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Abstract. Recent advancements in Natural Language Processing have significantly improved the extraction
of structured semantic representations from unstructured text, especially through Frame Semantic Role
Labeling (FSRL). Despite this progress, the potential of Retrieval-Augmented Generation (RAG) models
for frame detection remains under-explored. In this paper, we present the first RAG-based approach for
frame detection called RCIF (Retrieve Candidates and Identify Frames). RCIF is also the first approach
to operate without the need for explicit target span and comprises three main stages: (1) generation of
frame embeddings from various representations ; (2) retrieval of candidate frames given an input text;
and (3) identification of the most suitable frames. We conducted extensive experiments across multiple
configurations, including zero-shot, few-shot, and fine-tuning settings. Our results show that our retrieval
component reduces the complexity of the task by narrowing the search space thus allowing the frame
identifier to refine and complete the set of candidates. Our approach achieves state-of-the-art performance
on FrameNet 1.5 and 1.7, demonstrating its robustness in scenarios where only raw text is provided.

Keywords: Frame semantic parsing, RAG, LLMs.

1 Introduction

Large Language Models (LLMs) have led to major advancements in natural language
understanding, achieving state-of-the-art performance across a range of tasks. However,
despite their impressive capabilities, LLMs often show sensitivity to input phrasing and
struggle to generalize across different lexical variations of semantically equivalent inputs
[12,14,22]. This brittleness limits their robustness and usability, especially in downstream
applications that require precise and structured interpretations of language, such as
semantic parsing or knowledge base querying. To address these limitations, we hypothesize
that grounding natural language understanding in structured semantic representations
is essential. We investigate the research question: how can we make models have the
same representation for various question reformulations ?. One method is to bring all the
formulations to a single representation. In this work, we investigate frame semantics as
such representation.

Frames represent prototypical situations or events (e.g., Buying, Travel, Communi-
cation). A FrameNet frame f is defined by (1) its label representing its name, (2) its
description that provides a comprehensive explanation of its semantics, (3) its set of
frame-elements (FEs), which serve as its core semantic components, capturing contextual
and relational information about the frame and finally (4) its set of lexical units (LUs),
consisting of lemmas paired with their parts of speech, which denote the frame or specific
aspects of it. Within a sentence, tokens (words or phrases) that evoke a frame are referred
to as targets. To get a frame-based structured representation, the first step is to detect the
frames evoked by the question (sentence or text in general). It involves selecting the correct
frame for a given target word or phrase (called the target span) in a text. For example,
in the question “Where did she buy the book?”, the verb buy evokes the frame named
Commerce buy, with associated roles like Buyer, Goods, Means, Money, Rate and Seller
that are among the frame-elements of the frame Commerce buy. Traditional frame detection
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approaches assume that the target word is explicitly specified in advance [5,16,7,18,1].
However, in many real-world scenarios, there is no predefined target span. This lack of
explicit alignment makes these target-based frame detection approaches less practical for
knowledge base querying tasks. This limitation motivates the need for a target-free frame
detection, where the model must infer relevant frames directly from the full input text
without being told which words evoke them. Achieving this requires both efficient candidate
retrieval and accurate frame selection mechanisms, especially when dealing with large
frame inventories and varied lexical expressions.

In this paper, we propose a new method, calledRCIF (RetrieveCandidates and Identify
Frames), that addresses these challenges by combining structured semantic representations
with a Retrieval-Augmented Generation (RAG) architecture. As depicted in Figure 1,
RCIF operates in three stages: (1) a semantic index is constructed from embeddings of
frames; (2) given an input question, the model retrieves the most relevant candidate frames
from this index; (3) a generative LLM selects the best-matching frames from the retrieved
candidates, effectively acting as a classifier over retrieved options.

The main contributions of this paper are:

– We present the first method that leverages a RAG-based framework for frame detection
using a generative LLM.

– We introduce a novel approach for target-free frame detection, making frame-semantic
parsing more broadly applicable in real-world scenarios where explicit targets are not
available.

Overall, our approach not only enhances frame detection accuracy but also addresses
the challenge of target-free input by dynamically narrowing the search space to relevant
frames, improving both recall and precision in frame identification.

2 Related Works

The literature on frame parsing can be broadly divided into two main approaches: methods
that frame the task as a sequence-to-sequence (Seq2Seq) generation problem and methods
based on representation learning.

Seq2Seq approaches [17,15,9,2] define frame parsing as a generative task, decomposing
it into subtasks such as trigger identification, frame classification, and argument extraction.
These methods leverage pre-trained language models and task-specific optimizations to
balance the subtask distributions and mitigate data scarcity [9,2]. As illustration, models
like T5 [15] are pre-trained on PropBank [11,10] and FrameNet exemplars, with text
augmentation techniques applied to improve robustness and FrameNet lexical units incor-
porated to enhance frame classification accuracy. Then, they are fine-tuned on each of
the aforementioned sub-tasks. For exemple, [9] adopt a shared encoder with specialized
decoders for each sub-task, enabling the model to leverage a common representation while
handling each task independently within the same architecture. The Seq2Seq methods
share a focus on utilizing the flexibility of generative models to capture the sequential
nature of frame parsing tasks.

Representation learning approaches, in contrast, focus on constructing enriched embed-
dings that align sentence-level context (or just the target span) with candidate frames [5,7].
They often employ graph-based techniques, such as Graph Neural Networks (GNNs) [19],
or contrastive learning [8] to incorporate external knowledge and enhance the robustness of
frame representations. These methods also emphasize semantic alignment through embed-
ding techniques that integrate knowledge from FrameNet’s structure. Graph-based methods,
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Fig. 1. Overview of our proposed method called RCIF (Retrieve Candidates and Identify Frames). (1)
Frame embeddings are generated using an embedding model based on various frame representations. These
embeddings are stored in a vector database. (2-3) Given an input text, the system retrieves candidate
frames based on similarity scores of input text and frames embeddings. (4-5) An LLM is then fine-tuned
with dynamic prompts to select the best matching frames from the retrieved candidates, completing the
identification process.

for instance, exploit relationships between frames and frame elements [16,21,18], while
contrastive learning approaches align contextual representations of target span with frame
embeddings to refine predictions [5,7,1]. More specifically, the previous SOTA approaches
we compare our results with (KGFI[16] and CoFFTEA[1]) use representation learning
strategies for frame identification. KGFI incorporates structured frame knowledge—such
as definitions, frame elements, and inter-frame relations—into a joint embedding space to
better align targets and frames via dot-product similarity. CoFFTEA, on the other hand,
employs contrastive learning with dual encoders and a coarse-to-fine curriculum to model
target-frame alignment. A key limitation that hinders these approaches from generalizing
effectively and being applicable in real-world scenarios is their reliance on both the context
(text/sentence) and a target, which has to be specified at input. For instance, consider
the sentence: ”We help people train for and find jobs that make it possible for them to get
off of welfare.”. To detect the frame ”Assistance,” these approaches require information
about the position of the target span ”help”. This dependency restricts their flexibility and
reduces their practical utility in settings where only raw text without predefined targets is
available.

To address the computational challenges in frame detection, we propose an approach to
reduce the search space by first retrieving a subset of potential candidate frames that are
likely to be evoked by the sentence. By limiting the frame search space, we aim to decrease
the number of frame evaluations for each word, thereby reducing overall complexity, but
we also strive to maintain a high recall among the most likely potential frames.
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3 Methodology

3.1 Datasets

To ensure a fair comparison with prior work, we assess our model’s performance on FrameNet
1.5, adhering to the original train/dev/test data splits established by [3]. Additionally, we
extend our evaluation to FrameNet 1.7, released in 2016, which offers approximately 20%
more gold-standard annotations compared to FrameNet 1.5. For both FrameNet 1.5 and
FrameNet 1.7, we follow the data splits defined by An et al. [1]. Table 1 provides details
on the number of examples in each split, including the exemplars dataset commonly used
for pretraining.

Table 1. Dataset Distribution for FrameNet 1.5 and FrameNet 1.7

Dataset Split
FrameNet 1.5 FrameNet 1.7

All Uniques All Uniques

Train 16,621 2,653 19,391 3,353
Dev 2,284 326 2,272 326
Test 4,428 875 6,714 1,247
Exemplars 153,946 147,483 192,431 168,266

# Frames 1,019 1,221

3.2 Concepts definition and task description

As described in the introduction, a FrameNet frame f is defined by its label, its textual
description, its set of frame-elements (FEs), and a set of lexical units (LUs).

We formulate our task as the detection of frames fi, . . . , fj within a sentence S =
w1, . . . , wn. Unlike approaches such as CoffTea [1] and related works that rely on both
a sentence and a specific target span t = wts , . . . , wte (with wts and wte respectively
corresponding to the start and the end of the target span) to identify a single frame, our
model, RCIF, is designed to identify frames in the absence of such target span information.

FrameNet datasets consist of entries such as the sentence ”I was sad when I could n’t
go to the snack bar to buy a soda.” where the underlined span is the target whose position
is provided as well as the frame which is ”Commerce buy” and its definition. Thus, the
entry is repeated as many times as there are target spans or possible frames for the same
sentence with, for every instance, a new couple of target span and frame.

To generalize over target-less raw text, we adapt the original datasets by grouping
frames by sentence so that each unique sentence is associated with all the frames it evokes.
For instance, the six occurrences of the previous sentence are merged into a single entry,
discarding information about the target and retaining only the following list of possible
frames such as ”Emotion directed”, ”Capability”, ”Likelihood”, ”Locative relation”, ”Goal”,
”Commerce buy” and ”Temporal collocation”. As one can see, this new target-free dataset
formulation constitutes a harder task than the previous one. We thus address this problem
by first retrieving a set of candidates and then identifying the appropriate frames, as
detailed in Section 3.3.

As shown in Table 2, the resulting data distribution includes a minimum of 1 frame per
sentence, a maximum of 24 frames per sentence, and an average of 5 frames per sentence
for FrameNet 1.5. For FrameNet 1.7, we observe similar statistics, with a minimum of 1
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frame, a maximum of 23 frames, and an average of 5 frames per sentence. The exemplar
data presents an average and minimum of one frame per sentence across both datasets,
with a maximum of 14 frames for FrameNet 1.5 and 21 frames for FrameNet 1.7.

Table 2. Number of frames per sentence in the different splits for FrameNet 1.5 and FrameNet 1.7.

Dataset Split
FrameNet 1.5 FrameNet 1.7

Min Max Mean Min Max Mean

Train 1 21 5 1 21 5
Validation 1 18 6 1 18 6
Test 1 24 4 1 23 4
Exemplars 1 14 1 1 21 1

Our general architecture consists of three steps: (1) generation of frame embeddings
from various representations (section 3.3); (2) retrieval of candidate frames given an input
text (section 3.3); and (3) identification of the best frames (section 3.4) using the Llama
3.2-3B model [4].

3.3 Frames representations and retrieval of candidates frames

In this phase, we employ a frozen-RAG model to facilitate candidate retrieval. For the
retrieval component, we compare different frame representations using labels, descriptions,
lexical units (LUs), or frame elements (FEs). Figure 2 shows different representations of the
frame “Historic event”. We systematically explore all these options, generating embeddings
for each frame representation, which are then stored in a vector database. When processing
a new text, we generate its vector embedding. For embedding generation, we utilize the
English version of BGE1 [13,20]. The model employs a BERT-like architecture, utilizing
the hidden state of the [CLS] token as the embedding. We then perform a similarity search
using FAISS to retrieve the top k candidates based on similarity scores between the question
and the frame embeddings.

3.4 Identification of frames

Identifying the set of frames evoked by a sentence without a specified target span presents
significant complexity influenced by sentence length and the total number of frames in the
lexicon (1019 in FrameNet 1.5 and 1221 in FrameNet 1.7). Our previous step (in section
3.3)reduces the search space by selecting a list of potential frame candidates that guide
the model towards the correct frames. We then use a pretrained LLM to finalize frame
selection. The LLM is fine-tuned in an Instruction-Input-Output format. This prompt design
allows the fine-tuned model to not only gain inspiration from the retrieved candidates but
also to consider frames identified in previous batches, thereby accommodating retrieval
imperfections where some correct frames may not appear in the candidates list. The prompt
is provided in Table 3.

We conducted multiple experiments using several models such as Llama 3.2-3B model
[4], Llama 3.1-8B, Phi-4, and Qwen2.5-7B-Instruct across three main settings: zero-shot,
few-shot, and fine-tuning but we just keep the best performing model (Llama 3.2-3B). For
each setting, we implemented two configurations: one that explicitly indicates the number

1 https://huggingface.co/BAAI
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Representation1

Historic_event: In the course of history, an Event or Entity is taken to have
importance or significance. 

Representation2

Historic_event: In the course of history, an Event or Entity is taken to
have importance  or significance. [SEP] Lexical-Units: historic, make
history, historic_((entity))

Historic_event: In the course of history, an Event or Entity is taken to
have importance  or significance. [SEP] Frame-elements: Event, Place,
Time, Explanation, Entity, Manner, Domain, Degree [SEP] Lexical-
Units: historic, make history, historic_((entity))

Representation3

Fig. 2. Different representations of frames used in the retrieval component. Representation1 consists of
the frame label and its textual description. Representation2 extends the previous one by appending a list
of lexical units, while Representation3 further enriches Representation2 by incorporating a list of frame
elements, resulting in a more comprehensive one.

of frames the model is expected to detect, and another that does not. This distinction
allows us to test the hypothesis that, without specifying the number of frames, the model
may struggle to accurately determine the appropriate number of candidates to select.
Additionally, we included a baseline experiment that involves fine-tuning the model to
generate frames without leveraging the retrieval component as an initial step. Technical
details about the model fine-tuning using LoRA [6] 4-bit Quantization and SFTTrainer2

are provided in Table 4.

4 Results

4.1 Retrieval component

Table 5 presents the performance of candidate frames retrieval using the English version of
the BGE embedding model [13,20]. Retrieval is configured to select K = maxframes = 24 can-
didates, which corresponds to the maximum number of frames a sentence might evoke. This
setting is chosen to maximize recall, ensuring that the subsequent detection/identification
stage has a high likelihood of finding relevant frames among the candidate set.

As shown in Table 5, the third frame representation (Representation 3, including frame
label and description, the list of frame-elements and lexical-units), yields on average the
highest recall, highlighting it as the most effective representation format, although very
close to Representation 2. Across all datasets and frame representations, precision remains
low, a consequence of maximizing recall by retrieving a surplus of frames (maxframes = 24)
compared to the average need (avgframes = 5). This retrieval strategy not only provides the
frame detector component with the broadest possible set of relevant candidates, but it also
encourages the model, during fine-tuning, to rely less on parametric memory and more on
generalization, enhancing its robustness.

2 https://huggingface.co/docs/trl/en/sft trainer
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Table 3. Example of the dynamic prompt used to fine-tune the LLM

Instruction You are an assistant tasked with identifying the relevant frames evoked by a given
sentence. You will get a list of potential candidate frames, but not all possible frames
will always be included. If a relevant frame is not in the provided list, use your
knowledge and prior context to identify the most relevant one(s). Give an answer like:
Response: frames: [frame name, . . . , frame name], with no additional discursive
or explanatory text.

Input Sentence: Bush said that it was Khan who sold centrifuges to North Korea.
frame name: Commerce sell – frame definition: These are words describing basic
commercial transactions involving a buyer and a seller exchanging money and goods,
taking the perspective of the seller.
frame name: Statement – frame definition: This frame contains verbs and nouns that
communicate the act of a Speaker to address a Message to some Addressee using
language.

Output [’Commerce sell’, ’Statement’]

Table 4. Technical details of the fine-tuning

Parameters Values

GPU model A100-40gb
Number of hours (training and inference) 12
Number of epochs 10
Max Sequence Length 2048
Packing False (for faster training)
Per Device Batch Size 16
Gradient Accumulation Steps 4
Warmup Steps 5
Learning Rate 2e-4
Precision Mode fp16 or bf16 (conditional)
Logging Steps 1
Optimizer adamw 8bit
Weight Decay 0.01
Learning Rate Scheduler Linear
Random Seed 3407
Evaluation Strategy Epoch

4.2 Frame detection

Table 6 presents the frame detection results of the Llama 3.2 - 3B model fine-tuned for
10 epochs on the complete training sets of FrameNet 1.5 and FrameNet 1.7. While the
best accuracy is reported in [18] and COFFTEA [1] for FrameNet 1.5, our model achieves
higher precision/recall, outperforming prior work by approximately 4 points in recall. This
improvement is attributed to the reduction in search space during the retrieval phase and
effective de-noising (elimination of irrelevant candidates) by the fine-tuned LLM. Starting
with a retrieval phase precision of 5% and a recall of 89% as shown in Table 5, our final
model enhances both metrics to around 92%, indicating successful removal of incorrect
candidates while retaining relevant ones. This effect is even more pronounced in FrameNet
1.7, where our model achieves top performance across all metrics, with a precision of 99%
and a recall of 97%, demonstrating that the model effectively filters out incorrect candidates.
The additional training samples in FrameNet 1.7 (26% more than FrameNet 1.5) further
contribute to this improvement. Interestingly, not specifying the exact number of frames
to generate didn’t hurt performance—possibly because of how the data is distributed.
This finding is crucial for real-world applications, as providing exact frame counts is often
infeasible with out-of-distribution data. Consistent with the task description in section 3.2,
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Table 5. Retrieval Performances on FrameNet 1.5 and FrameNet 1.7 train sets (%)

FrameNet 1.5 FrameNet 1.7 Average

Metrics P R P R P R

Rep1 4 79 3 72 4 76
Rep2 5 90 4 77 5 84
Rep3 5 89 4 81 5 85

R : Recall
P : Precision
Repi : Representationi with i ∈ {1, 2, 3}

this framework is designed for practical deployment where only the sentence is provided
without target or frame count specifications. Results of experiments where exemplars data
from FrameNet 1.5 and 1.7 are used as additional training data are provided in Appendix
A.1.

Table 6. Performance (%) on FrameNet 1.5 and FrameNet 1.7

Approach Accuracy Precision Recall

FrameNet 1.5

KGFI (2021) [16] 92 - 86
Tamburini [18] 93 - -
COFFTEA [1] 93 - 88

Baseline (Fine-Tuning without retrieval of candidates) 24 34 43
RCIF (Zero-Shot) [without/with information about the number of Gold Frames] 12 / 13 12 / 18 50 / 33
RCIF (Few-Shot) [without/with information about the number of Gold Frames] 16 / 17 24 / 26 42 / 33
RCIF (Fine-Tuning) [without/with information about the number of Gold Frames] 89 / 92 91 / 92 92 / 92

FrameNet 1.7

KGFI (2021) [16] 92 - 86
Tamburini [18] 92 - -
COFFTEA [1] 93 - 87

Baseline (Fine-Tuning without retrieval of candidates) 25 34 44
RCIF (Zero-Shot) [without/with information about the number of Gold Frames] 12 / 13 12 / 18 50 / 33
RCIF (Few-Shot) [without/with information about the number of Gold Frames] 16 / 17 24 / 26 42 / 33
RCIF (Fine-Tuning) [without/with information about the number of Gold Frames] 95 / 94 99 / 96 97 / 97

5 Conclusion

In this paper, we introduced a novel and simple approach calledRCIF (RetrieveCandidates
and Identify Frames) to frame detection leveraging RAG models. Unlike previous SOTA
methods, which rely on predefined spans within the input text for frame detection, our
method operates solely on the input text sequence without requiring additional information
about the target span. Our proposed pipeline consists of two components: a candidate
retriever and an LLM that selects the correct frames from the retrieved set of candidates.
This approach demonstrated improved performance over SOTA methods on FrameNet 1.5
and achieved higher recall (10 additional points) on FrameNet 1.7, which provides a larger
training set. Consequently, our method is well-suited to real-world applications where only
raw text is available, and specific spans for frame detection are not predefined.
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Limitations

This study is limited to the use of “frozen-RAG” for the retrieval component. Exploring
trained versions of RAG could be a promising direction for future research. Additionally, our
current representation associates a text to a bag of frames and frame-elements. Our future
efforts will focus on extracting full semantic representations with a mapping of arguments
to their corresponding frame-elements. We also plan to experiment if such an approach
could be leveraged in knowledge base querying by providing a similar representation for
various question formulations.
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A Appendix

A.1 Training using exemplars data

Consistent with findings from [2] and [1], our experiments using exemplar data for train-
ing—while testing on the same test split as in previous experiments—showed lower perfor-
mance, as indicated in Table 7. Additionally, when exemplars are used as initial training
data (i.e., training with exemplars first and then continuing with the official training split of
the two datasets), the performance remains slightly lower compared to not using exemplars
at all. We hypothesize that this drop in performance stems from the nature of exemplar
data, where each sentence typically evokes only one frame, with annotations limited to a
single frame per sentence. This characteristic makes exemplar data less suitable for training
models intended to detect multiple frames per sentence, as previously noted by [2].

Table 7. Performance (%) with and without training on exemplars data

Metrics Accuracy Precision Recall

Training with just the training set

FrameNet 1.5 44 52 44
FrameNet 1.7 48 49 49

Initial training using ”exemplars” data then continue training on training set - Test performed using the testset

FrameNet 1.5 87 89 88
FrameNet 1.7 92 94 95

A.2 Additional results for different recall@k

For further comparison with SOTA approaches, we provide Table 8 that reports performance
for different recall @ k. Our method outperform the previous best approaches (KGF1 and
COFFTEA)

A.3 Details about the frames detection component

To reduce the complexity of frame detection using a Large Language Model (LLM) as
shown in Figure 3, the input comprises a sentence alongside a list of potential candidate
frames that could be evoked by the sentence.
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Table 8. Performance (%) on FrameNet 1.5 and FrameNet 1.7

Approach FrameNet 1.5 FrameNet 1.7

Recall@1 Recall@3 Recall@5 Recall@1 Recall@3 Recall@5

KGFI 86 - - 86 - -
COFFTEA 88 93 95 87 93 94
RCIF (Fine-Tuning) [without Info on # Gold Frames] 89 94 95 90 95 96

The following figure shows how our method effectively reduces the complexity of the
frame detection task.
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Fig. 3. Complexity evolution of the task of frame detection with and without candidates filtering and
different values for the number of candidates C.

A.4 Phi-4 and Qwen additional details

For our additional experiments with alternative large language models (LLMs), we employed
two advanced models: Phi-43 and Qwen2.5-7B-Instruct4. Phi-4 is a 14B parameter dense
decoder-only Transformer model, designed with a focus on high-quality data and advanced
reasoning. It was trained on a blend of synthetic datasets, filtered public domain content,
and academic resources, ensuring a strong foundation for instruction adherence and safety.
Through supervised fine-tuning and direct preference optimization, Phi-4 achieves precise

3 https://huggingface.co/microsoft/phi-4
4 https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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alignment and robust instruction-following capabilities. In contrast, Qwen2.5-7B-Instruct
is part of the Qwen2.5 model series, featuring enhanced knowledge, stronger coding and
mathematical capabilities, and improved instruction following. It generates structured
outputs such as JSON, and excels in handling structured data like tables.
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