

David C. Wyld et al. (Eds): InWeS, NSEC, VLSIA, NLAIM, CSIP – 2025

pp. 25-32, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151103

AN EFFICIENT IMPLEMENTATION OF SOC

FEEDTHROUGH IN AN IP WITH THE

MULTIPLE INSTANTIATED BLOCKS (MIB)

1Praveen Pilla and 2VinayaGudeangadi

1Physical Design Engineer, Intel Technology India Pvt. Ltd, Bangalore

2Soc Design Manager, Intel Technology India Pvt. Ltd, Bangalore

ABSTRACT

At the SoC level, channels are used to interconnect different IPs. When the number of wires

passing through the channels is too high, the area occupied by these channels becomes a

substantial portion of the total SoC area. The problem with channels is that they only carry

signals, making them an inefficient way to utilize design area. To optimize area, IPs are

often abutted at the SoC level, and channels are replaced by SoC feedthrough wires that

run across the IPs. In SoC designs where IPs are abutted, it is common practice to route

feedthrough wires across the IPs to reduce the area dedicated to channels. In an abutted

design methodology, the two IPs connected to each other may not be adjacent due to

floorplan constraints. This is why SoC feedthrough wires are routed across intermediate

IPs. Modern design planning tools can handle the creation of SoC feedthroughs at the IP

level. However, in the case of Multiple Instantiated Blocks (MIBs i.e., multiple instances of

the same reference), these tools struggle to handle them efficiently and effectively. This
paper discusses various scenarios where design tools fail to manage SoC feedthrough

creation and proposes solutions to address these challenges.

KEYWORDS

MIB: Multiple Instantiated blocks, SoC: System on Chip, IP: Intellectual Property, WNS:

Worst negative slack, FEP: Failing Endpoints, TNS: Total negative slack.

1. INTRODUCTION

Using dedicated channels to carry signals between IPs can have a significant impact on the total

SoC area [1]. Instead, utilizing the IPs themselves to carry feedthrough signals is a novel

approach to saving SoC area.The following diagram (Figure 1) compares channel-based
connectivity with feedthrough-based connectivity.

Figure1.Comparison between channel-based connectivity vs feedthrough-based connectivity

https://airccse.org/
https://airccse.org/csit/V15N11.html
https://doi.org/10.5121/csit.2025.151103

26 Computer Science & Information Technology (CS & IT)

The challenge arises when introducing these signals to IPs that contain partitions, which has
MIBs. Design tools have not performed efficiently in creating pins for these SoC feedthrough

signals, leading to routing & crosstalk issues in the lower nodes [6]. This has required

considerable effort to resolve the routing problems and the timing challenges.

The following methodology demonstrates an efficient approach for creating SoC feedthroughs in

an IP with MIBs arranged in different scenarios. Figure 2 illustrates how the MIBs are arranged

within the IP and the scheme for SoC feedthrough routing.

Figure2. Shows the arrangement of MIBs& Soc feedthrough routing.

R0, R1, R2, and R3 are MIBs arranged serially (these are multiple instantiations of the block

named R). Q0 and Q1 are MIBs arranged in parallel (these are multiple instantiations of the block

named Q). The main challenge is routing SoC feedthroughs across MIBs. The MIB instances in
the floorplan can be arranged either serially or in parallel.

Figure3. Parallel Arrangement of MIBs

Consider a design requirement where we need to route 6,000 SoC feedthrough wires, with the
goal of sharing them between the Q0 and Q1 MIB instances of a partition called "Q." During the

design planning stage, while placing pins, the following command (Figure 4) was provided to the

tool to route 3,000 wires through each instance (Q0 and Q1). However, the tool did not meet the
design objective.

Computer Science & Information Technology (CS & IT) 27

Figure 4. Sequence of commands for the pin creation using tool.

The tool placed 3,000 ports on the left and right edges of Q0 to connect the wires passing through
itand correspondingly placed 3,000 ports on the left and right edges of Q1, since Q0 and Q1 are

MIBs. Similarly, the tool added an additional 3,000 ports on the left and right edges of Q1 to

connect the wires passing through itand correspondingly placed 3,000 ports on the left and right
edges of Q0.Effectively, instead of routing 6,000 SoC feedthrough wires by sharing 3,000 wires

between the two MIB instances, the tool inserted 6,000 wires into each individual instance. This

is primarily because the design planning tool does not recognize that the MIBs can share the

same 3,000 wires created in each instance to route the 6,000 SoC feedthrough wires.

2. PROPOSED SOLUTION

In this paper, we propose a solution for creating SoC feedthroughs in parallel arrangement
scenarios of MIBs during the design planning stage.

2.1. Parallel Arrangement of MIBs

Consider the example of routing "m" number of SoC feedthrough wires across the Q0 and Q1

instances. To begin, assess how many SoC feedthrough wires need to be routed and determine
their composition (i.e., how many input and output wires need to be routed).

Figure 5. Flowchart

Assume the "L2R" SoC feedthrough wires go from the left edge of the IP to the right edge, and
the "R2L" SoC feedthrough wires go from the right edge of the IP to the left edge. Understanding

the segregation of input and output wires and dividing them optimally between the MIB instances

is key to utilizing routing resources efficiently in this methodology.

The guidelines to follow when using MIBs arranged in parallel for SoCfeedthroughare:

28 Computer Science & Information Technology (CS & IT)

i. The number of input and output signals passing through each instance is the same.
ii. The order of input & output signals in each instance is the same.

Given the Q0 and Q1 instances of the MIB, each instance can carry “L2R/2” and “R2L/2” wires

in each direction. Considering Q0 as the reference instance, create “L2R/2” input ports on the left
edge of Q0 and corresponding “L2R/2” output ports on the right edge of Q0. Similarly, create

“R2L/2” output ports on the left edge of the Q0 instance and corresponding “R2L/2” input ports

on the right edge of Q0. Once the feedthrough ports are created on both edges of the MIB
instance, they need to be connected to form the feedthrough wire within the instance. Since Q0 is

an MIB, the same number of ports in the same order are created in Q1 as well, and the

feedthrough wire connections are also inferred as shown in Figure 6.

Figure 6.Demonstrating the proposed pin placement for parallel arrangement of MIBs.

At this point, shift the focus to connecting the pins of the MIBs to the SoC feedthrough wires at

the IP level. First, connect the “L2R/2” SoC feedthrough wires to the input ports of Q0 on the left

edge, and on the right edge of Q0, hook up the same wires to the output ports. Similarly, connect
the “R2L/2” SoC feedthrough wires to the input ports of Q0 on the right edge, and on the left

edge of Q0, hook up the same wires to the output ports. Now, knowing that Q1 has the same

number of ports in the same order, connect the remaining SoC feedthrough wires in the same
fashion.

As mentioned earlier, the key is to segregate the SoC feedthrough wires between the MIB

instances. For example, consider routing signals with a wide and a narrow SoC feedthrough bus.
If the timing criticality is such that these signals cannot be split between the two MIB instances,

then accept the routing compromise by allocating the wider bus signals to one instance and the

narrower bus signalto the other. In such cases, the wider bus signal dictates the maximum number
of wires that can pass through both instances.

3. EXPERIMENTAL RESULTS

3.1. Parallel Arrangement of MIBs

The objective of this SoC design was to insert 6,000 SoC feedthrough wires using two parallelly
stacked MIB instances. When the tool was used to create these feedthrough wires, it resulted in

Computer Science & Information Technology (CS & IT) 29

6,000 wires in each MIB instance.Using the proposed approach, the design is able to route 6,000
SoC feedthrough wires by creating only 3,000 feedthrough wires in each MIB instance. This

significantly reduces block congestion and improves timing, as there is less impact due to

crosstalk.

3.1.1. Block Congestion & Timing Summary with Traditional Method

Figure 7. shows the total congestion number at place stage which is 0.12%. This congestion score
is translating to ~900 shorts in the design after the actual routes.It is time consuming to fix these

shorts and timing is also bad (shown in Table 1) due to crosstalk impact.

Figure 7. Congestion report from traditional method

Table1.Timing summary from traditional method.

WNS TNS FEP

-0.211 -118.77 4588

3.1.2. Block Congestion &Timing Summary with Proposed Method

Figure 8. shows the total congestion number at place stage which is 0.03%. Significant
improvement compared to the traditional method. With this approach shorts count has come

down to ~150 after the actual design routes. Timing summary has improved as shown in Table 2.

Figure 8. Congestion report with proposed method.

Table 2.Timing summary with proposed method.

WNS TNS FEP

-0.0873 -13.33 2070

30 Computer Science & Information Technology (CS & IT)

3.1.3. Congestion Score Comparison

Figure 9.Congestion score comparison b/w Traditional vs Proposed method.

Figure 9. shows the Congestion score comparison between traditional and Proposed method.
Overall Congestion has improved from 0.12% to 0.032%, which is significant in lower-node

technology.

3.1.4. Timing Summary Comparison

Figure 10. shows the timing summary comparison between traditional method vs proposed

method. It is evident that the proposed method shows good improvement on timing.The total

negative slack (TNS) has improved from -118 ns to -13 ns, which facilitates better routing in the
design.

Figure 10.Timing summary comparison b/w Traditional vs Proposed method.

4. CONCLUSION

The proposed approach can be used to enable SoC feedthrough wires even through MIB

instances. This approach covers the best possible arrangements of the MIBs and the

corresponding pin creation/placements, which in turn helps improve the timing and routing of the
design. The successful adaptation of this approach will enable SoC feedthroughs to avoid the

presence of inefficiently used channels, optimizing the area utilization of the SoC.

Computer Science & Information Technology (CS & IT) 31

REFERENCES

[1] Yi Hong, Chunyang Huang, Yue Gao, Chuang Li, “Channel Based SOC Feedthrough Insertion

Methodology”, 2022 11th International Conference on Communications, Circuits and Systems.

[2] Ashutosh Kumar, Michael Carver, “Automatic Conversion of a channel based design to an abutted

design”, SNUG 2017.

[3] S. Hiremath and V. Y, "RTL to GDSII implementation of Advanced High-Performance Bus

Lite", 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp.

303-306, 2021.
[4] Yanling Zhou, Yunyao Yan , Wei Yan, “A method to speed up VLSI hierarchical physical design in

floorplanning”, 2017 IEEE 12th International Conference on ASIC, pp. 347-350, 2017.

[5] FC User Guide: Implementation, M-2016-sp4ed., Synopsys Inc.

AUTHORS

Praveen Pilla is currentlya Senior Physical Design Engineer at Intel, bringing over

12years of expertise in Physical Design and Timing Closure. His work focuses on high-

performance subsystems and SoC, where he contributes to the development and

optimization of advanced semiconductor solutions. He has a strong passion to solve

critical problems.

Vinaya Gudeangadi is a SOC Design Manager at Intel with 24 years of experience in

the field of VLSI having worked in both front-end (RTL) & back-end (Physical

design). He has worked on networking, storage, media, modem, IOTG & automotive

SoC designs while leading teams. He has the experience of working on Intel, TSMC,
Samsung & GF foundries & implementing various processor cores - ARM

(CPU/GPU/N2 Cores), Xtensa, Imagination GPU.

© 2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://ieeexplore.ieee.org/author/37089456792
https://ieeexplore.ieee.org/author/37089454702
https://ieeexplore.ieee.org/author/37089458605
https://ieeexplore.ieee.org/xpl/conhome/9823956/proceeding
https://airccse.org/

32 Computer Science & Information Technology (CS & IT)

