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ABSTRACT 
 
Ransomware remains a critical cybersecurity challenge, necessitating advanced detection 

methods to mitigate its impact. This study investigates the efficacy of Random Forest (RF)-

based feature selection for ransomware detection. Two datasets were analyzed: a large-

scale Android ransomware dataset from Kaggle and the Ransomware Dataset 2024, which 

includes diverse malware families such as Cerber, REvil, and WannaCry. Using RF’s 

feature importance ranking, we conducted classification experiments across binary, multi-

class (5 categories), and granular (27 families) tasks. 

 

For the Kaggle dataset, a refined feature subset preserved classification accuracy while 

eliminating redundancy. Feature Set 1 achieved peak accuracy, surpassing earlier RF-

based benchmarks, while Feature Set 5 balanced accuracy and stability, demonstrating 

diminishing returns with excessive features. For the 2024 dataset, binary classification 

peaked at 99.45% accuracy, multi-class at 95.91%, and family-level classification at 

91.02%, highlighting feature selection’s role in optimizing detection across granularities. 

 

These results align with RF’s established superiority in ransomware detection, especially 

on feature selection. 
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1. INTRODUCTION 
 

Ransomware attacks have become one of the most significant cybersecurity threats to both 

organizations and individuals, causing substantial financial losses and operational disruptions by 

encrypting victim data and demanding payment for decryption. The growing sophistication of 

ransomware variants has prompted extensive research into detection mechanisms capable of 

identifying and mitigating attacks before encryption is completed. Below, we review the current 

state of ransomware detection research. 

 

Behavioral analysis detects ransomware by monitoring system activity patterns rather than 

relying on static signatures, making it effective for identifying previously unknown (zero-day) 

variants. ShieldFS, proposed by Continella et al. [9], builds models of normal file system activity 

and detects anomalies indicative of ransomware. Mehnaz et al. developed RWGuard, which 

monitors file system operations at the kernel level and analyzes sequences of API calls and I/O 

request patterns to distinguish ransomware from benign software. RWGuard demonstrated 

effective real-time detection with negligible false positives and zero false negatives against 

samples from 14 prevalent ransomware families [11]. 
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Machine learning techniques have shown considerable promise in ransomware detection by 

identifying complex patterns in data. Vinayakumar et al. comprehensively evaluated deep neural 

networks (DNNs) and classical machine learning classifiers on various benchmark malware 

datasets, finding that DNNs can outperform classical methods in robust, intelligent zero-day 

malware detection [13]. Chen et al. implemented a deep neural network model that analyzed 

byte-level file operations to detect ransomware activity across thousands of samples, 

demonstrating the effectiveness of deep learning for this task [8]. 

 

Network traffic analysis aims to detect ransomware by monitoring communication patterns that 

may reveal command-and-control interactions or data exfiltration attempts. Cabaj et al. proposed 

a software-defined networking (SDN)-based detection approach that analyzes HTTP message 

sequences and content sizes, demonstrating that such analysis is sufficient to detect crypto 

ransomware families like CryptoWall and Locky. Their proof-of-concept SDN-based system was 

shown to be both feasible and efficient in experimental evaluations [7]. 

 

Some research has focused on detecting the cryptographic operations fundamental to 

ransomware. Kharraz et al. conducted a long-term study of ransomware attacks, analyzing 1,359 

samples from 15 families. They found that, despite advances in encryption and evasion, only a 

small number of families possess sophisticated destructive capabilities, with many samples 

relying on superficial techniques such as desktop locking or basic file manipulation [10]. Scaife 

et al. introduced CryptoDrop, an early-warning system that monitors file activity for suspicious 

behavior and can interrupt processes attempting to encrypt large volumes of data. CryptoDrop 

demonstrated rapid detection with minimal false alarms, typically limiting user data loss to a 

median of just 10 files out of thousands [12]. 

 

Recent research increasingly explores hybrid approaches that combine multiple detection 

techniques to improve accuracy and reduce false positives. For example, Almashhadani et al. 

implemented a network-based intrusion detection system for ransomware that uses parallel 

classifiers at both packet and flow levels, achieving high detection accuracy and low false 

positive rates by extracting and classifying informative network features [6]. 

 

Despite these advances, most existing studies do not systematically evaluate detection 

performance across different feature sets, and some rely on relatively small datasets. To address 

these gaps, our study examines Random Forest-based feature selection for ransomware detection 

using two recent and comprehensive datasets, aiming to assess the impact of feature selection on 

detection accuracy and model robustness. 

 

2. RANDOM FOREST AND FEATURE IMPORTANCE 
 

Random Forest is an ensemble learning method that combines multiple decision trees to create a 

more robust and accurate predictive model [1]. 

 

2.1. Random Forest Algorithm 
 

Random Forest builds on the concept of bagging (bootstrap aggregating) by creating many 

decision trees from random subsets of the training data and features. The final prediction is 

determined by aggregating the predictions of all trees [1]. 

 

The algorithm works as follows: 

 

1. Create n bootstrap samples from the original dataset  
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2. For each bootstrap sample, grow a decision tree with the following modifications:  

a. At each node, randomly select m features (where m<p, the total number of 

features)  

b. Choose the best split from among these m features  

c. Grow the tree to its maximum size without pruning 

3. For classification, the final prediction is the majority vote of all trees 

4. For regression, the final prediction is the average prediction of all trees 

 

Mathematically, for a random forest with B trees and predictions for each tree:  

Classification: 

 

                                                                     (1) 

 

Regression: 

                                                                                                  (2) 

 

2.2. Feature Importance Measures in Random Forest 

 

Random Forest provides several methods to measure feature importance, here we introduce the 

method of mean decrease in impurity, also known as Gini importance or impurity-based 

importance, this measures the total decrease in node impurity (typically measured by Gini 

impurity for classification or variance for regression) weighted by the probability of reaching that 

node, averaged across all trees [2, 3].  

 

For feature Xj, the importance is:  

 

                       
(3) 

 

Where, Tb is the set of nodes in tree b, p(t) is the proportion of samples reaching note t, and 

Δi(St,Xj) is the decrease in impurity when splitting on feature Xj at node t. 

 

3. EXPERIMENTS 
 

3.1. Data Sets 
 

3.1.1. The first dataset comes from Kaggle [4]. It contains 203556 rows and 85 columns, and the 

entire data has 10 types of Android Ransomware and Benign traffic types. The type of 

Ransomware includes SVpeng, PornDroid, Koler, RansomBO, Charger, Simplocker, 

WannaLocker, Jisut, Lockerpin and Pletor, wherein: SVpeng Label contains 54161 

Records;  PornDroid Label contains 46082 Records; Koler Label contains 44555 Records; 

Benign Label contains 43091 Records;  RansomBO Label contains 39859 Records; 

Charger Label contains 39551 Records;  Simplocker Label contains 36340 Records; 

WannaLocker Label contains 32701 Records;  Jisut Label contains 25672 Records; 

Lockerpin Label contains 25307 Records; and Pletor Label contains 4715 Records. The 

features include Flow ID, Source IP, Source Port Number, Destination IP, Destination Port 

Number, Protocol, Flow Duration, Total Fwd Packets, etc. 

 

3.1.2. The second dataset Ransomware Dataset 2024 [5] includes both malicious and benign 

samples, providing a balanced total of 21,752 samples, with 10,876 malicious and 10,876 

benign files. The dataset is divided into five categories: one benign and four malicious 
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categories Trojan, Ransomware, Spyware, and Adware.  The dataset contains 27 distinct 

families: one benign and 26 distinct malware families, with a strong focus on ransomware, 

which includes: Cerber, DarkSide, Dharma, GandCrab, LockBit, Maze, Phobos, Revil, 

Ragnar Locker, Ryuk, Shade and WannaCry. These 11 ransomware families represent 

some of the most notorious strains responsible for large-scale attacks in recent years. This 

dataset is valuable for advancing malware analysis, specifically in understanding 

ransomware behaviours, and for building robust defending systems against attacks. 

 

3.2. Experiments on Data Set 1 
 

We applied a Random Forest learning classifier to Dataset 1 to evaluate malware detection 

performance. The optimal feature sets were selected based on feature importance, and twenty 

experiments were conducted for each detection scenario. Table 1 presents the nine feature sets 

selected through feature importance analysis, while Table 2 summarizes the mean and standard 

deviation values for accuracy, precision, recall, F1-score, and ROC-AUC across 20 experimental 

runs. 

 
Table 1.  Nine feature sets selected by feature importance on dataset 1. 

 

Feature set Features 

1 [' Timestamp', ' Source IP', 'Flow ID', 'Unnamed: 0', ' Destination IP'] 

2 Feature set 1 +[ ' Source Port', ' Flow IAT Min', ' Flow IAT Max', ' Flow Duration', ' 

Flow Packets/s'] 

3 Feature set 2 + [ 'Fwd Packets/s', ' Flow IAT Mean', ' Fwd IAT Min', 

'Init_Win_bytes_forward', ' Fwd IAT Max'] 

4 Feature set 3 + [ 'Fwd IAT Total', ' Fwd IAT Mean', ' Bwd Packets/s', ' Destination 

Port', ' Init_Win_bytes_backward'] 

5 Feature set 4 + ['Bytes/s', ' Flow IAT Std', ' Fwd IAT Std', ' Fwd Header Length', ' 

Fwd Header Length.1'] 

6 Feature set 5 + [' Average Packet Size', ' Avg Fwd Segment Size', ' Fwd Packet 

Length Mean', ' Packet Length Mean', ' Fwd Packet Length Max'] 

7 Feature set 6 + [ ' Packet Length Variance', ' Packet Length Std', ' Bwd IAT Min', ' 

Subflow Fwd Bytes', ' Avg Bwd Segment Size'] 

8 Feature set 7 + ['Total Length of Fwd Packets', ' Bwd Packet Length Mean', 'Bwd 

IAT Total', ' Bwd IAT Max', ' Bwd Header Length'] 

9 Feature set 8 + [' Total Length of Bwd Packets', ' Bwd IAT Mean', ' Subflow Bwd 

Bytes', ' Max Packet Length', ' Fwd Packet Length Std'] 

 
Table 2. The mean and standard deviation values of 20 experiments on Dataset 1 (%) 

 
Feature 

Set 

Accuracy 

(weighted) 

Precision Recall F1-score ROC-AUC 

1 99.73/0.02 99.84/0.01 99.73/0.02 99.79/0.02 100.00/7.0e-06 

2 99.70/0.02 99.89/0.01 99.70/0.02 99.80/0.02 100.00/1.4e-06 

3 99.10/0.07 99.73/0.03 99.10/0.07 99.41/0.05 100.00/5.0e-06 

4 99.13/0.05 99.74/0.03 99.13/0.05 99.44/0.03 100.00/4.8e-06 

5 99.09/0.05 99.74/0.02 99.09/0.05 99.41/0.04 100.00/4.6e-06 

6 98.41/0.05 99.58/0.03 98.41/0.05 98.98/0.04 99.99/8.0e-06 

7 97.17/0.15 99.34/0.04 97.17/0.15 98.21/0.09 99.98/2.1e-05 

8 97.42/0.11 99.38/0.03 97.42/0.11 98.37/0.07 99.98/1.3e-05 

9 96.56/0.21 99.24/0.05 96.56/0.21 97.83/0.13 99.98/2.9-05 
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In our experiments, we have the following observation: 

 

The classification model demonstrated high accuracy across all feature sets, with values ranging 

from 99.73% (Feature Set 1) to 96.56% (Feature Set 9). The highest accuracy (99.73%) was 

observed in Feature Set 1, indicating that even a minimal set of features provided robust 

classification performance. Accuracy remained stable through Feature Set 5 (99.09%) but started 

declining from Feature Set 6 (98.41%) onward, reaching the lowest point at Feature Set 9 

(96.56%). This downward trend suggests that adding more features beyond a certain threshold 

negatively impacted the model’s effectiveness. 

 

Precision remained consistently high across all feature sets, with values exceeding 99.2%, even 

as accuracy declined. The highest precision (99.89%) was recorded with Feature Set 2, indicating 

that additional flow-related features enhanced the model’s ability to correctly classify malicious 

and benign samples. However, recall followed a trend similar to accuracy, starting at 99.73% in 

Feature Set 1 and gradually declining to 96.56% in Feature Set 9. The decrease in recall suggests 

that an increasing number of features introduced redundancy or noise, reducing the model's 

sensitivity. 

 

The F1-score followed a similar pattern, peaking at 99.80% in Feature Set 2 before gradually 

declining to 97.83% in Feature Set 9. Since the F1-score represents the balance between precision 

and recall, the decline reflects the increasing difficulty in maintaining both as more features were 

introduced. Despite this, ROC-AUC values remained consistently near 100%, confirming the 

model’s strong ability to distinguish between classes. However, the slight increase in standard 

deviation in later feature sets suggests growing variability in the classification results. 

 

These findings indicate that while adding features initially improved performance, excessive 

inclusion led to diminishing returns and eventual degradation. Feature Set 1 demonstrated the 

highest accuracy (99.73%), showing that a minimal set of features was already effective. Feature 

Set 2 exhibited the highest precision (99.89%) and F1-score (99.80%), highlighting the impact of 

incorporating flow-related attributes. Feature Set 5 appeared to be the optimal balance point, 

maintaining high accuracy (99.09%), precision (99.74%), and recall (99.09%) before 

performance began declining. The drop in accuracy and recall beyond Feature Set 5 suggests that 

additional features introduced redundancy rather than improving classification performance. 

 

Based on these results, we recommend Feature Set 5 as the optimal feature set for Dataset 1. This 

set achieves high classification performance while avoiding the overfitting and instability 

observed in later feature sets.  

 

3.3. Experiments on Data Set 2 
 

3.3.1. Binary Classification (Benign vs. Malicious) 

 

Table 3 lists the nine feature sets selected by feature importance and Table 4 shows each mean 

and standard deviation values over 20 experiments to detect benign and malicious classes. 
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Table 3. Nine feature sets selected by feature importance on dataset 2. 

 
Feature set Features 

1 ['processes_malicious', 'files_malicious', 'registry_total', 'registry_read', 

'processes_monitored'] 

2 Feature set 1 + ['files_suspicious', 'network_dns', 'files_unknown', 

'network_http', 'files_text'] 

3 Feature set 2 + ['registry_write', 'total_procsses', 'Subsystem', 

'DllCharacteristics', 'network_connections'] 

4 Feature set 3 + ['AddressOfEntryPoint', 'apis', 'address_of_ne_header', 

'processes_suspicious', 'rdata_SizeOfRawData'] 

5 Feature set 4 + ['rdata_VirtualAddress', 'rdata_VirtualSize', 

'rdata_PointerToRawData', 'text_VirtualSize', 'EntryPoint'] 

6 Feature set 5 + ['SizeOfCode', 'SizeOfImage', 'PEType', 'MachineType', 

'text_SizeOfRawData'] 

7 Feature set 6 + ['SizeOfInitializedData', 'BaseOfData', 

'OperatingSystemVersion', 'dlls_calls', 'registry_delete'] 

8 Feature set 7 + ['Magic', 'md5', 'Checksum', 'FileAlignment', 'sha1'] 

9 Feature set 8 + ['bytes_on_last_page', 'SizeofHeapCommit', 

'text_PointerToRawData', 'ImageVersion', 'SizeofStackReserve'] 

 
Table 4. The mean and standard deviation values of 20 experiments for benign and malicious detection 

(binary classification) on Dataset 2 (%) 

 
Feature 

Set 

Accuracy 

(weighted) 

Precision Recall F1-score ROC-AUC 

1 99.14/0.12 99.16/0.12 99.14/0.12 99.15/0.12 99.73/0.08 

2 99.25/0.11 99.26/0.11 99.25/0.11 99.26/0.11 99.87/0.05 

3 99.45/0.10 99.47/0.09 99.45/0.09 99.46/0.09 99.94/0.02 

4 99.44/0.09 99.45/0.09 99.44/0.09 99.44/0.09 99.96/0.02 

5 99.41/0.09 99.43/0.09 99.41/0.10 99.42/0.10 99.96/0.02 

6 99.40/0.10 99.42/0.11 99.40/0.11 99.41/0.11 99.96/0.03 

7 99.43/0.10 99.45/0.11 99.43/0.10 98.44/0.11 99.96/0.02 

8 99.41/0.11 99.43/0.11 99.41/0.11 99.42/0.11 99.96/0.02 

9 99.40/0.11 99.43/0.11 96.40/0.11 99.41/0.11 99.96/0.02 

 

The performance of the binary classification model was evaluated using nine different feature 

sets. The baseline model, using Feature Set 1, achieved a high accuracy of 99.14%, with 

precision, recall, and F1-score at similar levels. As additional features were introduced, there was 

a notable improvement in performance, particularly with Feature Set 3, where accuracy peaked at 

99.45%. The inclusion of network-related features (network_dns, network_http, 

network_connections) and additional registry-related features significantly enhanced 

classification performance. 

 

Beyond Feature Set 3, the model’s accuracy, precision, recall, and F1-score showed minimal 

fluctuations, indicating that additional features did not contribute substantial improvements. The 

ROC-AUC metric consistently increased from 99.73% in Feature Set 1 to 99.96% by Feature Set 

4, signifying improved distinction between benign and malicious samples. Importantly, the 

standard deviation remained low (~0.1 across all metrics), ensuring stable performance across 

multiple experiments. 
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The results suggest that while the initial feature set was already highly effective, Feature Set 3 

provides the optimal balance of features for binary classification. Adding more features beyond 

this point does not yield meaningful improvements and may introduce unnecessary complexity. 

 

3.3.2. Five-Category Classification 

 

The following Table 5 lists the nine feature sets selected by feature importance and Table 6 

shows each mean and standard deviation values over 20 experiments to detect the five category 

classes. 

 
Table 5. Nine feature sets selected by feature importance on dataset 2 for category detection. 

 

Feature set Features 

1 ['processes_malicious', 'files_suspicious', 'files_unknown', 'files_malicious', 

'files_text'] 

2 Feature set 1 + ['processes_monitored', 'registry_total', 'network_dns', 

'registry_read', 'total_procsses'] 

3 Feature set 2 + ['network_http', 'DllCharacteristics', 'registry_write', 

'AddressOfEntryPoint', 'OperatingSystemVersion'] 

4 Feature set 3 + ['network_connections', 'apis', 'SizeOfImage', 

'rdata_PointerToRawData', 'rdata_VirtualAddress'] 

5 Feature set 4 + ['rdata_VirtualSize', 'text_VirtualSize', 

'text_SizeOfRawData', 'dlls_calls', 'rdata_SizeOfRawData'] 

6 Feature set 5 + ['SizeOfCode', 'SizeOfInitializedData', 

'address_of_ne_header', 'BaseOfData', 'Checksum'] 

7 Feature set 6 + ['Subsystem', 'EntryPoint', 'ImageVersion', 

'text_PointerToRawData', 'SizeOfHeaders'] 

8 Feature set 7 + ['processes_suspicious', 'BaseOfCode', 'SectionAlignment', 

'sha1', 'md5'] 

9 Feature set 8 + ['FileAlignment', 'SizeOfUninitializedData', 

'text_VirtualAddress', 'SizeofStackReserve', 'bytes_on_last_page'] 

 
Table 6. The mean and standard deviation values of 20 experiments for five category classification on 

Dataset 2 (%) 

 

Feature 

Set 

Accuracy 

(weighted) 

Precision Recall F1-score ROC-AUC 

1 87.45/0.47 92.84/0.54 87.45/0.47 89.84/0.29 97.84/0.12 

2 93.93/0.36 97.22/0.26 93.93/0.36 95.50/0.29 99.45/0.07 

3 95.47/0.10 98.62/0.16 95.47/0.17 97.00/0.13 99.80/0.03 

4 95.90/0.17 98.93/0.11 95.90/0.17 97.36/0.10 99.85/0.03 

5 95.91/0.18 98.93/0.16 95.91/0.18 97.36/0.15 99.85/0.02 

6 95.72/0.19 98.99/0.11 95.72/0.19 97.30/0.13 99.86/0.02 

7 95.70/0.20 99.06/0.15 95.71/0.20 97.30/0.16 99.87/0.02 

8 95.66/0.19 99.04/0.13 95.66/0.19 97.29/0.15 99.86/0.02 

9 95.63/0.18 99.04/0.15 95.64/0.18 97.27/0.15 99.86/0.02 

 

For the five-category classification task, the baseline Feature Set 1 provided an accuracy of 

87.45%, indicating that the initial set of features was insufficient for distinguishing multiple 

malware categories. A significant improvement was observed when transitioning to Feature Set 
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2, where accuracy increased to 93.93%. This suggests that adding process monitoring, registry 

features, and network-based features substantially enhances classification performance. 

 

The model’s accuracy continued to improve, reaching its peak at Feature Set 5 with 95.91% 

accuracy. After this point, additional features led to only marginal fluctuations, with no 

significant improvement in classification performance. Precision remained consistently high 

throughout the feature expansion process, exceeding 98.9% from Feature Set 3 onward, 

indicating that the model was highly confident in its classifications. The recall metric, while 

slightly lower, maintained strong performance, ensuring balanced sensitivity across categories. 

ROC-AUC scores improved from 97.84% (Feature Set 1) to 99.86% (Feature Set 5), 

demonstrating enhanced separability between categories. However, after Feature Set 5, the 

additional features primarily consisted of cryptographic hashes and PE metadata, which did not 

provide further meaningful contributions. 

 

Based on these findings, Feature Set 5 represents the optimal feature set for five-category 

classification, as it achieves the highest accuracy while maintaining a strong balance between 

precision and recall. 

 

3.3.3. 27-Family Benign, Ransomware and Other Malware Classification 

 

The following Table 7 lists the nine feature sets selected by feature importance and Table 8 

shows each mean value and standard deviation values over 20 experiments to detect the 27 

distinct family classes. 

 
Table 7. Nine feature sets selected by feature importance on dataset 2 for category detection. 

 
Feature set Features 

1 ['processes_malicious', 'files_malicious', 'files_suspicious', 'registry_total', 

'processes_monitored'] 

2 Feature set 1 + ['processes_monitored', 'files_text', 'registry_read', 'SizeOfImage', 

'DllCharacteristics', 'network_dns'] 

3 Feature set 2 + ['network_http', 'files_unknown', 'total_procsses', 'rdata_VirtualSize', 

'SizeOfInitializedData'] 

4 Feature set 3 + ['AddressOfEntryPoint', 'apis', 'address_of_ne_header', 

'text_VirtualSize', 'rdata_SizeOfRawData'] 

5 Feature set 4 + ['rdata_PointerToRawData', 'rdata_VirtualAddress', 

'network_connections', 'OperatingSystemVersion', 'dlls_calls'] 

6 Feature set 5 + ['EntryPoint', 'SizeOfCode', 'registry_write', 'text_SizeOfRawData', 

'BaseOfData'] 

7 Feature set 6 + ['Checksum', 'sha1', 'text_PointerToRawData', 'md5', 'ImageVersion'] 

8 Feature set 7 + ['SizeOfHeaders', 'processes_suspicious', 'FileAlignment', 

'ImageBase', 'SectionAlignment'] 

9 Feature set 8 + ['text_VirtualAddress', 'SizeOfUninitializedData', 'BaseOfCode', 

'Subsystem', 'SizeofStackReserve'] 
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Table 8. The mean and standard deviation values of 20 experiments for the 27-family member 

classification on Dataset 2 (%) 

 
Feature 

Set 

Accuracy 

(weighted) 

Precision Recall F1-score ROC-

AUC 

1 86.58/0.44 93.34/0.30 86.58/0.44 89.56/0.37 97.79/0.21 

2 90.52/0.47 98.34/0.35 90.52/0.47 93.93/0.37 99.47/0.14 

3 90.60/0.37 99.37/0.11 90.60/0.37 94.35/0.25 99.73/0.06 

4 90.88/0.35 99.49/0.09 90.88/0.35 94.57/0.23 99.80/0.04 

5 91.02/0.41 99.54/0.09 91.02/0.41 94.66/0.28 99.81/0.05 

6 90.88/0.40 99.60/0.08 90.88/0.40 94.59/0.27 99.83/0.04 

7 90.55/0.40 99.64/0.07 90.55/0.40 94.37/0.28 99.83/0.04 

8 90.66/0.30 99.64/0.09 90.66/0.30 94.44/0.22 99.83/0.04 

9 90.70/0.33 99.60/0.09 90.70/0.33 94.45/0.23 99.83/0.03 

 

The 27-family malware classification task presented a more challenging scenario, with the 

baseline Feature Set 1 achieving an accuracy of 86.58%. This relatively lower accuracy indicates 

that the initial set of features was insufficient for distinguishing between malware families. A 

substantial improvement was observed with Feature Set 2, where accuracy increased to 90.52%, 

highlighting the importance of registry, network, and PE metadata features in fine-grained 

malware classification. 

 

Performance continued to improve, peaking at Feature Set 5 with 91.02% accuracy. Precision 

consistently increased across feature sets, reaching 99.64% by Feature Set 7, which suggests that 

the model was effective in minimizing false positives. However, recall remained slightly lower 

than precision throughout the experiments, peaking at 91.02% (Feature Set 5), indicating that 

some malware families were still misclassified. 

 

The ROC-AUC metric improved from 97.79% in Feature Set 1 to 99.83% by Feature Set 5, 

demonstrating the model’s increasing ability to distinguish between malware families. However, 

beyond Feature Set 5, additional features such as cryptographic hashes (md5, sha1) and other PE 

metadata did not provide significant improvements in classification performance. This suggests 

that these features might introduce redundancy rather than contributing new distinguishing 

information. 

 

Given these findings, Feature Set 5 is the optimal feature set for 27-family classification, 

balancing accuracy and recall while ensuring robust family-level classification. 

 

Across all three classification tasks, the results highlight the critical role of network, registry, and 

process-related features in malware detection. These features consistently contributed to 

significant performance improvements, particularly up to Feature Set 3 in binary classification 

and Feature Set 5 in multi-class classification tasks. 

 

The experimental results also suggest that additional cryptographic hashes and PE metadata 

features beyond a certain point do not yield substantial accuracy gains. While they may provide 

some additional information, their contribution appears to be marginal compared to network and 

registry-based features. 

 

Another key observation is the trade-off between precision and recall, particularly in the multi-

class and family classification tasks. While precision consistently remained high, recall was 
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comparatively lower, indicating that the model was confident in its classifications but 

occasionally misclassified rarer malware families. Future work could explore data augmentation 

or advanced ensemble techniques to improve recall for rare classes. 

 

In summary, the optimal feature sets for each classification task are: 

 

Binary classification: Feature Set 3 (Accuracy: 99.45%) 

Five-category classification: Feature Set 5 (Accuracy: 95.91%) 

27-family classification: Feature Set 5 (Accuracy: 91.02%) 

 

These feature sets strike the best balance between classification performance and computational 

efficiency, making them recommended choices for future malware detection systems. 

 

4. CONCLUSIONS 
 

This study evaluated the effectiveness of Random Forest-based feature selection for ransomware 

detection across two comprehensive datasets: one comprising Android ransomware and benign 

samples, and another containing benign and malicious samples spanning multiple malware 

families. The experimental results underscore the pivotal role of feature selection in enhancing 

classification performance. 

 

For the Android dataset, the highest accuracy (99.73%) was achieved with a minimal yet 

carefully chosen feature set, demonstrating that a small number of highly relevant features can 

yield excellent detection results. Adding features beyond a certain point-specifically beyond 

Feature Set 5-introduced redundancy and noise, which diminished both accuracy and recall. A 

similar trend was observed in the multi-family malware dataset, where optimal binary 

classification was attained with Feature Set 3 (99.45% accuracy), and the best five-category 

classification performance was achieved with Feature Set 5 (95.91% accuracy). These findings 

highlight the necessity of balancing feature richness with model simplicity to achieve optimal 

detection outcomes. 

 

Overall, the results confirm that the Random Forest algorithm, when paired with strategic feature 

selection, provides a robust and reliable approach for ransomware detection. The consistently 

high precision, recall, and ROC-AUC scores across both datasets demonstrate the model’s strong 

capability to accurately distinguish between benign and malicious samples, supporting its 

practical value for real-world cybersecurity applications. 
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