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Abstract. Developments in the field of generative-AI have made it extremely difficult to distinguish
artificially generated content from real content and their reliable detection has become more important.
This research’s topic is detecting speeches that are generated by future models in unknown languages
and answering ”With what information does a model distinguish fake and real audio, does it learn how
languages sound, or a specific trait of generated speech?” Multiple models are trained on various datasets
to detect synthetic audio signals generated by generative-AI models. Best accuracy scores for different test
sessions are 94.92% for known language from unknown model, 98. 44% for an unknown language from
known model, and 95. 18% for an unknown language from unknown model.
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1 Introduction

Recent advances have significantly transformed content creation. By 2025, text-to-image
models based on Transformer [1] architectures (e.g., DALL-E [2]) and denoising diffusion
probabilistic models (e.g., Stable Diffusion [3]) or models that use both (e.g., SORA [4],
VEO2 [5]) are capable of producing highly realistic visuals. Building on these successes,
audio generation has also been improved with models like Meta’s Voicebox [6] and GPT-4o
[7]. The realism of synthetic audio created by generative-AI has emphasized the need to
differentiate between real and synthetic audio.

The applicability of the proposed method is shown in an earlier research [8], with
this new step, the main goal is to prove the effectiveness of the method by testing mod-
els in languages and state-of-the-art generative-AI models that are not in the training
dataset. In addition to inspection of detection task results, it is also important to empha-
size differences between used audio features, effect of augmentation and different CNN
(Convolutional Neural Network) models’ performances and their other aspects. Contrary
to previous research, this work is built onto, there are only CNN models, so architectural
and training process differences such as flattening the inputs for FC (Fully Connected)
models and SVMs (Support Vector Machines) or passing the whole dataset at once for
SVM trainings are not comparable. Rather than that, only CNN models’ performances,
storage sizes, ease of training, and some other aspects are considered at the comparison.

The remainder of this paper is structured as follows. Section 1 presents a summary
of previous research in this area and emphasizes the unique contributions of this study;
Section 2 details the characteristics of audio bispectrums, the process of generating the
”signature image” from audio, the applied data augmentations, the models tested, the
datasets used along with their features, and finally, the training and testing sessions;
Section 3 analyzes the results; Section 4 suggests possible directions for future researches;
and finally, Section 5 concludes the paper.

1.1 Literature Review

Numerous studies have focused on the detection of synthetic audio. Some has demon-
strated and discussed the feature effectiveness [8][9][10][11], detection techniques such
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as statistical methods [12], clustering algorithms [13], machine learning-based models
[8][9][14][15][16][17] [18][19], FC and/or CNN architectures [8][17][18][20][21][22][23][24][25]
[26][27], and Transformer based architectures [28]. Both raw audio features [9][12][14][15][16]
[17][18][20][22][23] and feature extractor models [8][13][21] have been utilized to extract rel-
evant features. These researches highlight the dominance of deep learning models in tasks
involving both short- and long-term signal features such as bispectrum or MFCC (Mel
Frequency Cepstral Coefficients). But none of these cited researches focused on solving
multilingual speech detection by testing the models on a dataset that does not have any
bias in any way.

2 Methods

2.1 Bispectrum

Bispectrum is used in this research as it was in the previous ones [8][12][14][15]. But unlike
these researches that extract features from bispectrums or use helper signal processing
libraries to get the bispectrum, this work’s process differs but gives the same features.

The bispectrum of a signal offers insight into higher-order correlations within the
Fourier domain. Specifically, it identifies third-order correlations, in equation (1), where
Y(ω) represents the Fourier transform and Y*(ω) denotes complex conjugate. This high-
lights ”unnatural” higher-order correlations introduced by nonlinear interactions, partic-
ularly between frequency triplets such as [ω1, ω1, ω1+ω1], [ω2, ω2, ω2+ω2], [ω1, ω2,
ω1+ω2], and [ω1, -ω2, ω1-ω2]. As the bispectrum is inherently a complex-valued function,
it can be more practical and intuitive to analyze it in terms of its magnitude and phase,
from equations (2) and (3), respectively.

To simplify interpretation further, the normalized version of the bispectrum—referred
to as bicoherence—is often employed. This normalization typically involves segmenting the
signal into K portions. The bicoherence is then determined by averaging the bicoherence
values calculated for each individual segment, as shown in equation (4). All equations are
shown in Fig. 1. For a deeper exploration of the bispectrum and its properties, consult
references [12][14][15], as well as the cited sources within.

Fig. 1. Formulas for the bispectrum and bicoherence

2.2 Audio Processing

The process begins by dividing the audio into K segments, each consisting of 400 samples.
This segment size is chosen based on the typical stationarity window of the human voice
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(as speech remains approximately stationary around 20–40 milliseconds, it’s statistical
properties do not change significantly). All audios were processed at 16 kilohertz, with no
upsampling to avoid introducing ’non-real’ data or minimal downsampling to 16 kilohertz
to not lose existing data. An overlap of 200 samples is used between consecutive segments to
ensure continuity. Initially, the ’cum3’ feature is computed for each segment. Following this,
a ”signature image” is generated from the audio, from which the remaining four features
—’absolute,’ ’angle,’ ’real,’ and ’imag’—are derived. Lastly, min-max normalization is
applied to the features. Complexity of the data processing and signature image creation
are O(N ∗ SS3/OS) and O(N ∗ SS2/OS), with overall complexity of O(N ∗ SS3/OS).

Algorithm 1: Computation of 3rd Order Cumulant and Signature Image

Input: Audio data sampled at 16 kHz
Output: Signature Image and 3rd Order Cumulant

1 Define ⊙ as element-wise multiplication, ◦ as matrix multiplication
2 Set SS = 400 (segment size), OS = 200 (overlap size)
3 data← audio data+N (0, 1) (random normal noise)
4 RC layers← empty matrix of shape (K, SS, SS)
5 cum3 sum← 0
6 foreach segment in data do
7 cum3← zero matrix of shape (SS × SS)
8 ind← indices from [0, OS)
9 zero maxlag ← zero vector of shape 1

10 signal← reshaped data to 1× SS, centralized
11 signalt ← transpose of signal
12 signalr ← reverse of signal
13 col← concat((signal[ind], zero maxlagt))
14 row ← concat((signalr[0][indt], zero maxlag[0]))
15 toep← toeplitz matrix from col and row
16 rep signal r ← repeated signalr SS times
17 cum3← ((toep⊙ signalr) ◦ toepT )/SS
18 bispec← FFT shift(2D FFT(inverse FFT shift(cum3⊙ hamming window)))
19 mag ← |bispec|
20 phase← ∠(bispec)
21 cum3 sum← cum3 sum+ cum3
22 R← mag · cos(phase)
23 C ← mag · sin(phase)
24 RC layers[i]← R+ C ∗ j
25 end
26 cum3← cum3 sum

number of segments

27 Initialize signature image as an empty matrix for complex values
28 sum RC ←

∑
RC layers along stacking axis

29 foreach index row i and column j in signature image do
30 L← RC layers[:, i, j, :] (vector of K complex values along stacking axis)
31 top← sum RC[i, j]

32 bottom←
√

(LT ◦ L∗)real
33 signature image[i, j]← top

bottom+ϵ

34 end
35 Compute absolute, angle, real, and imaginary parts of signature image
36 Return cum3 and signature image
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Fig. 2. Feature looks for each generative model, (noisy features are for demonstrating the noise’s effect.
Noise is added to synthesia model for easy comparison between rows)
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Fig. 2 shows the different feature looks for the same sentence’s speech from different
methods, and two additional rows are added to show the effect of applied noise augmen-
tation. Rows with noise are noisy versions of the audio that is used in the last clean row.
To create noise, random distribution with different sigma values are added to the original
audio and then the audio is clipped between -1 and 1. Used sigma values, which are 0.025
and 0.05, are selected after listening to noise added audios with various sigmas and finding
the values that make audios noticeably noisy but not inaudible. Audios types are named
as ’no noise’, ’0.025 noise’ and ’0.05 noise’.

2.3 Models

Three different CNN models are trained, ResNet50, GoogLeNet and mid CNN, which’s
architecture is illustrated in Fig. 3 (ReLU is used after each block, Sigmoid is used for the
last layer). It is named mid CNN, since it is an updated version of basic CNN architecture
from one of the previous studies [8]. Improvements such as additional hidden layers that
include more complex convolutional layers with dropout layers are added. But still it has
potential to improve with other experimented and proved techniques such as skip con-
nections (also called shortcut connections), inception modules, or squeeze-and-excitation
blocks.

Fig. 3. Architecture of the Mid CNN model

Every CNN model has six training types: five trainings on individual features and the
one with multi form data, which is created by stacking five individual features into one
input (output layers of ResNet50 and GoogLeNet models are modified to perform binary
classification).

2.4 English Datasets

– ’In-the-Wild’ Dataset [29] (2022): contains real and synthetic voice recordings of famous
names. There are 19963 real and 11816 synthetic voice recordings, the longest of which
is 24 seconds, all with a sample rate of 16 kilohertz. The dataset’s language is English,
and it consists of 58 speakers.

– Fake or Real (FoR) [30] original Dataset (2019): contains real and synthetic audios.
There are 32496 real and 34405 synthetic audios, the longest of which is 39 seconds,
all with sample rate of 22050 Hertz. The dataset’s language is English, and it contains
multiple speakers.
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– Fake or Real (FoR) [30] rerec Dataset (2019): is rerecorded version of the FoR-2second
dataset, which contains two seconds of audios based on the original dataset that passed
through normalization and various processes, to simulate a scenario where an attacker
sends an utterance through a voice channel. Contains real and synthetic audios. There
are 6613 real and 6655 synthetic audios, the longest of which is two seconds, all with a
sample rate of 22050 Hertz. The dataset’s language is English, and it contains multiple
speakers.

– WaveFake [31] Dataset (2021): contains only synthetic audios. There are 60583 syn-
thetic audios, the longest of which is 16 seconds, all with a sample rate of 22050 Hertz.
The dataset contains audios in English and Japanese, and it contains multiple AI
models’ outputs. Only English audios are used.

– VCTK [32] Dataset (2022): contains only real audios. There are 43873 real audios, the
longest of which is 16 seconds, all with a sample rate of 22050 Hertz. The dataset’s
language is English, and it contains 110 speakers.

2.5 Multilingual Datasets

– CommonLanguage [33] Dataset (2022): contains only real audios. There are 34047 real
audios, the longest of which is 105 seconds, all with a sample rate of 22050 Hertz.
The dataset is multilingual with 45 languages, and it contains multiple speakers. This
dataset is composed of speech recordings from of languages that were carefully selected
from the CommonVoice [34] database.

– ELTOLSM (80 lines 31 languages 7 methods) [35] Dataset (2024): generated during
the research process using open source text-to-speech AI models. 80 lines are gener-
ated in English with OpenAI’s GPT-4 [36] around five topics: fake audios, famous
books, famous movies, famous paintings, and famous songs 16 lines for each topic.
Then translated into 30 other language: Bengali, Bulgarian, Chinese, Croatian, Czech,
Danish, Dutch, Estonian, Finnish, French, German, Greek, Hindi, Hungarian, Irish,
Italian, Japanese, Korean, Latvian, Lithuanian, Maltese, Polish, Portuguese, Roma-
nian, Russian, Slovak, Slovenian, Spanish, Swedish, and Turkish. After experimenting
and eliminating unrealistic audios, seven methods has selected to generate audios with:
bark [37], StyleTTS2 [38], TTS [39], VALL-E-X [40], OpenVoice [41], synthesia [42] and
PlayHT [43]. Fake audios are generated in every possible language these models offer
(union of these models’ languages creates a language pool with 31 languages) with re-
alistic sounding range of various experimented parameters. The only possible language
for synthesia [42] and PlayHT [43] was English, so different speakers are used to create
variety instead of different languages or parameters. After listening the generated au-
dios; noisy, unrealistic and faulty ones are eliminated. After elimination of more than
1000 audios, there are 4980 left, the longest of which is 22 seconds, all with sample
rate of 22050 Hertz.

2.6 Hypothesis Datasets

Two multilingual datasets are generated with the same processes under this title, which
are called HULSIL (100 lines 16 languages) and HULTL (100 lines 12 languages), with
the purpose of proving our hypothesis, which is explained later. HULSIL is primarily for
testing purposes, and HULTL is for training. They are split into these names just to
clarify the namings used in the paper. The whole dataset is called HULTEL (100 lines 28
languages) [44].
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– HULTEL (100 lines 28 languages) [44] Dataset (2024): Also another multilingual
dataset is generated by using 100 lines. Ten different topics: fashion, tech, economy,
education, travel, architecture, sports, video games, history, geography. Ten lines of
each are generated by Gemini AI [45]. 16 languages that are not in ELTOLSM is se-
lected to create a dataset to simulate ”fake speech in unknown language by unknown
AI model” which are: Albanian, Arabic, Bali, Catalan, Hebrew, Indonesian, Kazakh,
Malay, Mongolian, Persian, Somali, Swahili, Thai, Ukrainian, Vietnamese, and Welsh.
Also, another twelve popular languages that ELTOLSM contains are selected to create
a dataset. These languages are: Bengali, English, Finnish, French, German, Hungar-
ian, Latvian, Polish, Portuguese, Romanian, Spanish, and Swedish. This dataset is
used to help to prove the hypothesis in the Results and Discussion section. A total
of 2800 audios are generated by 28 languages using META’s Massively Multilingual
Speech text-to-speech model (MMS-TTS) [46]. Longest of which is 15 seconds, all with
a sample rate of 22050 Hertz. For the purpose of clearity, They will be named as two
different datasets: HULSIL (100 lines 16 languages) which contains languages that are
not in the ELTOLSM, and HULTL (100 lines 12 languages) which contains languages
that are in the ELTOLSM.

To have a balanced dataset distribution in training dataset, at most 5000 samples are
selected from every dataset, and three sets of image datasets are generated from each:
no noise, 0.025 noise, and 0.05 noise. With all these audio datasets, there are more than
250.000 audios, and after feature extractions the whole image dataset contains close to
800.000 extracted feature images. Where, over 600.000 are from English datasets, around
200.000 are from multilingual datasets. More details are shown in Fig. 4.

Fig. 4. Language distribution graph of the generated audios (upper graph) with Fake (lower left )and Real
(lower right) audios’ length distribution graphs
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2.7 Training and Test Sessions

Fig. 5 shows the train and test sessions of the research, but first there are two types of
tests that need to be explained:

– Biased Test Score: Performance of a model on the test portion of dataset it is trained
with. This type of score is acquired at the end of every training session by performing
detection over 10% (test portion) of the whole dataset which 80% (training portion)
is trained on and 10% (validation portion) is used to evaluate for early stopping. This
type of test score is called Biased Test Score because the model has a bias about the
test portion of the dataset since it is trained on somewhat similar data.

– Unbiased Test Score: Performance of a model on a dataset that the model is seeing for
the first time. This type of score is acquired by performing a detection on all the data
of another dataset which the model encounters first time.

Fig. 5. Train and test sessions with datasets and models (Hypothesis Models are excluded for simplicity,
will be explained later)

– All models have Biased Test Scores acquired at the end of their training session. Which
indicates how well a model can learn.

– English Models have three Unbiased Test Scores from multilingual datasets’ no noise,
0.025 and 0.05 noise types. Which indicates how does an only English learned model
perform on other languages. And, same are done also with the Clear English Models
to check the augmentations effect on the Unbiased Test Scores.

– All Models have three Unbiased Test Scores from HULSIL’s no noise, 0.025 and 0.05
noise types. Which helps with the comparison of effect of ’generative-AI’s recentness’
(comparison with English type models’ results on multilingual dataset), effect of ’know-
ing the language’ (with multilingual type models’ results) and ’size of the dataset’ (with
complete type models’ results).
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3 Results and Discussions

3.1 Different Detection Cases

Performance of methods are examined focusing only on the languages and the sources of
the audios. So there are four different concepts of fake speeches:

– known languages, known generative-AI: which the models performed well on as shown
in the ’Biased Test Scores’ subtitle.

– unknown languages, unknown generative-AI: which is generally performed poor as
shown in the ’Unbiased Test Scores’ subtitle. But there are also some models that
perform well (above 90 percent accuracy). So there is a lack of information about how
to detect these type of audios, which will be cleared in then next cases:

– known languages, unknown generative-AI: which is shown under the ’Unbiased Test
Scores on HULTL’ subtitle. Similarities between these results and other results under
the ’Unbiased Test Scores’ subtitle indicate that the key ingredient to do detection
is not the language. Otherwise, scores under the ’Unbiased Test Scores on HULTL’
subtitle would be better than the ones that are under the ’Unbiased Test Scores’
subtitle which takes us to item four.

– unknown languages, known generative-AI: which can be tested on HULSIL with models
that are trained on HULTL or vice versa, but models are trained on HULTL and
tested them on HULSIL since it is also wanted to check models Unbiased Test Scores
on the ELTOLSM. Test scores under the ’Hypothesis Test Scores’ subtitle show that
there is a big difference of performance at testing models on HULSIL and ELTOLSM.
These results support the hypothesis of models learning and generalizing over known
generative-AI models’ traits rather than the languages.

3.2 Biased Test Scores (known languages, known generative-AI)

Scores of trainings with augmentation are higher as expected, which indicates that applied
noise augmentation enhances performance in the same domain as the training dataset is
in. Also, gradually increasing performance scores of Complete, English and Multilingual
training sessions on both types of datasets show that it is harder to generalize in a larger
domain even if the dataset is larger. More detailed scores are shown in Fig. 6.

Fig. 6. Biased test results of all models
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3.3 Unbiased Test Scores (unknown languages, unknown generative-AI)

Fig. 7. Unbiased test results of english learned models on multilingual datasets

Scores of English Models with augmentation are generally higher than the Clear En-
glish Models scores, which indicates that augmentation helps, but not distinctly in a for-
eign domain. Also, tests on no noise datasets mostly resulted in better scores than noisy
datasets. Which supports the claim of noise augmentation making detection harder. More
detailed scores are shown in Fig. 7.

Fig. 8. Unbiased test results of english learned models on HULSIL dataset

Best score is just above the fully random decision-making. When other low scores are
also examined, it is right to say that HULSIL’s audios are considered as real audios to
English Models and Clear English Models. Which shows the main purpose of this research:
it is not possible to distinguish real and fake audios using bispectrum when the fake ones
are generated by an unknown generative-AI in unknown language. It is demonstrated that
learning English from older generative-AI models does not give any insight on future tasks.
More detailed scores are shown in Fig. 8.
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Fig. 9. Unbiased test results of multilingual learned models on HULSIL dataset

Fig. 10. Unbiased test results of complete learned models on HULSIL dataset
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English Learned Models’ scores are between 12-51% range, Multilingual Learned Mod-
els’ scores are between 0-93% range and Complete Learned Models’ scores are between
9-72% range. Which emphasizes few points: adding more languages to the training dataset
helps with the detection but is not reliable only by itself, since Complete Learned Models’
scores are lower than Multilingual Learned Models. Also, since Complete Learned Models
are trained on a training dataset that consist mostly English audios and their scores are
lower than the Multilingual Learned ones, it is safe to say that balance of the dataset
languages also plays an important role when teaching models to generalize. More detailed
scores are shown in Fig. 9 and 10.

Also when scores are examined paying attention to the features, downwards spikes
occur at ’angle’ and ’cum3’ features, while upwards spikes occur at ’imag’ and ’absolute’.
And models with multi form input do not have the best scores as expected from the earlier
study’s [8] findings. Which can indicate a few important things that may be overlooked
in it. Firstly, features such as ’imag’ and ’absolute’ may be better to generalize for tasks
at foreign domains; secondly, features such as ’angle’ and ’cum3’ might be redundant, if
not harmful, to models with multi form input. This can also be supported when scores
on the ’cum3’ feature are paid attention on. It seems like the ’cum3’ feature is the least
polluted one to human eye when noise augmentation is applied as shown in Fig. 2. Also,
test scores of the cum3 models are scattered around smaller areas than the other features.
If smaller scattering is related to noise immunity of the ’cum3’ feature, it is also possible
to say that ’cum3’ does not carry enough information regarding the speech relations. So
noise addition does not have an effect as much as it have on other features and ’cum3’
does not provide enough information to generalize on foreign domain.

3.4 Unbiased Test Scores on HULTL (known languages, unknown
generative-AI)

Fig. 11. Unbiased test results of english learned models on HULTL dataset

As seen from the tests with HULTL, Unbiased Test Scores are very similar to HULSIL
test scores, which indicates that models are unable to detect fake speeches by newer
generative-AI models even if language is known. More detailed scores are shown in Fig.
11, 12 and 13. So, this takes us to the fourth detection case.
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Fig. 12. Unbiased test results of complete learned models on HULTL dataset

Fig. 13. Unbiased test results of multilingual learned models on HULTL dataset
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3.5 Hypothesis Test Scores (unknown languages, known generative-AI)

After considering these results, here is our hypothesis: A model must be trained on a
multilingual dataset, augmentations must be applied to have better generalization and
the dataset must be balanced across the languages. This way the model can detect any
fake speech in the future, ideally.

To prove this hypothesis, new models will be trained on a training dataset that con-
tains 1200 fake audios from HULTL and 1200 randomly selected real audios from Com-
monLanguage. This model set will be called Hypothesis Models (Unbiased Test Scores of
Hypothesis Models on HULSIL is not completely unbiased since both HULTL and HUL-
SIL are a portion of the same dataset, but it will be named as ’Unbiased’ to not introduce
another type of test score and to keep terms as simple as can be).

It is expected from Hypothesis Models to perform well on Biased Test Scores, even
better than the others since the dataset’s scope is smaller. And if they perform well also on
Unbiased Test with HULSIL, means that models are able to learn generative-AI models and
detect fake speech over detecting known generative-AI models. And to further support the
hypothesis of models learning generative-AI models not the languages, Hypothesis Models
can be tested on ELTOLSM. If Hypothesis Models perform poorly on ELTOLSM test,
that supports the claim, but If Hypothesis Models perform well also on the ELTOLSM
test, that means generative-AI models are getting closer to real speech and threshold line
for speech detection should be drawn closer to real audios on the speech space from now
on. Biased Test Scores of the Hypothesis Models and Unbiased Test Scores of Hypothesis
Models on HULSIL and ELTOLSM are shown in Fig. 14:

Fig. 14. Unbiased test results of hypothesis models on HULSIL and ELTOLSM dataset

As expected, almost all Biased Test Scores are close to perfect 100% accuracy. And
Unbiased Test Scores are higher at the HULSIL than the ELTOLSM, as predicted, with
a margin of at least 17% and at most 64%. These results support the claim of models
learning generative-AI models rather than generalizing over languages. Although there
are scores as high as 81% in the ELTOLSM tests, most of them being under the 50% line
indicates that, most models are unable to generalize to unknown languages.

When it comes to model sizes, all mid CNN models are around 3MB, GoogLeNet
models are 40MB and ResNet50 models are 90MB. About their performances, there is not
any significant difference between, but when other aspects are considered such as training
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speed, inference speed and memory usage during training, mid CNN models have the best
numbers.

3.6 Further Test Scores with Background Noise Augmentation

Also another important test to hold is about the noise augmentation, since only Gaussian
noise is applied in this research this can only guess/demonstrate the effect of additive
noises, and cannot have any insight about the augmentation that is done by putting
background noise to audios. Models may be forced to predict the fake speeches as real if
background noise from real environments added to them. And even one step further, any
generated environmental noise may deceive the models to predict the real audio as fake
ones. So another dataset is created by altering the multilingual audios from Common-
Language and ELTOLSM. A total of 2169 real and fake environmental background noises
from different sources [47][48][49][50][51][52] are gathered, and created the BG datasets.

There are two BG datasets, one with added background noise after scaling it with 0.5
and other with scaling 0.25. Scaling values are selected according to 0.5 being as loud as
the speaker and 0.25 being heard and understandable while not suppressing the speaker.
Models trained with BG datasets are called BG Models, and another test session is done
with BG, Multilingual and Clear Multilingual Models on BG datasets to measure the
performance of models that are trained with Gaussian noise augmentation. Fig. 15 shows
the Biased Test Scores of BG Models and Unbiased Test Scores of Multilingual and Clear
Multilingual Models on BG datasets.

Fig. 15. Biased test results of BG models and unbiased test results of complete and multilingual learned
models on BG dataset

Successful test scores indicate that it is possible to distinguish audios with added
decisive background noises. One important conclusion is that the Multilingual Models’
performances suppressed the BG Models’ performances on the dataset. Which is quite
interesting that BG Models are unable to generalize to a dataset that they are trained on,
as good as Multilingual Models, which trained on the same audios, but with only difference
of augmentation methods. It is possible to say that Gaussian noise is more regularizing
than a synthetic augmentation that is achieved by altering the data with other real world
audios. Also, as shown from the figure, models’ performances on the BG dataset with 0.25
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scale is always better than the same model’s performance on dataset with 0.5 scale, which
supports the previous claims about noise augmentation.

4 Future Work

More diverse features could be experimented with such as MFCC, power spectrums or even
other higher-order spectrums to detect correlations beyond second- and third-order. For
example, another feature to check may be trispectrum which is sensitive to fourth-order
correlations. Formula for the trispectrum is shown in Fig. 16:

Fig. 16. Formula for fourth order correlations

And in general the Nth-order polyspectrum is sensitive to (N+1)st-order correlations.
This feature can also be calculated for higher-dimensional data. Any two dimensional data
with Fourier transformation of Y(ωx, ωy) has a four dimensional bispectrum as shown in
the Fig. 17:

Fig. 17. 4D bispectrum of the 2D signal with Fourier transform

More advanced models can be trained. Instead of CNNs, models with better under-
standing of sequences such as MAMBA [53] models can be used. And with these sequence-
able models, detection task can change from ”deciding over the whole signal” to ”sectional
decisions”. Better way to understand these use-cases is demonstrated and experimented
with at one of the previous researches [8] with multiple cases.

Also, more dynamic models could be trained, models trained for this research are
trained only on the features that are extracted from 16 kilohertz audios’ segments with 400
sample. Used segment size for other audios with different sample rates would be different.
It would be 552 for 22050, 600 for 24000 and 1200 for 48 kHz sample rates. Training a
model on features from dynamic sample rates could also improve the performance, since
downsampling audios to 16 kilohertz may result in information loss.

Data augmentation can be made more effective with various additive noises and the
methods given in the ”Background Noise Augmentation” section.

5 Conclusion

In this work, multiple models and datasets are presented to find a possible solution to
the problem of detecting generated speech from real ones, especially the ones that are
from unknown generative models in unknown languages. Best obtained test scores for
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different test scenarios are 94.92% for unknown model-known language, 98.44% for known
model-unknown language and 95.18% for unknown model-unknown language .

Even though they are clearly successful scores, there are more scores that can be con-
sidered ”unsuccessful”. For the ground of these ”unsuccessful” results, few reasons are
proposed and tested to find out what a ”successful” result comes out of. To test the pre-
sented hypothesis, different training and testing sessions on newly created datasets are
experimented with. And as a result, it is found that models are not learning to discrim-
inate speeches by generalizing over how languages sound or are spoken, but rather how
generative-AI models sound uniquely.
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image processing, pattern recognition, and artificial intelligence.

                                                                      . This article is published under the Creative Commons Attribution (CC BY) license.© 2025 By AIRCC Publishing Corporation

Computer Science & Information Technology (CS & IT)                                               117

https://airccse.org/



