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Abstract. Recent advancements in large language models (LLMs) have shown promise for NLP applica-
tions, yet producing accurate explanations remains a challenge. In this work, we introduce a self-explaining
model for classifying emotions in X posts and construct a novel preference dataset using chain-of-thought
prompting in GPT-4o. Using this dataset, we guide GPT-4o with preference alignment via the Direct
Preference Optimization (DPO). Beyond GPT-4o, we adapt smaller models such as LLaMA 3 (8B) and
DeepSeek (32B distilled) through preference tuning using Odds Ratio Preference Optimization (ORPO),
significantly boosting their classification accuracy and explanation quality. Our approach achieves state-of-
the-art performance (68.85%) on the SemEval 2018 E-c multilabel emotion classification benchmark, ex-
hibits comparable results on the DAIR AI multiclass dataset and attains a high sufficiency score—indicating
the standalone effectiveness of the generated explanations. These findings highlight the impact of preference
alignment for improving interpretability and enhancing classification.

Keywords: LLMs, preference alignment, emotion classification

1 Introduction

Large Language Models (LLMs) and artificial intelligence (AI) systems have gained sig-
nificant traction in various domains in natural language processing, including emotion
classification. The need for explanations in AI systems, particularly in the context of
emotion classification, is important for fostering trust and understanding among users.
Explainable AI (XAI) aims to provide insights into the decision-making processes of these
models, thereby enhancing their transparency and accountability [1][2]. Providing expla-
nations for the classifications made by AI systems is crucial for users to understand the
rationale behind the model’s decisions. This understanding is particularly vital in sensitive
applications such as mental health assessments, where misclassifications can have serious
consequences [3][4]. Furthermore, the ability to explain AI decisions can help mitigate
biases and improve the overall performance of emotion classification systems by allow-
ing developers to refine their models based on user feedback and insights [5][6]. Aligning
LLMs models with human preferences remains a persistent challenge. Preference opti-
mization [7][9][8] has emerged as a promising approach to address this challenge, enabling
control over model behavior by integrating direct human feedback into the training loop.

We use GPT-4o and chain-of-thought prompting to create a preference alignment
dataset specifically designed for the task of emotion classification and explanation. Next,
we employ two distinct preference alignment strategies. For GPT-4o, we adopt Direct
Preference Optimization (DPO) to fine-tune the model’s responses, and for smaller models
such as LLaMA 3 (8B) and a distilled version of DeepSeek R1 (32B), we apply Odds-Ratio
Preference Optimization (ORPO) [8].

Our experimental evaluation covers both multilabel classification on the SemEval 2018
E-c dataset [10] and single-label classification on the DAIR AI emotion dataset [11]. Results
show that our DPO-tuned GPT-4o model not only sets a new benchmark in multilabel
performance, but also achieves comparable state-of-the-art results in the multiclass setting.
Furthermore, to quantify the quality of model-generated explanations, we incorporate the
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Sufficiency metric [12] from the FRESH pipeline [13], where our model exceeds the previous
best-reported values on similar datasets. We observe that preference alignment enhances
the model’s ability to adhere to a consistent output format, producing explanations and
classification labels in a predictable, structured manner.

By making both our code and dataset publicly available, we aim to encourage fur-
ther exploration of preference alignment techniques and support wider adoption of self-
explaining LLMs across diverse natural language understanding tasks. Our findings in-
dicate that preference-aligned models strike a promising balance between accuracy and
interpretability, offering a new avenue for transparent and user-centric AI.

2 Related work

Emotion classification focuses on identifying and categorizing emotions expressed in tex-
tual data. Accurate emotion classification can provide valuable insights into public sen-
timent, enabling businesses, policymakers, and researchers to understand societal trends
and reactions [14][15]. Moreover, multilabel classification, which allows for assigning mul-
tiple labels to a single instance, is essential as emotions are often complex and overlapping.
For instance, a single tweet may express both joy and sadness, necessitating a multilabel
approach to capture the full spectrum of emotions [16]. Numerous studies have explored
methodologies for emotion classification, particularly focusing on multilabel and multiclass
approaches. For instance, Ferreira and Vlachos introduced a multilabel stance detection
method that incorporates label dependencies, demonstrating improved performance over
traditional models [17]. Furthermore, ensemble methods have proven beneficial in manag-
ing the complexities of multilabel stream classification [18]. The integration of instruction
tuning for large language models (LLMs) has also emerged as a promising avenue for
improving multilabel emotion classification, allowing models to better adapt to human
expressions [19].

The rise of explainable AI has become increasingly important in classification systems,
including emotion classification. XAI aims to provide transparency in AI decision-making
processes, allowing users to understand how and why certain classifications are made. This
is particularly crucial in sensitive applications, such as mental health assessments, where
the implications of misclassification can be profound. The literature emphasizes that ex-
planations can improve user trust and facilitate better human-AI collaboration [20][21].
Recent evaluations of various explanation methods have underscored their utility in pro-
viding insights into decision-making processes and shown how traditional statistical and
feature attribution methods are insufficient for adequate explanations [22]. Additionally,
developing self-explaining architectures aims to inherently incorporate interpretability into
neural text classifiers, [24]. Recent advancements in AI, particularly with the emergence of
LLMs, have transformed various applications, but making these models behave according
to task-specific needs remains challenging. Preference alignment algorithms have gained
attention as a means to align AI models with human preferences, ensuring that AI outputs
are more relevant and acceptable to users [25]. Various preference alignment techniques,
such as reinforcement learning from human feedback (RLHF), have been instrumental
in fine-tuning models for applications ranging from content moderation to personalized
recommendations [25]. These algorithms enable models to learn from user interactions,
thereby enhancing their performance in real-world scenarios [25]. Despite advancements
in LLMs, uncontrolled generation remains a significant challenge, often leading to hal-
lucinations—instances where the model generates false or nonsensical information. This
phenomenon can undermine the reliability of AI systems, particularly in applications re-
quiring factual accuracy, such as news generation or medical advice [26][27]. The literature
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indicates that hallucinations can arise from various factors, including insufficient training
data and the inherent complexity of language generation tasks [26][27]. Addressing this
issue is critical to ensuring the safe deployment of LLMs in sensitive applications. Pref-
erence alignment enhances the relevance of AI outputs and can be leveraged to create
self-explaining models with controlled quality explanations. By aligning model behavior
with user preferences, developers can ensure that the explanations generated by AI sys-
tems are not only accurate but also tailored to the user’s context and needs [25]. This
approach can significantly improve user trust and satisfaction, as users are more likely to
engage with systems that provide clear and relevant explanations for their outputs [25].
Integrating preference alignment in self-explaining models represents a promising direc-
tion for future research, aiming to bridge the gap between complex AI systems and user
understanding.

3 Data preparation

A core contribution of our work is the creation of a preference dataset tailored to emo-
tion classification and explanation. In the context of large language models (LLMs), a
preference dataset consists of multiple candidate responses for the same input, accompa-
nied by explicit human judgments of which response is preferred. These human judgments
provide the model with valuable signals on what constitutes a “better” output, enabling
fine-tuning toward outputs more closely aligned with human expectations.

3.1 Base dataset and prompting strategy

We utilized the GPT-4o model to create a synthetic dataset, following a methodology
similar to the Self-Instruct [28] approach. We start with the SemEval 2018-Ec multilabel
emotion classification dataset (see Table 2 for dataset details). Specifically, we use the
training and validation splits (7,724 tweets in total). For each tweet, we prompt GPT-4o
to generate two candidate responses. Each response is structured in the following JSON-
like format containing the fields shown in table 1. The explanation field contains a concise
but informative rationale linking textual elements in the tweet to the predicted emotions.
The most prominent emotion field indicates the single dominant emotion in the tweet,
while multiple emotions present enumerates all predicted emotions.

3.2 Correctness criterion and dataset filtering

To ensure high-quality preference samples, we include only those pairs of responses where
at least one of the two responses meets our correctness threshold. A response is deemed
correct if (1) the multiple emotions present field exactly matches the gold-standard set
of emotions for that tweet, and (2) the most prominent emotion is one of the correctly
identified emotions. Out of the 7,724 tweets, 1,495 met these criteria-constituting our final
preference dataset.

3.3 Human Annotation and Scoring

Each of the 1,495 pairs of GPT-4o responses was then manually inspected by two domain
experts and one adjudicator to decide on conflicts. The annotators scored both responses
along the following four dimensions:
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1. Correctness: Evaluates whether the response’s predicted emotions align with the gold
labels, and whether the explanation logically supports those labels. This is the highest-
priority dimension, particularly when deciding which response is ultimately “pre-
ferred.”

2. Clarity: Measures how unambiguous and straightforward the explanation is. Vague or
contradictory responses receive lower scores.

3. Helpfulness: Assesses how effectively the explanation explains the reasoning behind the
predicted emotions, highlighting salient parts of the tweet.

4. Verbosity: Gauges whether the explanation is sufficiently detailed without being exces-
sively long or repetitive. Overly concise or unnecessarily verbose explanations receive
lower scores.

Each dimension is rated on a scale of 1 to 5, and an overall rating (1–5) summarizes the
annotators’ judgment across all four dimensions for each of two responses for each tweet.
While these scores were not strictly required by the specific preference alignment algorithm
that we employed [8] [9], they provide rich metadata for future work in reinforcement learn-
ing from human feedback (RLHF) and other preference-based optimization approaches.
During the annotation process, we also fixed minor errors in the chosen response to perfect
its correctness, clarity, helpfulness, and verbosity. Table 1 shows an annotated example
from our preference dataset.

Field Value

ID 2018-En-12345

Tweet There’s no one right way to live life but: be kind, be genuine, be honest,
be open. #Love yourself & #laugh often.

Gold multilabel [’joy’, ’love’, ’optimism’]

Response 1 ”explanation”: ”The tweet promotes positivity and well-being, focus-
ing on being kind, genuine, and open. The use of hashtags like #Love
and #laugh often, along with the mention of mindfulness, suggests
a strong emphasis on love and joy. ”most prominent emotion”:
”love”, ”multiple emotions present”: [”love”, ”joy”, ”trust”, ”op-
timism”]

Response 2 ”explanation”: ”The tweet emphasizes positivity and self-care, which
are indicative of emotions like love and joy. The use of words such
as ’be kind,’ ’be genuine,’ and ’love yourself’ strongly suggests love
as the primary emotion. The encouragement to ’laugh often’ and
the hashtag #Mindfulness contribute to a sense of joy and opti-
mism. The overall tone is uplifting and encouraging, promoting a posi-
tive outlook on life.”, ”most prominent emotion”: ”love”, ”multi-
ple emotions present”: [”love”, ”joy”, ”optimism”]

Chosen response 1 or 2 (according to correctness)

Response 1 ratings Correctness[1-5], Clarity[1-5], Helpfulness[1-5], Verbosity[1-5],
Overall[1-5]

Response 2 ratings Correctness[1-5], Clarity[1-5], Helpfulness[1-5], Verbosity[1-5],
Overall[1-5]

Chosen response
fixed

Yes or No (if the chosen response was manually fixed for errors)

Table 1. Example of annotated response pairs from our preference dataset

3.4 Data generation settings

We configured GPT-4o to produce two responses per tweet with moderate stochastic-
ity to encourage diverse outputs. We set the model’s temperature to 0.4 and top-p to
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0.8, aiming to balance creativity with focus. Higher temperature or top-p values could
introduce more varied yet potentially off-topic content; lower values might yield overly
deterministic responses that lack richness. In practice, this configuration allowed us to
gather responses that varied enough in style and detail to be meaningfully compared and
scored by human annotators. To further ensure the generated responses conform to a
consistent structure, we employed the OpenAI structured outputs utility. We defined the
required JSON schema using Python’s Pydantic library, and then passed that schema to
the chat completions function call. This setup enforced that GPT-4o produced outputs in
our desired format and emotion values comprising explanation, most prominent emotion,
and multiple emotions present—thereby streamlining both automatic parsing and human
annotation.

We evaluated our model on two Twitter-based emotion classification datasets with dis-
tinct label configurations. The DAIR AI dataset [11] contains six possible emotions—anger,
fear, sadness, joy, disgust, fear—where each tweet is assigned a single most prominent
emotion. In contrast, the SemEval 2018 E-c dataset [10] encompasses eleven possible emo-
tions—anger, fear, sadness, joy, disgust, fear, optimism, pessimism, sadness, surprise, trust,
neutral—and permits multiple emotions to co-occur within a single tweet. Accordingly,
our model uses the most prominent emotion field to handle DAIR AI and the multi-
ple emotions present field for SemEval 2018 E-c.

To ensure that the model’s outputs conform to these respective label sets, we defined
two Pydantic schema objects reflecting the allowable outputs for each dataset. These
schemas were then passed as constraints to the Chat Completions API (via OpenAI’s
structured outputs utility). We could have included these restrictions solely within the
model’s prompt, but large language models often struggle to consistently adhere to tex-
tual format directives alone [29], [30], [31]. By providing an explicit schema, the model is
programmatically constrained to produce outputs that align with the specified fields and
label sets for each dataset, leading to more reliable and parsable results. The resulting
preference dataset comprises 1,495 tweet-responses pairs with comprehensive human eval-
uations. This dataset constitutes the foundation for the subsequent preference alignment
of GPT-4o and other LLMs, guiding them to produce explanations and predictions that
match ground-truth labels more accurately and better align with human notions of quality,
clarity, and helpfulness.

Dataset Train Dev Test Total

SemEval-2018 (Multi-label) [10] 6,838 886 3,259 10,983

DAIR AI (Multi-class) [11] 16,000 2,000 2,000 20,000
Table 2. SemEval 2018 E-c and DAIR AI datasets distribution statistics.

4 Methodology

4.1 Alignment and preference datasets

Alignment refers to the process of ensuring that AI systems operate in accordance with
human values, preferences, and intentions [32]. Achieving alignment is critical for the
responsible deployment of AI technologies, particularly in sensitive applications where
ethical considerations are paramount. One effective approach to achieving alignment is
through the use of preference datasets, which capture the nuanced preferences of users.
These datasets can be employed to train AI systems to recognize and prioritize human
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values, thereby enhancing their decision-making processes. For instance, incorporating
dynamic utility functions that reflect changing human preferences can help AI systems
adapt to evolving societal norms and expectations [42][44].

Explainable AI benefits significantly from alignment achieved through preference datasets,
as it enables models to provide transparent and interpretable outputs that resonate with
user expectations. By leveraging preference datasets, AI systems can be designed to gen-
erate explanations that align with users’ values and preferences, thus fostering trust and
understanding. This alignment can be enhanced by employing techniques that account for
the variability in human preferences, ensuring that the AI’s explanations are not only accu-
rate but also contextually relevant [43]. Ultimately, the integration of preference datasets
into the alignment process can lead to the development of AI systems that are not only
effective but also ethically sound and aligned with the values of the communities they
serve.

4.2 Algorithms and model training

In this subsection, we explore the methodologies and processes involved in training our
models to align with human preferences. We begin by describing both Direct Preference
Optimization (DPO) and Odds Ratio Preference Optimization (ORPO), highlighting their
role in leveraging the preference dataset. We then detail our model training setup, hyper-
parameter choices, and overall training workflow.

Direct Preference Optimization Direct Preference Optimization (DPO) [9] is a pair-
wise preference alignment technique that leverages human feedback to guide model re-
sponses. Given two candidate responses A and B for the same input, along with a human-
annotated preference, DPO adjusts the model parameters so that the reward for the pre-
ferred response is higher. Formally, the DPO loss can be written as:

LDPO(θ) = −E(A,B)∼D

[
log σ

(
rθ(A)− rθ(B)

)]
,

rθ(A) and rθ(B) are the learned reward scores assigned by the model to responses A and B,
respectively. The expression σ(rθ(A)− rθ(B)) gives the probability that the model prefers
A over B under the current parameters, where σ(·) is the logistic (sigmoid) function. By
taking the negative log of this probability and averaging over all pairs in the dataset D, the
model is penalized when it fails to assign a higher reward to the human-preferred response.
Minimizing LDPO(θ) thus encourages the model to consistently rank the chosen response
more favorably than the non-chosen one, aligning outputs with human preferences.

We adopted DPO as the sole preference alignment strategy for tuning GPT-4o, as it
is the only such algorithm currently offered by OpenAI for their models. This approach
allowed us to leverage pairwise preferences collected in our dataset to optimize GPT-
4o’s responses toward higher human satisfaction. Consequently, GPT-4o achieved stronger
alignment with human judgments regarding clarity, correctness, and helpfulness of its
outputs.

Odds Ratio Preference Optimization Odds Ratio Preference Optimization (ORPO)
[8] is a pairwise preference alignment technique that optimizes the ratio of predicted prob-
abilities assigned to the preferred versus the non-preferred response. Formally, its loss
function can be expressed as:

LORPO(θ) = −E(A,B)∼D

[
log

(
pθ(A)

pθ(B)

)]
,
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where pθ(·) indicates the model’s predicted probability for each candidate response A or
B. Minimizing this term encourages the model to assign higher likelihood to the chosen
(human-preferred) response, thus aligning outputs with annotator judgments. Compared
to DPO—which uses a sigmoid-based difference in reward scores—ORPO operates directly
on the odds ratio, potentially offering more stable updates for smaller models.

We used ORPO for its superior stability over DPO [33][34][35], especially when training
open-source models. We applied ORPO to preference-align two open-source, instruction-
tuned language models, achieving improved alignment to human-labeled preferences.

Model training We aligned three models using our preference dataset. Specifically, we
applied DPO to train GPT-4o, while for the two open-source models—LLaMA 3 (8B) and
DeepSeek R1 (Distilled Qwen 2.5, 32B)—we employed ORPO. This setup allowed each
model to leverage human preference annotations in a manner best suited to its respective
infrastructure.

Hyperparameter setup For DPO training on GPT-4o, we followed the default prefer-
ence alignment workflow provided by OpenAI. We ran the fine-tuning for 2 epochs with
a batch size of 8, a learning rate multiplier of 1, and set the random seed to 42 for re-
producibility. Additionally, we used β = 0.1 in the loss computation, which controls the
gradient update weight for the preference signal. For ORPO training on the open-source
models (LLaMA 3 and DeepSeek R1), we employed a maximum input and prompt length
of 1,024 tokens. The per-device train and per-device eval batch sizes were both set to 4,
with 2 gradient accumulation steps to effectively reach an overall batch size of 8. We used
a learning rate of 2× 10−4, adamw8bit optimization, and weight decay of 0.01. The train-
ing proceeded for 100 steps, with an evaluation step every 10 steps. This configuration
was managed using a HuggingFace-compatible ORPOTrainer module, ensuring consistent
training parameters across our preference alignment experiments.

Training overview and performance analysis For the DPO approach, we used Ope-
nAI’s dedicated module for preference alignment, wherein our preference dataset’s training
and validation splits were supplied as JSONL files. The API managed the entire fine-tuning
lifecycle internally, allowing us to concentrate on evaluating and iterating over different
model checkpoints. Despite the high computational cost of training large models, this work-
flow proved both straightforward and efficient, as it removed the burden of manually han-
dling complex hyperparameters. By contrast, for ORPO preference alignment, we opted
for smaller open-source models (LLaMA 3 and DeepSeek R1) to accommodate our limited
compute budget on Google Colab Pro, which offers access to an NVIDIA A100 40GB GPU.
To further accelerate training and inference, we integrated models from the unsloth [36]
library, which supports optimized inference kernels. We also utilized Parameter-Efficient
Fine-Tuning (PEFT) [37] via LoRa (Low-Rank Adaptation) [38] in a 4-bit precision set-
ting—enabling the loading of large-scale language models on smaller GPU memory. We set
the LoRa rank = 16, disabled dropout, and used a minimal batch size of 8 to remain within
memory constraints. Despite these resource limitations, the fine-tuned models exhibited
substantial improvements in aligning with human preferences, indicating the effectiveness
of ORPO for lighter-weight deployments.

5 Architecture diagram

The diagram 1 illustrates how the SemEval 2018 E-c train+dev dataset is used to prompt
GPT-4o for two candidate responses. These responses are then manually annotated and
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refined to form the preference dataset, which is subsequently utilized to train GPT-4o
via DPO and open-source models (DeepSeek, LLaMA) via ORPO. Finally, the resulting
fine-tuned models generate inferences (explanations and classifications) that are evaluated
for quality and correctness.

Fig. 1. General system schema

6 Evaluation

6.1 Evaluating explanations

To assess the quality and faithfulness of the generated explanations, we employ the Suf-
ficiency metric, which measures whether the explanation text alone is sufficient to re-
cover the model’s prediction [12] [39]. Our implementation builds on the “Faithfulness-by-
construction” (FRESH) pipeline which is a framework to evaluate sufficiency of explana-
tions: the sole explanations, without the remaining parts of the input, must be sufficient
for predicting a label [13], where a separate classifier (BERT-based) is trained to predict
the label using only the extracted explanation—omitting the rest of the input text. If the
classifier maintains high accuracy on this restricted view, we interpret the explanations
as being faithful to the original model’s rationale, reflecting a strong alignment between
the explanation and the underlying decision process. This evaluation method is used to
evaluate generative explanations [24] [22].

6.2 Evaluating classifications

For classification performance on the SemEval 2018 E-c test set, we adopt the official multi-
label accuracy (Jaccard index) metric, as well as micro F1 and macro F1 scores, to capture
both label-wise and overall prediction quality. On the DAIR AI test set, which is a single-
label task, we compute the standard accuracy, precision, recall, and F1 metrics to measure
the effectiveness of our model predictions. These metrics collectively provide a comprehen-
sive view of how well our models identify emotions and align with the ground-truth labels
across both datasets. From the generated responses, we use the multiple emotions present,
and most prominent emotion fields for multilabel and multiclass evaluation respectively.
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7 Results

Tables 3 and 4 summarize the classification outcomes of our proposed models compared to
various state-of-the-art baselines on the SemEval 2018 E-c and DAIR AI emotion datasets,
respectively. For the multilabel setting (SemEval 2018 E-c), GPT-4o fine-tuned with DPO
achieves the highest accuracy (68.85%), outperforming both zero-shot GPT-4o and other
transformer-based baselines. Meanwhile, DeepSeek R1 (Distilled Qwen 32B) and LLaMA
3 8B, both trained via ORPO, show competitive results, albeit slightly lower than GPT-4o
DPO, because these are much smaller models. For the multiclass DAIR AI dataset, GPT-
4o DPO similarly attains strong performance, reaching 93.1% accuracy and an F1 score
of 87.9—comparable with established transformer-based SOTA models. The two ORPO-
aligned models also maintain high classification metrics (over 88% accuracy), demon-
strating that preference alignment can yield significant improvements even for smaller or
distilled architectures.

Models Accuracy % Micro F1 % Macro F1 %

Our proposed models

GPT-4o - DPO 68.85 80.53 74.44
DeepSeek R1 (Distilled Qwen 32B) - ORPO 65.66 77.57 71.58
LLAMA 3 8B - ORPO 64.12 75.91 68.89

Current state-of-the-art models [19]

GPT2− ITA 67.56 79.36 73.05
Zero-shot GPT-4o 64.76 76.77 70.09
RoBERTa MA 62.40 74.20 60.30

Table 3. Emotion classification results on different models for SemEval-2018 Task1-Ec dataset. The best
values are in bold.

Models Accuracy Precision Recall F1

Our proposed models

GPT-4o - DPO 93.10 90.80 87.09 87.90
DeepSeek R1 (Distilled Qwen 32B) - ORPO 90.77 89.57 86.92 86.76
LLAMA 3 8B - ORPO 88.22 86.03 85.26 84.32

Current State-of-the-art models

sagemaker-roberta-base-emotion 1 93.10 88.30 90.90 89.50
roberta-base-emotion 2 93.10 91.70 87.40 88.20
Zero-shot GPT-4o 92.40 90.63 87.81 87.63

Table 4. Emotion classification results on different models for Dair AI emotion dataset. The best values
are in bold.

Table 5 presents the Sufficiency metric results, which gauge whether a model’s expla-
nation text alone is predictive of its final classification. GPT-4o DPO achieves a Sufficiency
score of 63.66, notably surpassing zero-shot GPT-4o and other popular explanation meth-
ods such as SHAP-RoBERTa and LIME-RoBERTa. While DeepSeek R1 and LLaMA 3
fall slightly behind GPT-4o, they still outperform all state-of-the-art approaches, sug-
gesting that preference-aligned models are able to produce higher-quality, self-consistent
explanations.
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Explainable AI models Sufficiency

Our proposed models

GPT-4o - DPO 63.66
DeepSeek R1 (Distilled Qwen 32B) - ORPO 61.12
LLAMA 3 8B - ORPO 60.98

Current State-of-the-art models [22]

GPT-4o 59.66
SHAP-RoBERTa 54.16
LIME-RoBERTa 53.22

Table 5. Sufficiency metric for evaluating explanations for the models

7.1 Analysis

The classification results highlight the benefits of preference alignment for both large-scale
and smaller models. GPT-4o DPO not only sets a new performance bar on the SemEval
2018 E-c dataset but also demonstrates strong generalization on the DAIR AI dataset,
achieving accuracy levels on par with top-performing baselines. Notably, GPT-4o never
sees the DAIR AI data during preference alignment—indicating that the alignment process
itself confers robustness that generalizes to unseen tasks. Meanwhile, the open-source
models, DeepSeek R1 and LLaMA 3 8B, show considerable gains upon being trained with
ORPO, underscoring that systematic preference alignment can upgrade instruction-tuned
models even under constrained compute budgets.

Beyond classification accuracy, our preference-aligned models also demonstrate marked
improvements in output format consistency. Before alignment, these generative LLMs
would frequently violate the specified output schema—up to 33% of the time in our ex-
periments—forcing us to parse or manually correct their outputs. This issue is especially
pronounced for open-source models that lack robust structured output support (like Ope-
nAI’s GPT-4o). After training with our preference dataset, however, all models adhere
strictly to the requested JSON-based output, reducing formatting errors to 0%. This con-
sistency is a substantial asset in production settings, where reliable parsing and down-
stream automation are crucial. Overall, the preference alignment process yields models
that are both accurate and operationally reliable, suggesting a promising direction for
scalable, human-centered natural language systems.

8 Conclusion and future work

We introduced a preference-aligned, self-explaining approach to emotion classification. Our
contributions include constructing a preference dataset that explicitly captures human
judgments about clarity, correctness, helpfulness, and verbosity, and using this dataset to
preference-tune both GPT-4o and open-source LLMs. The results demonstrate that pref-
erence alignment not only boosts classification performance, but also enhances explanation
quality, offering insights that directly reference salient parts of the input text. Moreover,
our method drastically reduces formatting inconsistencies, a major hurdle when deploying
LLMs in practical settings.

For future work, researchers can incorporate retrieval-augmented generation (RAG)
by leveraging vector databases of emotion datasets and related emotion concepts for
more context-rich explanations and higher classification accuracy. Additionally, while our
current study focuses on Direct Preference Optimization (DPO) and Odds Ratio Pref-
erence Optimization (ORPO), future work could explore Reinforcement Learning with
Human Feedback (RLHF) and Group Relative Policy Optimization (GRPO), using our
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fine-grained scores of correctness, clarity, helpfulness, and verbosity as reward signals.
These directions collectively aim to yield more interpretable, robust, and human-aligned
systems.
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18. Büyükçakır, A., Bonab, H. & Can, F. A Novel Online Stacked Ensemble for Multi-Label Stream
Classification. (2018)

19. Siddiqui, M., Inkpen, D. & Gelbukh, A. Instruction Tuning of LLMs for Multi-label EmotionClassi-
fication in Social Media Content. Proceedings Of The Canadian Conference On Artificial Intelligence.
(2024,5,27), https://caiac.pubpub.org/pub/lezimqvm

20. Zhang, J. & Rao, Y. Research on Model and Algorithm of Multiview and Multilabel Classification
Based on Nearest-Neighbor Model. Mathematical Problems In Engineering. (2022)

21. Chen, W., Zhang, B. & Lu, M. Uncertainty Quantification for Multilabel Text Classification. Wiley
Interdisciplinary Reviews Data Mining And Knowledge Discovery. (2020)

Computer Science & Information Technology (CS & IT)                                                     361



22. Fahim Siddiqui, M., Inkpen, D. & Gelbukh, A. Towards Interpretable Emotion Classification: Evalu-
ating LIME, SHAP, and Generative AI for Decision Explanations. (2024)

23. Rajagopal, D., Balachandran, V., Hovy, E. & Tsvetkov, Y. SELFEXPLAIN: A Self-Explaining Archi-
tecture for Neural Text Classifiers. (2021)

24. Rajagopal, D., Balachandran, V., Hovy, E. & Tsvetkov, Y. SELFEXPLAIN: A Self-Explaining Archi-
tecture for Neural Text Classifiers. (2021)

25. Michaud, J. Dynamic Preferences and Self-Actuation of Changes in Language Dynamics. Language
Dynamics And Change. (2019)
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