prometheus how cloud operations teams may transcend conventional threshold-based tactics 
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and embrace a more flexible, precise, and fast methodology for detecting problems in tough, 

dynamic environments. 

 

Our major findings show how well this method works: it significantly increases detection 

accuracy, accelerates reaction times, lowers false positives. Teams that concentrate on the 

extraction of high-quality signals from raw telemetry data are better ready to understand the 

narrative underlying anomalies—not only that an issue happened, but also the reasons, places, 

and strategies engaged in. 

 

The pragmatic impact is pretty remarkable. Operations in clouds span proactive dependability 

engineering to reactive crisis management. Alerts become ever more crucial; dashboards provide 

more data; incident investigations are significantly more targeted. Faster recovery times, reduced 

running noise, and more system resilience based on clouds follow from this. 

 

Observability will be defined going ahead by ever more complex and automated detection 

pipelines able to mix numerous data streams—including logs, metrics, and traces—react to 

changes, and continuously learn from patterns. A major simplicity-based innovation in a 

straightforward approach to boost the reliability and intelligence of cloud computing is signal-

based anomaly detection. 
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