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ABSTRACT 
 
This study proposes a behavior-specific filtering method to improve behavior classification 

accuracy in Precision Livestock Farming. While traditional filtering methods, such as 
wavelet denoising, achieved an accuracy of 91.58%, they apply uniform processing to all 

behaviors. In contrast, the proposed behaviorspecific filtering method combines Wavelet 

Denoising with a Low Pass Filter, tailored to active and inactive pig behaviors, and 

achieved a peak accuracy of 94.73%. These results highlight the effectiveness of behavior-

specific filtering in enhancing animal behavior monitoring, supporting better health 

management and farm efficiency.  
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1. INTRODUCTION 
 

1.1. Background  
 

Precision Livestock Farming (PLF) has emerged as a critical field for monitoring and improving 

animal health and behavior[1]. Accurate and continuous tracking of livestock behavior is 

essential for identifying early signs of health issues and enabling timely intervention. Traditional 
methods for monitoring pig behavior, such as manual observation, are labor-intensive, limited in 

scalability, and prone to inaccuracies [2].  

 
Recent advancements in PLF have introduced automated systems that leverage biosensors to 

track behavior in real time. These sensors, often attached to animals, collect data that is both 

costeffective and reliable, making them indispensable for modern livestock management [3,4]. 

For example, wearable wireless biosensors have been successfully applied to monitor various 
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physiological parameters and behaviors in livestock, contributing significantly to effective group 
management [3]. Although much of the initial work has focused on cattle [4,5], there is growing 

interest in applying similar technologies to pigs. However, despite the advantages of biosensors 

in enhancing data quality and quantity, accurately processing these data to interpret diverse pig 

behaviors remains a challenge [6].  
 

1.2. Challenges in Behavior Monitoring  

 

Conventional signal processing methods, such as low-pass filters and wavelet denoising, are 
often employed to reduce noise in sensor data [7-9]. Although these techniques enhance data 

quality, they typically apply a uniform filtering strategy regardless of the type of behavior 

observed [10]. This one-size-fits-all approach fails to account for the distinct characteristics of 
behaviors—active behaviors (e.g., walking, eating) involve rapid, dynamic movements requiring 

preservation of high-frequency components, whereas inactive behaviors (e.g., lying, standing) 

benefit from aggressive noise reduction to eliminate spurious signals [11,12]. As a result, 

applying uniform filtering compromises data accuracy and diminishes the performance of 
downstream machine learning models for behavior classification and tracking.  

 

1.3. Related Works  
 

Recent studies have utilized both accelerometer and gyroscope data combined with machine 

learning algorithms to classify livestock behaviors more accurately [13-16]. For example, 
multiaxis sensor data has been employed to distinguish behaviors such as eating, walking, and 

standing in cattle, resulting in enhanced classification performance [16]. Additionally, deep 

learning techniques, such as convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), have been applied to automatically recognize animal behaviors, leveraging the 

comprehensive motion information from multi-sensor data [17,18]. However, many approaches 

do not tailor preprocessing techniques to the specific characteristics of different behavior types, 

leading to suboptimal performance. This highlights the need for behavior-specific filtering 
methods, which the current study aims to address.  

 

1.4. Proposed Solution and Objectives  
 

To address the limitations of traditional one-size-fits-all filtering methods, this study proposes a 

tailored behavior-specific filtering approach. This method optimizes sensor data preprocessing 
by applying distinct filtering techniques based on the specific characteristics of active and 

inactive behaviors. For example, high-frequency components critical for active behaviors (e.g., 

walking, eating) are preserved, while noise is reduced for inactive behaviors (e.g., lying, 
standing).  

 

In this approach, pig behaviors were manually categorized into active and inactive groups, and 
separate filtering pipelines were applied accordingly. The objective was to compare the 

performance of this behavior-specific filtering method with that of conventional uniform filtering 

approaches using standard evaluation metrics, such as accuracy and F1-score. This study aims to 

establish a foundation for more refined preprocessing strategies in PLF systems, ultimately 
supporting more reliable behavior monitoring.  
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2. METHODS 
 

2.1. Data Collection and Labeling  
 

Animal handling and media recording were approved and conducted in accordance with the 

Virginia Tech Institutional Animal Care and Use Committee. Data were collected from two pigs 
at the Virginia Tech Swine Facility over 10 non-consecutive days between October 24, 2022, 

and November 13, 2022. As shown in Figure 1, each pig was fitted with a MetaMotionC (MMC) 

sensor attached via standard ear tags, which recorded 6-axis motion data (accelerometer and 

gyroscope) at 50 Hz, resulting in 2,276,450 data points. An RGB camera mounted on the pen 
ceiling recorded video at 30 frames per second, and the footage was synchronized with the 

sensor data. Ground truth labels were manually annotated using SegIt software [19] and 

subsequently verified, categorizing behaviors into seven classes: Eating, Lying, Walking, 
Standing, Interacting, Drinking, and Unknown. This synchronized and manually labeled dataset 

served as the foundation for evaluating the filtering approaches and subsequent modeling. 

 

 
 

Figure 1.  Demonstration of data collection setup: A RGB camera mounted on the ceiling, pigs are 

equipped with MMC sensors on the ear. 
 

2.2. Data Pre-processing  
 

2.2.1. Outlier Detection and Data Imputation  

 
Outlier detection was performed using both Interquartile Range (IQR) and Hampel filters. The  

Hampel filter was chosen for its ability to effectively identify anomalies with minimal data loss. 

Following outlier removal, linear interpolation was applied to impute missing values, while 
preserving the temporal structure of the data.  

 

2.2.2. Filtering Methods   

 
As a baseline, traditional filtering techniques, including Wavelet Denoising, Total Variation 

Denoising (TVD), Median Filtering, High-Pass Filtering (HPF), Low-Pass Filtering (LPF), and 

Savitzky-Golay Filtering, were uniformly applied to the sensor data. The proposed method was 
implemented to account for the distinct signal characteristics associated with different pig 

behaviors. The behaviors were manually categorized into two groups: active (Eating, Walking, 

Interacting, Drinking) and inactive (Lying, Standing). For active behaviors, filtering methods 

that preserve high-frequency components (e.g., Wavelet Denoising and TVD) were employed to 
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retain relevant motion details, while for inactive behaviors, techniques that reduce noise (e.g., 
LPF and Median Filtering) were applied to enhance signal stability. This targeted strategy was 

designed to preserve features that are critical for accurate behavior classification.  

 

2.3. Feature Extraction and Selection  
 

The pre-processed sensor data were segmented into 1.5-second windows, following established 
practices [20,21]. A total of 104 features were extracted from each window to capture various 

aspects of the signal, including its statistical, spectral, and overall characteristics. These features 

are grouped as follows:  

 
- Time-Domain Features: Statistical metrics such as minimum, maximum, mean, median, 

variance, percentiles, root mean square (RMS), skewness, and kurtosis were computed for 

each of the six channels (X, Y, Z for both accelerometer and gyroscope), resulting in 60 
features.  

- Frequency-Domain Features: Spectral metrics including spectral entropy, frequency 

centroid, energy, and other FFT-derived measures were calculated for each channel, yielding 
30 features.   

- Aggregate Features: Overall signal properties, such as Signal Magnitude Area and summed 

values per channel and per category, contributed an additional 14 features.  

 
To reduce dimensionality and improve computational efficiency, Recursive Feature Elimination 

was applied to reduce the feature set to 50 key features. Following feature extraction and 

selection, all features were normalized to the [0, 1] range using the MinMaxScaler. This 
normalization ensures consistent scaling across features, which is essential for optimizing model 

training and evaluation.  

 

2.4. Classification Models and Performance Metrics  
 

A diverse set of machine learning models was evaluated to objectively assess the impact of 
filtering approaches on behavior classification. The preprocessed dataset was randomly split into 

70% for training and 30% for testing. This split ensured that model performance was evaluated 

on unseen data, providing a reliable measure of generalization.  

 
The models used in this study were selected to represent various classification strategies and 

capture different algorithmic strengths. These models include:  

 
- Random Forest (RF): An ensemble method that aggregates predictions from multiple 

decision trees, effectively handling high-dimensional data and reducing overfitting.  

- XGBoost (XGB): An optimized gradient boosting algorithm designed for efficiency and 
scalability, capable of capturing complex feature interactions.  

- K-Nearest Neighbors (KNN): A non-parametric method that classifies instances based on 

proximity in the feature space, albeit with higher computational cost for large datasets.  

- Gradient Boosting Machine (GBM): An iterative ensemble technique that builds decision 
trees sequentially, minimizing classification errors at each step.  

- Decision Tree (DT): A simple, interpretable model that recursively splits data based on 

feature values, although it can be prone to overfitting when used alone.  
- Linear Support Vector Classifier (Linear SVC): A linear variant of support vector 

machines that is effective in high-dimensional spaces, provided the classes are 

approximately linearly separable.  
- Naive Bayes (NB): A probabilistic classifier based on Bayes’ theorem, offering 

computational efficiency while assuming feature independence.  



Computer Science & Information Technology (CS & IT)                                               91 

 
Each model was trained on the training set and evaluated on the testing set. Performance was 

measured using the following metrics:  

 

- Accuracy: Measures the overall proportion of correctly classified instances.  
- Precision: Indicates the proportion of positive identifications that were actually correct.  

- Recall: Reflects the proportion of actual positives that were correctly identified.  

- F1-Score: The harmonic mean of precision and recall, providing a balanced assessment of 
model performance, particularly in cases of class imbalance.  

 

This comprehensive evaluation facilitates a comparative analysis between traditional uniform 
filtering methods and the proposed behavior-specific filtering approach, highlighting the 

tradeoffs and benefits of each technique.  

 

2.5. Cross-Validation Evaluation  
 

In addition to hold-out validation, a 10-fold stratified cross-validation was performed on the 
dataset. The data was split into 10 folds, each maintaining the original class distribution. In each 

iteration, the model was trained on 9 folds and tested on the remaining fold. Accuracy, precision, 

recall, and F1-score were calculated for each fold, and the final results are reported as mean and 

standard deviation. This approach provides a robust and objective measure of model 
performance.  

 

3. RESULTS 

 

3.1. Outlier Detection  
 

To assess the impact of outlier detection on model performance, the IQR and Hampel filters were 
compared using RF as the baseline classifier. Table 1 summarizes the evaluation metrics for each 

method. The Hampel filter achieved slightly higher accuracy (85.42% vs. 85.03%) and F1-score 

(84.82% vs. 84.42%), while retaining more data (drop rate: 6.64% compared to 15.45% for 
IQR). These results demonstrate that the Hampel filter is more effective at identifying outliers 

while preserving useful data for subsequent analysis.  

 
Table 1.  Comparison of Outlier Detection Performance Using Random Forest  

 

 
 

3.2. Traditional Filtering Results  
 

Traditional filtering methods were applied uniformly to the sensor data as a baseline for 

comparison. Table 2 presents the accuracy achieved by each filtering method across multiple 

machine learning models. The classification task focused on six behavior categories (Eating, 
Lying, Walking, Standing, and Interacting), with Drinking and Unknown excluded due to 

insufficient data.  
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Table 2.  Accuracy of Traditional Filtering Methods Across Models (%)  

 

 
 

The results indicate that wavelet is the only filtering method that improved classification 

performance relative to the raw data baseline (average accuracy of 80.72% versus 79.87%). In 
particular, dynamic models such as RF and XGB showed significant gains (91.58% and 89.87% 

accuracy, respectively) when using the wavelet method. In contrast, other methods, such as TVD 

(77.91%), median filtering (77.47%), and LPF (74.48%), failed to reach the baseline, suggesting 

that these techniques may overly smooth or distort key signal features.  
 

Table 3 summarizes the average precision, recall, and F1-score achieved by each filtering 

method across all classification models. As shown, the wavelet method attained the highest 
average precision (81.55%), recall (82.55%), and F1-score (81.76%), outperforming the raw data 

baseline (precision: 77.14%, recall: 78.48%, F1-Score: 77.50%). The other filtering methods 

yielded intermediate to lower performance, with HPF, Savitzky Golay, and LPF yielding the 
lowest scores.  

 
Table 3.  Average Performance Metrics of Filtering Methods (%)  

 

 
 
These findings show that wavelet not only improves overall accuracy, but also achieves a better 

balance between precision and recall, as evidenced by its superior F1-score. This indicates that 

preserving high-frequency signal components is essential for accurately capturing dynamic pig 
behaviors, whereas aggressive smoothing may remove critical information. Such observations 

highlight the limitations of uniform filtering strategies and motivate the need for more tailored 

approaches. In the following section, we explore behavior-specific filtering methods designed to 
address the diverse characteristics of pig behavior data.  

 

3.3. Behavior-Specific Filtering Results  
 

Table 4 shows the performance of different behavior-specific filtering combinations across 

several models. The results clearly indicate that behavior-specific filtering improves 
classification performance compared to both single filtering methods and the raw data baseline.  
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Table 4.  Performance of Behavior-Specific Filtering Combinations Across Models (%)  

 

 
 

The results show that behavior-specific filtering markedly enhanced classification performance 

compared to both single filtering methods and the raw data baseline. In particular, the wavelet 
based combinations, wavelet + median and wavelet + LPF, yielded the highest average 

accuracies, with wavelet + median slightly outperforming its counterpart (88.33% versus 

87.94%). These results are especially significant when contrasted with the standalone wavelet 

method, which achieved only 80.72% accuracy, underscoring the advantage of tailoring the 
filtering approach to distinct behavior types.  

 

Moreover, the performance of the TVD-based combinations was notably lower, with average 
accuracies of 83.51% for TVD + LPF and 77.79% for TVD + median. This suggests that, 

although TVD can effectively reduce noise, it can also overly smooth the signal, thereby erasing 

critical features necessary for capturing dynamic behaviors.  
 

The benefits of the wavelet-based combinations are further highlighted in dynamic models such 

as RF and XGB. For example, RF achieved up to 94.11% accuracy, and XGB reached 94.73% 

accuracy with these methods, indicating that preserving high-frequency signal components is 
vital for accurately recognizing dynamic pig behaviors.  

 

Figure 2 illustrates the progression of classification performance, starting from raw data and 
moving through single filtering methods to the superior performance observed with behaviour 

specific filtering combinations. This progression clearly shows that while single filtering can 

improve performance, the highest gains are achieved when filters are tailored to the 

characteristics of active and inactive behaviors. Further supporting these findings, Figure 3 
presents the confusion matrix for the XGB model using the wavelet + LPF combination. The 

matrix shows high classification accuracy for behaviors such as eating and laying, along with 

minimal misclassifications among similar behavior classes, further underscoring the 
effectiveness of the behavior-specific filtering approach in reducing errors.  
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Figure 2.  Progression of Accuracy and F1-Score from Raw Data to Behavior-Specific Filtering 

Combinations.   
 
Overall, these results confirm that adapting filtering strategies to the unique attributes of different 

behavior types—especially by combining wavelet-based methods with noise reduction 

techniques—can significantly improve classification accuracy and reduce misclassification.  
 

3.4. 10-Fold Cross-Validation Results  
 
The 10-fold cross-validation results for the XGB model using the wavelet + LPF filtering method 

demonstrated a high and stable performance. On average, the model achieved an accuracy of 

95.03%, with a precision of 91.90%, recall of 91.29%, and an F1-score of 91.57%. The low 
standard deviations, ranging from 0.16% to 0.39%, indicate that the model’s performance is 

consistent across different folds. Figure 3a further illustrates these results, showing that the 

behavior-specific filtering approach reliably enhances the model’s classification performance.  
 

 
(a)XGBoost Confusion Matrix for  (b)10-Fold Cross-Validation Wavelet + LPF Filtering. 

 Performance Metrics for XGBoost. 
 

Figure 3. (a) XGBoost Confusion Matrix from Wavelet + LPF Filtering and (b) Cross-Validation 

Performance Metrics illustrating model accuracy, precision, recall, and F1-Score.  
 

4. DISCUSSION AND CONCLUSION 
 

The results of this study demonstrate that behavior-specific filtering methods markedly improve 
the classification of pig behaviors compared to traditional, one-size-fits-all filtering approaches 

and raw data baselines. In particular, combinations such as wavelet + median filtering achieved 

the highest average accuracy (88.33%), substantially outperforming standalone wavelet 
denoising (80.72%) and the raw data (79.87%). These findings underscore the importance of 

tailoring filtering techniques to the unique signal characteristics of active and inactive behaviors.  

 

Active behaviors, which exhibit high-frequency dynamics, benefit from the feature-preserving 
capabilities of wavelet denoising. In contrast, inactive behaviors require filters, such as LPF and 

median filtering, that emphasize noise suppression and signal stability. The superior performance 

of behavior-specific combinations (e.g., wavelet + LPF and wavelet + median) across various 
machine learning models, including dynamic models such as RF and XGB, highlights the 

effectiveness of this targeted approach in preserving critical signal features while reducing noise.  
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Beyond the improved classification performance, the practical implications for PLF are 

significant. Enhanced behavior classification facilitates early detection of health and welfare 

issues, supporting the development of scalable, automated monitoring systems. Additionally, the 

superior performance of the Hampel filter for outlier detection, resulting in only 6.64% data loss, 
demonstrates the value of robust preprocessing techniques in improving overall data quality.  

 

Despite these promising results, several limitations warrant further investigation. The current 
study relied on manual categorization of behaviors, which may introduce bias. Future work 

should explore automated behavior classification to dynamically refine filtering strategies. 

Furthermore, the dataset, while sufficient for a proof-of-concept study, was limited in scale and 
scope, focusing solely on pigs. Expanding the dataset to include larger samples and diverse 

livestock species would enhance the generalizability of these findings. Finally, evaluating these 

methods in real-time settings is essential to address computational efficiency and practical 

deployment challenges in dynamic farm environments.  
 

In conclusion, this study has shown that behavior-specific filtering represents a significant 

advancement in livestock behavior monitoring. By improving data quality and classification 
accuracy, these tailored methods pave the way for more effective and automated solutions in 

PLF, ultimately contributing to better animal health and welfare.  
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